
1

Automating the Discovery and Modeling of Open Source
Software Development Processes

Chris Jensen and Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA USA 92697
{cjensen, wscacchi}@ics.uci.edu

Keywords: Automated Process Discovery, Process Modeling and Simulation, Open Source
Software Development

Introduction
The goal of our work is to develop new

techniques for discovering, modeling,
analyzing, and simulating software development
processes based on information, events, and
contexts that can be observed through public
information sources on the Web. Our domain
examines processes in open source software
development (OSSD) projects, such as those
associated with the Apache Web server, Mozilla
Web browser, and interactive development
environments like NetBeans and Eclipse. In our
previous work, we demonstrated the ability via
manual search and analysis methods to discover
(fragments of) process workflows in projects
like NetBeans [9] by analyzing the content of
their web information spaces, including
informal task prescriptions, community
structure and work roles, overall project
organization, product histories, and
communications among community members.

Though this approach netted a wealth of
information with which to model, simulate, and

analyze OSSD processes, it suffers from a lack of
scalability when applied to the study of multiple
OSSD development projects and suggests the
need for an automated approach to that can more
readily facilitate process discovery and
modeling.

In our approach, we have been
identifying what kinds of OSSD artifacts [12]
(source code files, messages posted on public
discussion forums, Web pages, etc.), artifact
update events (version release announcements,
Web page updates, message postings, etc.) and
work contexts (roadmap for software version
releases, Web site architecture, communications
systems in use (email, forums, instant messaging,
etc.)) can be observed, detected, extracted, or
inferred through automated tools operating
across the Web. Though such an approach
clearly cannot observe the entire range of
software development processes underway in an
OSSD project, it does draw attention to what can
be publicly observed and modeled at a distance.
This is the same challenge that prospective
developers or corporate sponsors who want to
join a given OSSD project face. As such, we
have been investigating what kinds of processing
capabilities and tools can be applied to support
the automated discovery and modeling of
software processes (e.g., for daily software build
and periodic release) that are found in many
OSSD projects. The capabilities and tools
include those for Internet-based event

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 3rdICSE WorkshopOpen
Source Software Engineering, May, 2003, Portland, OR, .
Copyright 2003 ACM X-XXXXX-000-0/00/0000…$5.00.

2

notification, Web-based data mining and
knowledge discovery, and previous process
discovery tools.

Previous Work
Event notification systems have been used in

many contexts [5, 14]. However, of the systems
promising automated event notification, many
require the process actant to obtain, install, and
use applications on their own machines to detect
when events occur. While yielding mildly
fruitful results, this approach is undesirable for
several reasons, including the need to install and
integrate remote data collection mechanisms with
local software development tools. Prior work in
process event notification has also been focused
on information collection from command shell
histories, applying inference techniques to
construct process model fragments from event
patterns, which imparts additional inconvenience
on the user and relies on his willingness to use
the particular tools that observe events. By
doing so, the number of process actants for
whom data is collected may be reduced well
below the number of participants in the
community due to privacy concerns and the
hassles of becoming involved.

While process research has yielded a plethora
of views of software process models, none has
yet been proven decisive or clearly superior.
Nonetheless, contemporary research in software
process technology, such as Lil Jil [2] and PML
[8] argues for graphical or visual navigation
representations of software processes. While
graphical process representation schemes such as
Petri Nets date back to the 1970’s [10] with a
wide variety of activity and state-chart diagrams
in between, it appears they still suffer from a lack
of scalability when applied to a process of any
reasonable complexity.

Cook [3, 4], utilized both algorithmic and
statistical inference techniques with an ultimate
goal was to create a single, monolithic finite state
machine (FSM) representation of the process.

However, it is not entirely clear that a single
FSM is appropriate for modeling complex
processes. While admitting that some massaging
of the event-stream data was necessary to
eliminate spurrious events not pertaining to the
process in focus, Cook notes the robustness of
the Markov model in the face of noisy data.
Realizing that the Markov model does not
account for previous events in the determination
of the next state, Cook experimented with
Bayesian Markov transformations using
conditional probabilities. Although he
disregarded the results as insignificant in
comparison to those obtained without the
extension, Cadez [1] points out that joint
probabilities tend to be more informational.

Approach
Our approach is to obtain process execution

event streams by monitoring open source
development web information spaces. By
examining changes to the information space, we
may be able to infer process activities. Work
such as WebQuilt [6] demonstrates that such
information may be gathered in ways that are
unobtrusive to process participants and that
minimize the invasiveness found with many
autonomous agent based event notification
systems. These capabilities enable the capture of
event streams from multiple iterations of a
process or task [6]. Using data mining and
knowledge discovery techniques, we then
identify and extract process fragments. In turn,
we reconstitute process instances using xPADL,
a process architecture [13] description language
based on XML and PML [8]. xPADL provides us
with a formal description of each process
instance which can be transformed (generalized)
to realize an enactable model of the process in
question, that can then be employed with a
process simulator [8, 13].

