
Beyond Code: Content Management and
the Open Source Development Portal

(Position Paper)

T. J. Halloran William L. Scherlis
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213�

thallora � wls � @cs.cmu.edu

Justin R. Erenkrantz
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
jerenkra@ics.uci.edu

1 Introduction

Open source project collaboration web portals (e.g.,
Mozilla.org, SourceForge.net) have become the focal point
for interaction with and development of most open source
software projects. These collaboration portals allow consid-
erable community interaction with a project while respect-
ing and maintaining effective control by the project’s lead-
ers over process, architecture, participation, and quality. A
variety of successful and widely used open source collabo-
ration tools have evolved (e.g., CVS, Bugzilla, Mailman)
specifically to support tool mediation of this interaction.
However, use of a Content Management System(CMS) be-
yond simply storing the web site’s contents alongside the
project’s code within CVS is rare. Is there a real need for a
CMS within an open source project portal? What attributes
does a CMS system need to be adoptable? Is more ambi-
tious CMS adoption consistent with open source practice?

We take the position that an advanced CMS is a use-
ful addition to an open source development portal and is
consistent with the current trajectory of open source col-
laboration tool evolution. However, to be adoptable a CMS
must respect and follow open source practice—not try to re-
define it—and facilitate an incremental transition from ex-
isting content management methods. In addition, as open
source practice is clearly not homogeneous, a “one-size-fits-
all” CMS will not be successful. As a project’s community
grows to include individuals with strong supporting roles
other than programming (e.g., documentation, translation,
QA) the need for a CMS becomes more acute.

What can a CMS do for an open source project? It can
aid project information awareness, assist project/personal
workflow, and facilitate the use and maintenance of
models. These are significant functions that can help
projects express/exploit more information regarding de-

sign intent, provide better degrees of assurance for code
safety/dependability, and perhaps even facilitate a more ag-
ile approach to structural/architectural change.

2 Roles and benefits

Content management refers to the management of web
site content. We loosely define a CMS to be any automated
tool designed to support the content management function.
Hence, the common practice of storing the project’s web
site contents within CVS alongside a project’s source code
would qualify—but only at the functional low-end. A high-
end CMS typically assists users with web site authoring
(e.g., directly within a browser or via more specialized
tools), document organization, workflow, multi-format pub-
lishing (e.g., HTML, WAP, PDF), version control, archiv-
ing, and security.

What role would a CMS fill in an open source devel-
opment portal? To answer this question we first need to
identify the information managed by an open source portal.
There are generally five notional content databases:

Database Content (Typical Tool Support)

Source Code The project’s source code/versions/
logs (CVS)

Bugs/Issues Project defect/enhancement reports
(Bugzilla, GNATS)

Discussion Mailing list/newsgroup archives
(Mailman, Google Groups)

Testing Nightly build/regression results
(Tinderbox, Mailman)

Documentation Documentation, process/workflow,
marketing, community/developer
information (CVS)

69



It is within the Documentationdatabase/content area that
a CMS can provide the most immediate utility to an open
source portal. We include under this rubric informal docu-
mentation, formal documentation (such as low-level mod-
els), and more aggressive approaches to linking and con-
sistency management among these diverse information as-
sets. Note the other four database/content areas have had
specialized tools evolve to support them—CVS, specifically
developed for source code control, has really only provided
an expedient stop-gap solution for CMS functionality. We
believe a more ambitious CMS than CVS alone provides a
better overall portal solution (even if the CMS stores its low-
level content in CVS) and will provide long-term benefits in
the following areas:

� Information/context awareness:How can a devel-
oper/participant restore awareness in project activity
after having been ”offline” for a few hours, days, or
weeks? Present approaches include browsing CVS
commit-logs, “my bugs” in Bugzilla, and other ad hoc
approaches learned over time to be effective by the
project’s community. A CMS augments existing ad
hoc approaches by increasing awareness in the Doc-
umentationdatabase/content area discussed above. In
addition, the CMS should include a capability for de-
velopers to tailor what areas of the project they are in-
terested in. There are the usual trade-offs between ex-
tent of tailoring to individual needs and the extent of
up-front configuration effort required to achieve this.

