Modeling and Simulating

Software Acquisition Process Architectures

James Choi
Walt Scacchi

Computer Science Dept.
Institute for Software Research

California State University
University of California

 Fullerton, CA USA
 Irvine, CA USA

sjchoi@ecs.fullerton.edu wscacchi@ics.uci.edu
To be presented at ProSim 2000, London, UK, July 2000.

Abstract

In this paper, we describe our efforts to support the modeling and simulation of processes associated with software system acquisition activities. Software acquisition is generally a multi-organization endeavor concerned with the funding, management, engineering, system integration, deployment and long-term support of large software systems. We first describe a language for modeling software acquisition processes at the architectural level. We then describe our approach supporting the simulation of software acquisition processes within a process architecture. Along the way, we introduce how we employ the High-Level Architecture (HLA) and Run-Time Infrastructure (RTI) to support the distribution, concurrent execution and interoperation of multiple software process simulations to address the complexity of software acquisition process architectures. In addition, we also introduce the design and prototyping of a Web-based environment which supports the modeling and simulation of acquisition process architectures.

Introduction

Software acquisition includes the processes typically associated with the software engineering life cycle. However, acquisition also includes processes that fund, manage, integrate, deploy and support software systems before, during, and after their software engineering life cycle. The need to address processes for systems and software engineering, inter-organization coordination and overall project management together is what establishes our baseline of interest in modeling and simulating software acquisition processes.

Software acquisition processes are often large-scale, involve multiple enterprises and stakeholders, are expensive, long-lived and frequently plagued with process coordination problems [Boehm and Scacchi 1996, GAO 1997]. Large-scale characterizes the fact that tens-to-hundreds of distinct processes for engineering, project management, and customer/government oversight must be articulated and coordinated. The participation of many enterprises reflects at the top-most level the division of effort between customer, contractor and acquisition program office enterprises. Contractors in turn often organize teams of sub-contractors, sometimes numbering into the thousands, into a virtual enterprise that collectively engineer and deploy the system being acquired. Similarly, the contractor team may involve hundreds to thousands of software developers who will produce and deliver millions of source lines of code. Consequently, program acquisitions for military systems or public infrastructure systems (e.g., air traffic control) cost billions of dollars. Finally, long duration reflects the fact that some programmatic acquisitions for large systems span 10-20 years from initiation through deployment and post-deployment support. Thus, modest improvements in the efficiency or effectiveness of acquisition processes or process configuration, can realize savings in millions of dollars, many person-years (or person-decades) of engineering effort, and improve the quality of the delivered systems.

Given the complexity of large acquisition efforts, we choose to examine software acquisition processes from an architectural perspective. In this regard, our position is that modeling and simulating software acquisition processes requires some kind of factoring to manage their complexity. Factoring is needed to realize both a separation of concerns through a factorable architecture of interconnected and interrelated processes, as well as facilitating, guiding or managing the composition of component processes that together constitute software acquisition. Factoring also enables the partitioning, distribution and concurrency of process activities spread across many participating enterprises. Subsequently, in order to be able to construct and simulate factorable models of software acquisition processes, we require architectures that can separate and configure a distributed web of software acquisition processes. An architectural perspective also enables us to explore the potential for formulating families of common software processes into a product line [Bergey, Fisher, and Jones 1999], or process line. Therefore, we will refer to this structured web as a process architecture for software acquisition.

The focus of our research effort here is to describe our approach to modeling and simulating architectures for software acquisition processes [cf. Boehm and Scacchi 1996, Scacchi and Boehm 1998, Schoff, Haimes and Chittister 1998]. We first describe a language for modeling software acquisition processes at the architectural level. Wethen describe our approach supporting the simulation of software acquisition processes within a process architecture. Along the way, we introduce how we employ the High-Level Architecture (HLA) and Run-Time Infrastructure (RTI) to support the distribution, concurrent execution and interoperation of multiple software process simulations [Kuhl, Weatherly, Dahmann 1999] to address the complexity of software acquisition process architectures. In addition, we also introduce the design and prototyping of a Web-based environment, called SAWMAN, which supports the modeling and simulation of acquisition process architectures, as well as a variety of analysis, process prototyping, and process enactment capabilities [Scacchi, Valente, et al. 2000].