3

Modeling and Simulation
Our aim in applying probabilistic

techniques to process enactment modeling is
an acknowledgement that there is often
variation within the instantiation of processes
actions, whether due to constraints of a given
project or merely a developer's changing
preference of a selection of tools, both of
which may impact not only the way an action
is performed, but the types of actions that are
performed. These dependencies and their
consequences are taken care of by accounting
for, not only the probability of enacting an
activity given the action completed
immediately prior, but also then entire chain
of actions leading up to it. Eliminating chains
with an execution rate below a given threshold
gives us a basis for simulating action
sequences that reflect this variability.

 Leveraging existing OSS object modeling
tools such as Protege-2000 [11, 7], we were able
to develop a xPADL editor and (manual)
modeling environment, that can produce xPADL,
XML or SQL as its outputs. These tools were
successfully used to model software processes
observed in a sample of OSSD projects,
including the NetBeans project [9].
Subsequently, we believe that outputs such as
these can be hand-fed into existing process
simulator tools we have previously investigated
[8,13].

We are now investigating how best to
apply probabilistic data mining and knowledge
discovery techniques to deduce likely process
fragments, as well as to detect events or updates
that may reveal where the current process
enactment has failed. Likewise, we are
examining how XML data binding tools like
Protégé can provide a straightforward segue from
our xPADL process descriptions to existing or
new process simulation capabilities.

Acknowledgements
The research described in this report is
supported by grants from the National
Science Foundation #IIS-0083075 and #ITR-
0205679. No endorsement implied.
Contributors to work described in this paper
include John Georgas, who tailored the
Protégé tool for use in software process
modeling. Mark Ackerman at the University
of Michigan Ann Arbor; Les Gasser at the
University of Illinois, Urbana-Champaign;
John Noll at Santa Clara University;
Margaret Elliott, Chris Jensen, Mark
Bergman, and Xiaobin Li at the UCI Institute
for Software Research; and Julia Watson at
The Ohio State University are also
collaborators on the research project
described in this paper.

References
[1] I. V. Cadez, D. Heckerman, C. Meek, P.
Smyth, S. White. Visualization of Navigation
Patterns on a Web Site Using Model Based
Clustering, Proceedings of the KDD 2000, pp
280-284

[2] Cass, A.G., Lerner, B.S., McCall, E.K.,
Osterweil, L.J., Sutton, Jr., S.M. and Wise. A.
Little JIL/Juliette: A process definition language
and interpreter, in Proceedings of the 22nd
International Conference on Software
Engiineering (Limerick, Ireland, June 2000),
754-757

[3] Cook, Wolf, Automating Process Discovery
through Event-Data Analysis,
Proceedings of the 17th International
Conference on Software Engineering, Seattle,
Washington, USA, April 1995, pages 373-386.

[4] Cook, Jonathan, Process Discovery and
Validation through Event-Data Analysis, Ph.D.
thesis, Computer Science Dept., University of
Colorado, 1996

4

[5] David M. Hilbert and David F. Redmiles. An
Approach to Large-Scale Collection of
Application Usage Data Over the Internet,
Technical Report UCI-ICS-97-40, Department of
Information and Computer Science, University
of California, Irvine, September 1997.

[6] Jason I. Hong, Jeffrey Heer, Sarah Waterson,
and James A. Landay. WebQuilt: A Proxy-based
Approach to Remote Web Usability Testing To
appear in ACM Transactions on Information
Systems.

[7] Natalya F. Noy, Michael Sintek, Stefan
Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen. Creating Semantic Web
Contents with Protégé-2000, IEEE Intelligent
Systems, March/April 2001

[8] J. Noll and W. Scacchi, Specifying Process
Oriented Hypertext for Organizational
Computing, Journal of Network and Computer
Applications, 2001 (24) 39-61

[9] M. Oza, E. Nistor, S. Hu, C. Jensen, and W.
Scacchi. A First Look at the Netbeans
Requirements and Release Process, available at
http://www.ics.uci.edu/~cjensen/papers/FirstLoo
kNetBeans/

[10] Peterson, James L. Petri Nets, ACM
Computing Surveys (CSUR) September 1997,
Volume 9 Issue 3

[11] Protégé Web site:
http://protege.stanford.edu/

[12] W. Scacchi, Understanding the
Requirements for Developing Open Source
Software Systems, IEE Proceedings—Software,
149(1), 25-39, February 2002.

[13] J.S. Choi and W. Scacchi, Modeling and
Simulating Software Acquisition Process
Architectures, Journal of Systems and Software,
59(3), 343-354, 15 December 2001.

[14] Alexander L. Wolf and David S.
Rosenblum. A Study in Software Process Data
Capture and Analysis, Proc. Second
International Conference on the Software
Process, IEEE Computer Society, Feb. 1993, pp.
115-124.

http://protege.stanford.edu/

	Approach
	Modeling and Simulation
	Acknowledgements
	References