� Process support:How can a project better institu-
tionalize workflow support without adding a “bureau-
cratic” burden to the developers? This is a question
often asked by industry software managers consider-
ing adopting open source engineering methods and
tools. Present practices include informal coordina-
tion (e.g., the “CHANGES” file under CVS used to
help coordinate work among Apache HTTP Server
developers) and use of bug/issue databases (e.g., the
use of Bugzilla as a project management tool by
the Mozilla programmers—loading milestones such as
“Ship Mozilla 1.0” as “bugs”). A CMS adds a work-
flow infrastructure to the open source portal. Workflow
automation streamlines processes that are difficult to-
day (e.g., routing proposed web page changes by non-
committers to committers, notifying all developers that
have recently checked-in changes to a group of code
that its documentation has been updated, tracking and
communicating workflow progress to project leaders).

� Individual process support:How can an individual
developer use awareness information and associated
CMS tool support to manage priority setting in devel-
opment effort and synchronization points with other

developers? Present approaches are informal, includ-
ing use of general mailing lists, bug-specific “mailing
lists”, and instant messaging. This is not related to
PSP, TSP, etc., which focus on metrics use and opti-
mization of productivity and quality. The focus here is
on allocation, prioritization, and timing of effort.

� Use of models:Open source engineering practices fo-
cus around code, and, in present practice, there appears
to be a pragmatic constraint that any use of models
must derive from the “ground truth” of code. How
can models be created and managed to support the ex-
pression of design intent not directly manifest in code?
In particular, how can models be linked with code
in a direct tool-managed manner to support consis-
tency management, analysis, and other model-related
functions—we believe a CMS could facilitate, to some
degree, this type of capability. An example of a kind
of “model” that fits this approach is the use of scaffold
and unit tests incorporated into a build (e.g., the use of
JUnit on the Eclipse project). A more forward looking
example is assurance that a model of the code’s con-
currency policy is consistent with the project’s source
code [3, 8].

Our notion of what constitutes a CMS is broad and inclu-
sive. Commercial CMS products range from large high-end
enterprise systems, such as Interwoven, to low-end systems,
such as Microsoft FrontPage, with many products in be-
tween. Of more interest to us, however, are the many open
source CMS projects under active development today. At
the low-end, Wiki allows web page visitors to directly edit
page content within their web browser. There are more than
70 active open source Wiki projects. The various Wiki alter-
natives support varying degrees of CMS functionality. For
example, some allow anyone to change site content while
others require authentication, some use a version control
system to archive and track changes others do not, and so
on. A few open source CMS projects with grander aims
than Wiki functionality exist as well. These projects, which
include Zope and OpenCms, contain functionality similar to
mid- to high-end commercial CMS. Which approach is best
for an open source portal? We will return to this question af-
ter examining current open source portal CMS experiences.

3 Direct experience in our research projects

Our interest in CMS/open source portal integration
evolved from two experiences setting up, using, and main-
taining open source-style development portals. The first
development portal was used by our research group (with
15 team members dispersed between Carnegie Mellon Uni-
versity and the University of Wisconsin–Milwaukee) to de-
velop 160KSLOC of Java software. We grew to rely heav-

70



ily upon the open source tools and found them adequate—
except in one area: web content management. Within the
last year alone we changed from managing content in RCS,
to using no revision control at all, to using CVS, to aug-
menting CVS with some CGI/Python publishing scripts,
and finally to a site based on the Plone CMS.

The second portal, which was setup much more recently,
supports collaboration within the High Dependability Com-
puting Program (HDCP) on an aggressive software devel-
opment using the Real-Time Specification for Java for a
NASA project. This open source-style web portal sup-
ports 10 researchers and practitioners from Carnegie Mel-
lon University, Carnegie Mellon-West, Caltech’s Jet Propul-
sion Labs, and Sun Microsystems. We installed a Wiki as
the main page for this portal to avoid the content manage-
ment problems encountered in our earlier research portal.
No problems have arisen and the Wiki has been popular.

Both these projects are closed groups with little public
interaction. However, these experiences raised our interest
in the role a CMS can play in a open source portal.