Modeling Software Process Architectures

We describe four concepts in this section. The first is a language we developed for modeling, prototyping and enacting software and business processes, called PML. Next, we describe how we extend and combine PML with software architectural design (AD) constructs to model a software process architecture (SPA). We then evaluate the use of PML and the HLA as schemes for modeling a SPA. Last, describe how a SPA can be integrated into a Web-based environment for modeling software acquisition processes that can be simulated across a distributed run-time infrastructure.

A Language for Modeling Processes

Noll and Scacchi [2000] have developed and demonstrated the design of PML and its Web-based run-time environment. PML has been used to model the four core acquisition processes at the U.S. Office of Naval Research in legacy as-is, redesigned to-be, and transition here-to-there forms [Noll and Scacchi 2000]. The four core processes span more than 120 procedural or problem-solving tasks as process steps.

PML acts as an extensible process markup notation that can be compiled into an executable form to support process prototyping and process enactment across the Web, as well as serving as a person-in-the-loop process simulator [Scacchi 2000]. These capabilities enable multi-user process modeling, analysis, walkthrough, redesign, and enactment across a distributed virtual enterprise of cooperating networked enterprises [Noll and Scacchi 1999, Scacchi and Noll 1997].

The design of PML was based on compatibility with the software process meta-model that we had previously developed [Mi and Scacchi 1990, 1996, Scacchi 1999]. Accordingly, agents (people or programs) perform processes that use tools to require resources in order to provide intermediate or final products. Process resource requirements and provision are specified using predicate expressions that serve as pre-conditions or post-conditions on process enactment [Noll and Scacchi 1999, 2000]. Process flow is ordered using sequential, conditional, iterative or concurrent control constructs. Processes are also decomposable into a hierarchy of sub-processes or action steps. Finally, processes associate tools for process enactment that are connected through interpretable scripts that explicitly invoke (a) client-side routines, forms processing, applets or helper applications, or (b) server-side programs or servlets. Subsequently, the run-time environment for PML was designed to operate in a fully distributed manner without a centralized administrative authority [Noll and Scacchi 1999, 2000]. Thus, PML is based on relatively mature process modeling techniques combined with constructs geared for deployment and use on the Web. Exhibit 1 displays an excerpt of a low-level acquisition process sequence specified in PML.

process Proposal_Submit {

 action submit_proposal {

agent { PrincipalInvestigator }

requires { proposal }

provides { proposal.contents == file }

script {"<p>Submit proposal contents.\

<p>BAA to which this proposal responds: \

<input name='baa' type='string' size=16>\

Proposal title: <input name='title' type='string' size=50>\

Submitting Institution: <input name='institution' type='string' size=25>\

Principle Investigator: <input name='PI' type='string' size=20>\

Email: <input name='PIemail' type='string' size=20>\

Contact: <input name='contact' type='string' size=20>\

Email: <input name='contactEmail' type='string' size=12>\

Proposal contents file: <INPUT NAME='file' TYPE='file'>"

 }

 }

 action submit_budget {

agent { PrincipalInvestigator }

requires { proposal }

provides { proposal.budget == file }

script {"<p>Submit budget.\

Proposal title: <input name='title' type='string' size=50>\

Budget file: <INPUT NAME='file' TYPE='file'>\

Email address of contact: <input name='user_id' type='string'>"

 }

 }

 action submit_certs {

agent { PrincipalInvestigator }

requires { proposal }

provides { proposal.certs == file && proposal.certifier == user_id }

script {"<p>Submit electronically signed certifications.\

File containing signed certifications: <INPUT NAME='file' TYPE='file'>\

<p>User ID of signature: <input name='user_id' type='string'>"

 }

 }

}

Exhibit 1. An excerpt from an acquisition process for submitting a software research or development proposal, modeled in PML (Noll and Scacchi 2000).

Modeling Software Process Architectures

Researchers at CMU, UC Irvine, USC and elsewhere has been investigating new languages, tools and environments that focus attention on software system architectures [e.g., Medvivdovic and Taylor 2000, Shaw and Garlan 1996]. In our work, we chose to adopt AD techniques and constructs from this related research and combine them with PML in order to support the modeling of software process architectures. Furthermore, since our focus on SPAs for acquisition is within the purview of government and military enterprises
, then we chose to explore the viability of the HLA framework in developing distributed simulations of processes within an acquisition SPA.

ADs are used to specify the components, connectors, interfaces and interconnection configuration of composite software systems. Components are object types that encapsulate new/legacy application programs or commercial-of-the-shelf software products. Connectors are object types that encapsulate application program interfaces (APIs), middleware, protocols, software buses, or other messaging mechanisms that enable the interoperability and exchange of parameter values, data objects or control signals between components. Both components and connectors have interfaces that specify application resources. In some AD languages, interfaces may also specify logical pre-conditions of imported resources, and post-conditions on exported resources. Further information about components and connectors can be specified or automatically extracted to include network host address, author/owner, and timestamp attributes (e.g., for time of most recent modification) [Choi and Scacchi 1990]. Finally, the configuration of software system architectures specifies which components are connected to which connectors through compatible interfaces. As a result, configurations can be developed and deployed across a network, as well as analyzed to verify its consistency, completeness, traceability and internal correctness [Choi and Scacchi 1998].

Historically, process architectures were used to provide a conceptual framework for process management tasks, and to provide mechanisms for specifying software processes with entry ("pre") and exit ("post") conditions for each process component [Radice, et al. 1985]. These early process architectures lacked an explicit process modeling language or execution environment. In contrast, PML provides notational forms for component processes enacted by agents using tools whose resource requirements and product provisions are specified with explicit pre-/post-conditions. PML tool scripts serve as connectors that interconnect application programs to a process component. PML process components are then interconnected through control flow constructs interpreted by the PML run-time operating system infrastructure [Noll and Scacchi 2000].

In PML, processes, resource interfaces, resources and connectors (tool scripts) are first-class objects. Process models and SPAs specified in PML can therefore be made more generic or more specialized depending on whether instance-level details are included. Generic processes specified in PML enable the construction of common families of software processes that can be tailored for reuse across multiple software acquisition or development projects [cf. Bergey, Fisher, Jones 1999]. For example, the U.S. Navy has recently begun the acquisition of a new fleet of battleships that will be researched, developed, built and deployed over the next 15-20 years [DD21]. These ships are software-intensive systems involving dozens of mission-critical application programs constituted from millions of source lines of code [Scacchi and Boehm 1998]. As these ships can be acquired in a serial manner, then the opportunity exists to articulate, refine and continuously improve a family of common software acquisition processes, rather than simply using a rigid standard process or developing a custom process for each ship's system acquisition. Thus the potential for a PML-like process modeling language to serve as the basis for a reusable SPA has real, practical and well-motivated applications.

In our view, a SPA should enable the composition, deployment and configuration management of multi-version processes for software development or use in a manner that scales to distributed and networked enterprises [Noll and Scacchi 1997, 1999, 2000]. SPAs should be able to incorporate or reference other process/application software components distributed across an intranet (virtual private network) or the Internet. This further implies the potential for process components to be mobile and transportable across the Internet, either as part of their deployment or enactment. This means people who seek to collaborate can send/receive or publish/subscribe to software process models, modify or add additional process components, then choose to keep them for local use, else forward them to someone else. Furthermore, if heterogeneous process modeling notations are to be deployed and made to interoperate, then a SPA must be able to support this compositional capability. Finally, a SPA must also serve as a basis for simulation--that is, simulation of multiple concurrent and distributed software processes, as is found in the domain of software acquisition. To address these needs, we have been investigating the High-Level Architecture (HLA) and its associated Run-Time Infrastructure (RTI) as an framework for modeling and simulating process architectures supporting software acquisition.

The HLA is a proposed IEEE standard for specifying how to structure a distributed and concurrent simulation system that is composed from multiple simulation systems or simulation components [HLA 1999, Kuhl, Weatherly and Dahmann 1999]. It is also a military standard required for use in the development of distributed simulation systems for military applications. Up to this time, there is no record of its use to support the structuring of multiple interacting software process simulation systems or simulation components. Similarly, we could find no evidence of the use of distributed and concurrent software process simulations, though the simulation of other kinds of parallel and networked systems have been addressed [Fujimoto 1999]. So we have chosen to explore the use of HLA as a basis for structuring the organization of multiple process components that can be described using a SPA then concurrently simulated as a distributed simulation system. Furthermore, the commercial availability of a RTI that supports HLA-based simulations led us to choose to use it to investigate its feasibility in demonstrating distributed and concurrent simulation of a process architecture for software acquisition. Subsequently, the SPAs we have designed were modeled in PML, yet we sought to incorporate the HLA framework, so that we can use the RTI to evaluate its capability to support distributed simulation components. The following example characterizes one such SPA modeling and simulation effort.