4 Experience in the open source community

To better understand the challenges associated with
CMS/open source portal integration, we informally sur-
veyed several open source portals. In this section we briefly
report on a few interesting cases of attempts to integrate
some form of CMS within a real-world open source portal.

4.1 SourceForge.net

SourceForge.net is perhaps the best known-open source
web portal in the world. As of February 2003 it hosted over
56K projects and had 565K registered users. Several suc-
cessful and well-known open source projects are hosted on
SourceForge.net (e.g., Python, JBoss, MySQL) but, due to
no barrier to entry except use of an open source license, lots
of “dead” projects “haunt” this site as well.

SourceForge.net provides each project a directory in
which to place its web content. The scp (secure copy)
command is used to upload web content to SourceForge.net.
This is the most primitive approach we encountered—
all content management must be setup and handled by
the development team for each SourceForge.net project or
hosted at another server. In practice, many SourceForge.net
projects store their web content within their project’s source
code CVS repository and use a simple script to publish it.

4.2 Mozilla.org

Mozilla.org is the web portal for the development of the
Mozilla web browser. The highly publicized Mozilla open
source project was started in 1998 by Netscape and included

the creation of the Mozilla.org collaboration site. In June
2002 the Mozilla project reached a major project milestone
by releasing Mozilla version 1.0. Mozilla.org has also con-
tributed several widely used open source collaboration tools
such as Bugzilla (issue tracking and project management)
and Tinderbox (portability and regression testing).

The Mozilla.org web site has used and is still using CVS
for management of site content not managed within other
tools such as Bugzilla. An approach to general project doc-
umentation and web site content management has been un-
der debate within the Mozilla project for a long time. As
a post to several Mozilla newsgroups noted in December
2000, “It’s a very ”big” problem (336Mb, 30,716 files)” [6].
Long newsgroup threads debating the merits of various ap-
proaches appear several times since 2000 on the Mozilla
documentation newsgroup. The real impact of this problem
is that some volunteers to work on Mozilla documentation
were lost—CVS, at least alone, was not succeeding as a vi-
able CMS for the Mozilla project.

In August 2002 the existing problems were summa-
rized by Mitchell Baker, Mozilla’s Chief Lizard Wran-
gler, as “Once nice docs exist, it’s hard to get them to
[Mozilla.org],” specifically: (1) “learning CVS is a burden,”
(2) “using CVS is awkward,” (3) “finding a [document’s] lo-
cation is difficult/impossible due to current poor organiza-
tion,” and (4) “maintaining the pages is time-consuming.”
Baker also notes, “I understand the desire to set up an
over-arching structure for everyone to solve the problems.
But this is not the approach which prospers in the rest of
the project, our rules and structures have grown incremen-
tally” [2].

In December 2002 a simple CMS called Doctor was
added to help manage site content. Mozilla.org’s Doctor
system adds an “Edit this page” link to the bottom of each
web page—it is essentially a Wiki with access control. Doc-
tor is a wrapper around the CVS document management
system already in use that allows in-browser edits of a web
page’s HTML content. Doctor protects against defacement
of Mozilla.org by requiring a valid CVS identification and
password to publish any change. However, Doctor lacks any
built-in workflow capability. You are not allowed to simply
route a suggested website change to a known project com-
mitter within this tool—you must create a Bugzilla bug to
suggest your change.

Mozilla is experimenting with a Zope/Plone site which
is hosted at moz.zope.org. Zope is full-featured open
source CMS. Plone is built on top of Zope and provides
more “out-of-the-box” capability than Zope alone. This site
is the only use (although still in trial) of a high-end CMS by
a major open source portal we encountered in our prelim-
inary investigation (with the logical exceptions of projects
like OpenCms, Zope, and Plone). Success for the Mozilla
project with this approach is not a foregone conclusion.

71



Newsgroup postings note many limitations and bugs with
the experimental site—but good relations appear to exist be-
tween these three open source projects and steady progress
is being made.