[image: image1.png]Manager

P1 P2 Pn
Fulfillment Me chanism
c1 c2 Cn

Legend. P =Software Producer process

c

‘oftware Consumer process

Let us consider a software acquisition process architecture that involves three types of interacting component processes for the following kinds of entities: software consumer; software producer; and a program manager to facilitate interactions between the other three. Additionally, we include a single process connector to interconnect the consumer to produced processes. Such an architecture might be visually depicted as shown in Figure 1. Figure 2 then displays an HLA federate object model for the components and connectors shown in Figure 1.
Figure 1: A software process architecture for acquisition where each container (box) for C, P and Manager corresponds to a process component, while the Fulfillment Mechanism corresponds to a globally shared process connector.
[image: image2.jpg]SoftwareConsumer [_[O[x]
Logical Time: 25,6200 Time state:

Clear Log

ComponentConsumer Messages
Posiion _|—_stale__|gomwarecomp.[FUFIlXert. L] IoCToCC E iment 1210541 =
sing_Comp... 128
[Transferting Component 5_3_1 to ConsumerD_5_2
90 Request_Co. [Deleted Component 126
120|Request_Co [Transferting Component 5_3_6 to ConsumerD_5_3
180|Using_Comp... 131 [Transferting Component 5_3_3 to Consumer D_5_0
240|Reduest_Co
200/ Request Co. < Il D

Figure 2. HLA object class model for a software acquisition process architecture
We must satisfy three constraints in order to make a software process architecture compatible with the HLA. First, each process simulation component must adhere to a set of ten rules for interoperating with other simulations [Kuhl, Weatherly and Dahmann 1999]. Second, each simulation must use an explicit Interface Specification that describes how and in what form it can exchange data and simulation events. Third, each simulation must express data about its public (externally visible) state in form of the HLA Object Model Template (OMT). Each of these requirements bears some further description.

First, of the ten rules, five specify constraints on how simulation components interact with one another as a federation. For example, one rule states that when operating as a federation, the representations of all simulation associated object instances shall be in the component simulation, and not in the RTI they use to exchange object instances or values. The other five rules apply to individual simulation components. For example, one such rule state that each simulation component shall be able to update and/or reflect any attributes, and send/or receive interactions, as specified in their HLA compatible Simulation Object Model.

Second, conforming to the Interface Specification requires uses of an HLA RTI that is linked into a simulation to enable interaction with other distributed simulations. The RTI supports six categories of functionality that model and manage how HLA simulations can interact through the global broadcast and synchronization of events that are communicated via shared publish/subscribe registries. The SPA shown in Figure 1 should be able to conform to this constraint, using its connector as a global mechanism for broadcasting and synchronizing events exchanged across different simulation process components.

Third, expressing public simulation state data via OMTs suggests a scheme reminiscent of how the extensible markup language, XML, can be used to disseminate the syntax and instances of object data types over the Web. Note that the operational or interpretative semantics of objects is not transmitted, thus the exchange of information requires a prior understanding and agreement as to what the objects and instances mean. This in turn implies that knowledge of objects is distributed among all the simulation components, and thus the potential exists for different simulation components to exchange common objects, but establish their meaning locally. This is in marked contrast to the use of process meta-models, which support process simulation and interoperability through a centralized semantic data model [Mi and Scacchi 1990, 1996]. Maintaining and updating a centralized semantic model is much easier than maintaining distributed simulation object semantics local to each simulation. The effort required to maintain and evolve distributed object semantics does not scale with the incorporation of more simulation components. In fact, it does just the opposite, it generates a combinatorial explosion of possible object meaning inconsistencies and propagated updates.

Thus, we came to the following dilemma in order to use the HLA to model SPAs for distributed simulation: HLA is not a general-purpose architecture for modeling and interoperating application systems or software processes. The three constraints that guide its use impose a specific architectural style that assumes global broadcast and synchronization of events to facilitate interoperability, while sacrificing ease of maintenance and evolution. Nonetheless for prototyping and evaluation purposes, where the semantics of process simulation objects is limited, then the HLA is a plausible candidate to investigate the potential of the distributed and concurrent simulation of interacting software processes, albeit within a pre-determined architectural style.