4.3 PHP

The web portal for the development of PHP, a server-
side cross-platform HTML embedded scripting language,
allows a series of user contributed notesto be attached to the
official documentation pages about the PHP system. These
notes can be contributed by any site visitor and appear at the
bottom of the documentation page. User contributed notes
are a popular addition to the documentation as illustrated by
the below mailing list quote, one of two that were posted,
defending them from a advanced PHP user claiming they
were not useful to him:

I hope you meant they are outdated in some
parts. Because, the user notes are very very use-
ful for tons of people. It 1) suggests a function’s
usage 2) extends the documentation (often [there
are bugs in what gets] into the official descrip-
tion). Though a cleanup would be good [4].

Note that this content management capability allows for
any user to contribute simple items directly into the docu-
mentation with very little effort—without allowing the of-
ficial documentation to be changed. Members of the offi-
cial PHP documentation team can use these notes to sub-
sequently improve the official documentation. PHP’s user
contributed notes system is a good example of a simple
CMS that has been successfully incorporated into an open
source portal.

4.4 Apache Software Foundation

The Apache Software Foundation (ASF) is a highly
decentralized community of developers supporting 17
major projects (many with sub-projects). In Decem-
ber 2002 the ASF started using a Wiki hosted at
nagoya.apache.org for some of its projects, including
the well-known HTTP Server and Jakarta projects. Several
concerns arose that generated significant discussion among
the ASF community. One of the authors of this paper, as an
ASF member, was involved in these discussions.

The initial Wiki had no ability to provide notifications
of content changes. This made it difficult to maintain an
awareness of changes to the site’s content over time. As an
attempt to address this concern, the Apache Wiki had Rich
Site Summary (RSS) support added to it. RSS facilitates
a weblog-like (pull-based) notification of Wiki changes.
This approach was not popular with Apache developers be-
cause “while email is a generally used tool around the ASF,

weblog and related technologies are not as common” [7].
Hence, the community decided that push-based email notifi-
cations were a better fit for the ASF and the Wiki was again
modified to send “change-emails” to an archived mailing
list.

Another more serious concern with the fledgling Wiki
was maintaining oversight. First, because the Wiki was
hosted on an ASF computer it raised some liability con-
cerns or as one developer put it, “oversight of the type
that the ASF as a US incorporated is supposed to main-
tain” [9]. Second, since the ASF is a collection of communi-
ties rather than a single project sharing the same Wiki com-
plicates content oversight because no single project commu-
nity can do it. The foundation has an existing organizational
structure in its Project Management Committees that ensure
oversight over the code and traditional websites [1]. How-
ever, as the below mailing list quote illustrates the Apache
Wiki has raised several new policy questions:

My concern is over where do we draw the
line—after the oversight is in place. The extremes
are clear—porn will be removed, and excellent
documentation will be included in the products
and their authors may become committers.

What happens in between is a different story.
My opinion is that Wiki should be treated as mail-
ing lists—and not as source code in CVS and sub-
ject to consensus.

The real problem is not the warez or porn—
that’s something we’ll know how to handle.
What if someone creates a page ApacheFooSucks
(where Foo is one of the Apache projects)? And
it includes a list of problems and arguments—
just like he would do it in the mailing list.
Are we going to remove it—or just cre-
ate ApacheFooIsGreat with counter-arguments?
What if it’s about JCP? Or GPL? Or the best web
development technology? Do we keep or remove
those pages? [5]

Very recently, a proposal to split the Apache Wiki into
realms of oversight that map better to individual Apache
projects and sub-projects has been made. Today, however,
the original Apache Wiki is still in use.

5 CMS requirements

Based upon our experiences we believe the following list
of requirements should be considered to help ensure suc-
cessful integration/adoption of any CMS as part of an open
source development portal:

� Fit-in with established portal tools:A CMS designed
to be integrated within an open source portal must co-
operate with the well established tools. Its role is not

72



to replace the project’s mailing lists or to do away with
bug/issue tracking tools. In addition, the CMS must
allow incremental transition from existing practice on
the portal.

� Assist, don’t burden, the project leaders with over-
sight: The CMS should allow the leaders of the project
to exercise fine-grain control over the abilities of each
and every registered user. The web site content should
be able to be divided into sections, including a hier-
archy of sub-sections, to ensure that permissions for a
user are not all or nothing.