A Web-based Environment for Modeling Software Acquisition Process Architectures

The SAWMAN environment interprets PML specifications to generate and dynamically update the content (process steps, associated resources, invocation of client-server scripts or helper applications) of a process that is presented to an end-user for enactment [Noll and Scacchi 2000, Scacchi, Valente et al. 2000]. SAWMAN also includes tools and techniques that facilitate the capture, organization, navigational browsing, update and evolution of heterogeneous sources of knowledge for redesigning software processes, as described in an earlier contribution [Scacchi 2000]. Accordingly, the SAWMAN knowledge web links scenarios of use, best practices, reference materials and the like for use by practitioners in the software acquisition community [ARO 1999, SA-CMM 2000, SPMN 1999, STSC 1996]. Figure 3 displays a view of an initial process step in using the SAWMAN environment.

Simulation of Software Acquisition Process Architectures

In previous work, we have demonstrated and comparatively examined different approaches to the simulation of software processes [Scacchi 1999,2000]. This includes the introduction of software process simulators that enable interactive exploration (e.g., browsing, prototyping and walkthrough) of software processes [Scacchi 2000]. Given the approach to modeling and analyzing software process architectures we introduce in our current effort, we need to explain and demonstrate how simulation of software acquisition processes fits into our overall scheme.
[image: image3.jpg]SoftwareProducer =10l

Logical Time: (332.0200

Clear Log

150|Shipping_Co... 204 [TransferAccepted: S_3_76 from Producer serial 3 time=<332.02»
210 Prepare_Com. [TransferAccepted: S_3_75 from Producer serial 0 time<332.02=
330/Shipping_Co... [134 [Dl |

Figure 3. A screen display from the SAWMAN acquisition process modeling and simulation environment following [Scacchi 2000].

A Software Acquisition Process Simulator

We continue to employ and extend the process simulator techniques noted above, but now we apply them to the domain of software acquisition process architectures. As our software process architectures are configured and interlinked (i.e., "hyperlinked"), then their internal/external representation can be navigated as a process-oriented hypertext [Noll and Scacchi 1999, 2000]. This capability provides a basis for providing Web-based process prototyping, simulator and enactment services. Using PML as the basis for modeling SPAs, we were able to produce a software acquisition process simulator whose operations and capabilities are similar to what we achieved and demonstrated in previous work [Scacchi 2000]. However, now we are able to enrich the experience of people interacting with an acquisition process simulator through its ability to model and link collateral knowledge assets for acquisition best practices, case studies, guidelines and more in a manner that can be distributed and accessed over the Internet/Web.

A Testbed for Simulating Architectures for Software Acquisition Processes

Beyond providing a process simulator, we also are investigating the use of architecture-level simulation techniques to assess the dynamic performance of alternative process enactment scenarios associated with different software acquisition processes or process architectures. Here we have been exploring how the RTI for HLA can be adapted to support the simulation (i.e., simulated enactment of process events or state transitions) of software process architectures. Current implementations of the RTI provide a framework to simulate, monitor, measure and display the performance of a distributed or federated software system architectures (e.g., see http://www.pitch.se/pRTI). However, our challenge is to determine the appropriateness and performance of the RTI as a simulation facility for distributed software processes and software process architectures in general, and for architecture of distributed software acquisition processes in particular. Accordingly, we set out to prototype a distributed and concurrent simulation of an architecture of software processes using the RTI.

According to the HLA, system simulation components are designated as federates [Kuhl, Weatherly, and Dahmann 1999]. So we designed a software acquisition process architecture consisting of four interoperating process federates (i.e., component processes) that could be performed concurrently. These were processes for:

· SoftwareConsumer -- a consumer enterprise that seeks a new component-based software application system. The enterprise then requests software system components to be developed by a contractor. The consumer eventually receives the requested components, then puts the component to use. Then the consumer requests more components until its needs are met. Multiple concurrent instances were allowed to execute, meaning multiple consumer enterprises could independently request software components to be produced and shipped.

· SoftwareProducer -- a contractor enterprise that produces software for a consumer in response to a submitted request for a software component. Once prepared, the requested component is shipped to the consumer as part of its deployment. Multiple concurrent instances were allowed to execute, meaning multiple producer contractors (or a team of contractors) could service requests for components, produce and ship them.

· Fulfillment Mechanism connector -- a component fulfillment and deployment mechanism used to represent the basic operation of a wide-are workflow infrastructure that transports consumer requests and producer shipments. This process waits for consumer requests, transmits them to the producer who in turn respond with a product shipment in reply. This is process. A single instance of this process was allowed to execute.

· Manager -- a program manager (or acquisition program office) that facilitates the flow of information from the consumers through the fulfillment and deployment mechanism to the producers, then back to the consumers with the requested and shipped component products. A single instance of this process was allowed to execute.

These processes are relatively simple, yet they represent basic processes involved in software acquisition. These processes, as described above, can obviously be modeled and simulated as a single overall process using a conventional single-threaded simulation package. However, our challenge is to model and simulate these as four concurrent processes that can be distributed to run on one or more platforms. We chose to skip the effort to implement our software process architecture simulation testbed using multiple networked computers, since that seemed to be primarily a task in network programming that would not contribute significant results to our investigation, though the HLA and RTI can support such a capability.

We implemented three process simulation components and one process connector, following the SPA depicted in Figure 1. Accordingly, we implemented the four software process simulation federates, conforming to the HLA object models (See Figure 2), in Java. Java was chosen in part for compatibility with the Web, and for our ability to link Java into PML scripts, as described earlier. Each process simulation was implemented in approximately one thousand source lines of Java code, most of which is needed to facilitate use of the HLA RTI interface specification and the simulation messaging object modeling template required by the HLA standard. This simulation programming task was simplified through our "creative" reuse and modification of a similar multi-federate simulation system example that is supplied by Kuhl, Weatherly and Dahmann [1999] to help document and explain how the HLA and RTI framework is used. Suffice to say that there are many low-level technical details involved in the programming of the processes in Java to make it conform to the three principal constraints required to use the HLA and RTI that we will not describe here. Our results and what we learned from our efforts now follows.

Results from Simulating an SPA when using HLA and RTI

The principal result we obtained is an operational prototype of a distributed and concurrent environment for simulating a SPA that entails multiple interacting processes for acquisition. The following three figures provide a user interface view of state transition and event message histories associated with instances of the Software Consumer and Software Producer processes that flow through the Fulfillment Mechanism connector. The Manager view primarily tracks the origination and termination of event notifications and is not shown.

[image: image4.jpg]Logical Time: (26,8100 Time State: Clear Log
ComponentFuiimentHechanism Wessages
Handle. Narne Pasition State SoftwareCao. Ao S s -
cauired Component 3.3 2
111840 90)in_Transit B
B e [owvesting Cormponent 5_3 6
=3 g us. [Divesting Component S_3_3
1138142 180/No_Reque. cquired Cornponent 53 7
115843 225 _Transit cauired Component 5_3_4
T16/B4 4 270/In_Transit
11706 4 5 315/In_Transit ~| [Y| |

 Figure 4. A UI view of Software Consumer process instance activity

[image: image5.png][[_[CIx]

Fle Edt View Go Commuricalor Help

[T -

B Feme Gow e Sowh Nobmm e Sty ges
" Booknaks s Lovation [/i et eGul scaner VDAL Deme AL FrocessD] @ Bulstye @) Whats Relazd

Software Acquisition Web MANager (SAWMAN)
Process Enactment demonstration.

Reference Materials:

DD21 Program Acquisiton: A candidate Program for SAWMAN experimentation and evaluation?
Software Program Management Best Practices

Acouisition Review Quarterly

ARQ artcle by Walt Scacchi and Barry Bochm on Vistual System Acquisition

Information on Federal Acquisition Regulations and Acquisition Reform

Information about the Defense Acquisition University, sponsor of this research project.

Guidance and data for SAWMAN tasks appear in this window

Please select | Beain | to start the SAWMAN process execution demo.

Next Task

& =p=| [Document: Done

Figure 5. A UI view of Software Producer process instance activity

[image: image6.png].