� Facilitate contributions: The CMS should allow a
project to lower the barrier to entry for someone want-
ing to contribute. Some examples include allowing
web page editing directly within a browser (e.g., Wiki
or Mozilla’s Doctor) even in a limited and controlled
manner (e.g., PHP’s user contributed notes). This is
important because most project portals offer resources
to help potential new participants quickly reach the
point of becoming visible and acknowledged contribu-
tors to the project.

� Facilitate awareness:The CMS should facilitate keep-
ing project members aware of ongoing changes within
the project. This capability should allow individuals
to “tune” their interest about project activities to avoid
information overflow. Push as well as pull change no-
tification should be supported.

� Support workflow:The CMS should add an infrastruc-
ture for workflow within an open source portal. This
capability could be used to facilitate further integration
between the portals notional databases/content types.
A simple example of workflow would be to route a
proposed web page change to a project focal-point who
can then review the change and accept it or reject it.

� Facilitate content organization and models:The CMS
should assist users with document/content organiza-
tion. This capability must not be all-or-nothing to fa-
cilitate incremental adoption of site organization. In
addition, facilitating models of design intent linked to
the project’s code would allow the portal to “get more
semantic.”

� Archiving and metrics: The CMS should remember
all committed, as well as rejected, changes to the site.
CMS use of the same system used to control source
code would help to simplify site maintenance (e.g.,
CVS, Subversion). A general tabulation of statistics
about changes and who submitted them when should
be kept (to allow a project to spot trolls or scripts sys-
tematically submitting bogus change requests).

6 Summary

We have presented the position that a CMS can ful-
fill a useful role within an open source development por-
tal and reported on some limited CMS experiences within
the open source community. We hypothesize that success-
ful open source tool adoptions are characterized by a Prin-
ciple of Early Gratification—that increments of investment
by project participants must be very closely followed by in-
crements of return on that investment. This Principle pro-
vides useful design guidance for a CMS. It is all too easy,
especially with highly-visible “one-size-fits-all” portal so-
lutions like SourceForge.net, to view open source portal ca-
pabilities and tools as well understood and static—in re-
ality these portals are under constant evolution, driven by
evolving project needs. We believe that more ambitious au-
tomated content management is evolving into a useful and
accepted piece of the open source development portal.

References

[1] Apache HTTP Server Project Guidelines. http://httpd.
apache.org/dev/guidelines.html. Current Feb.
2003.

[2] M. Baker. (Mozilla.org) Documentation effort.
http://groups.google.com/groups?hl=
en&lr=&ie=UTF-8&safe=off&selm=3D63ADEF.
8070700%40mozilla.org. Current Feb. 2003.

[3] A. Greenhouse and W. L. Scherlis. Assuring and evolving
concurrent programs: Annotations and policy. In Proceed-
ings of the 24th International Conference on Software Engi-
neering, pages 453–463, New York, May 2002. ACM Press.

[4] M. Maletsky. (PHP.net) re: [php-doc] re: Php doc-
umentation authors / editors and license. http:
//marc.theaimsgroup.com/?l=phpdoc&m=
104421737507766&w=2. Current Feb. 2003.

[5] C. Manolache. (Apache.org) Wiki - we have a problem
:). http://nagoya.apache.org/eyebrowse/
ReadMsg?listName=community@apache.
org&msgNo=1353. Current Feb. 2003.

[6] G. Markham. (Mozilla.org) Website reorganisation.
http://groups.google.com/groups?q=g:
thl2379033057d&dq=&hl=en&lr=&ie=
UTF-8&safe=off&selm=3A35424A.CA80743B%
40univ.ox.ac.uk. Current Feb. 2003.

[7] S. Mazzocchi. (Apache.org) Wiki RSS. http:
//nagoya.apache.org/eyebrowse/ReadMsg?
listName=community@apache.org&msgNo=946.
Current Feb. 2003.

[8] D. F. Sutherland, A. Greenhouse, and W. L. Scherlis. The
code of many colors: Relating threads to code and shared
state. In PASTE’02, pages 77–83, New York, Nov. 2002.
ACM Press.

[9] D.-W. van Gulik. (Apache.org) Wiki - we have a problem
:). http://nagoya.apache.org/eyebrowse/
ReadMsg?listName=community@apache.
org&msgNo=1315. Current Feb. 2003.

73