OhjectRoot

PriviegeToDeleteOkject siring]

3

SoftwareAcquisition
Manager

postion integer

Fulfilinent
SoftwareComponent Mechanism Agent
pe o
ShipmertAvalobi:boolear] | com ponertRequesiame:

compenentTypeEnumeration e
HIAokject class
ierarcly fora SoftwareProducer SoftwareConsumer
sofivare acquisition CompEnErP TGA e [FompeECaRsImerSTE

itoetor componentProducerState lcomponeniConsmerState
process arc Enumeration [Enumeration

Figure 6. A UI view of the Fulfillment Mechanism activity

Using this simulation environment, we are able to demonstrate multiple software process simulations whose interoperation is distributed and concurrent. Though our simulations implement relatively simple processes or process connectors for software acquisition, they do nonetheless demonstrate that HLA and RTI can be used to construct and simulate software process architectures. Furthermore, our expectation is that adding more content and complexity would have little impact on the simulation code that interfaces to the RTI.

As shown in Kuhl, Weatherly and Dahmann [1999] the impact of adding additional simulation components can be modest, once the cost of interfacing them to the RTI and HLA object model templates is incurred. Thus, part of the attraction to the use of the HLA and RTI for simulating SPAs is the ability to reuse, integrate and interoperate more process component simulations for other software acquisition processes, sub-processes, etc. once they are encapsulated to run with HLA and the RTI. Subsequently, the next step is to add more realism and detail to our software acquisition process simulations in line with what we have already achieved with those modeled in PML.

Discussion and Conclusions

We now turn to highlight and summarize what is new in this research.

To our knowledge, this work represents the first effort to investigate and provide results on how software process modeling and simulation tools, techniques and concepts can be applied to the domain of software system acquisition. Software acquisition processes are large-scale, involve multiple enterprises and stakeholders, and are expensive, long-lived and frequently plagued with process coordination problems. The domain of software acquisition imposes challenges for modeling and simulating software processes in a way that is factorable into distributed and concurrent components. To help demonstrate this, we used two comparable approaches to modeling software acquisition processes: one based on a modern process modeling language; the other based on object classes that encapsulate interfaces to the High-Level Architecture standard and Run-Time Infrastructure specification.

This in turn serves as motivation for establishing and evaluating software process architectures as a technique to address these challenges. This is the second area in which we have contributed. Up to this time, it appears that software process modeling and simulation efforts have assumed or been targeted to operate with one model at a time in a single address space. This is particularly true of efforts that rely in the use of commercially available packages for discrete-event, continuous system (e.g., systems dynamics) or entity-state simulation. Interoperation of multiple distinct software process models or simulations is beyond the scope or capability of these packages. In contrast, our interest was to investigate the modeling and simulation of multiple interacting software processes as distinct process components with interfaces that can be interconnected to enable resource, data or control flow through process connectors. In this regard, we have introduced how software architecture concepts can be used to model and simulate software process architectures.

Next, we described how software process architectures could be evaluated both with a process simulator and a distributed process simulation environment. We demonstrated ongoing development of a prototype system that serves as a user-driven (person-in-the-loop) simulator for complex multi-organization processes associated with software acquisition. This simulator is also augmented with links to external knowledge assets for how software acquisition can be improved. These materials can be accessed or browsed in the context of a process prototype walkthrough. We also demonstrated a testbed environment that supports the simulation of the concurrent interoperation of distributed software acquisition processes and process instances. Our testbed implementation was demonstrated with relatively simple software acquisition processes. Such an environment is best viewed as a testbed for simulating and evaluating large sets of complex interacting software processes where scalability and networked distribution are required. There is a cost to be incurred for the use of such an environment, but in our view large and multi-enterprise processes for software acquisition may be a well-suited domain for incurring such costs. In contrast, the testbed environment is probably too much mechanism to simulate small or simple software processes where distribution and concurrency are not essential aspects of the problem domain.

We also introduced an effort to use and assess the viability of the High-Level Architecture (HLA) and Run-Time Infrastructure (RTI) as a standards-based platform for simulating the performance of software acquisition processes that are configured as a distributed, concurrent architecture. This effort was poised in contrast to a companion effort based on mature software process modeling language and techniques. Here we came to find that subtle differences in how the semantics or meaning of software processes can impact which architectural styles may be most effectively employed when modeling and simulating software process architectures. This was an unexpected result, since to us it represents a barrier for integrating and interoperating multiple independently developed software process models and component process simulations.

Finally, we believe software process architectures, together with new architectural frameworks and environments for modeling and simulating distributed, multi-component software process architectures represent promising new areas for further research and development within the software process community. This paper thus describes some initial steps into these areas.

Acknowledgements

This work is supported by a grant N487650-27803 from the Defense Acquisition University as part of their External Acquisition Research Program (EARP). No endorsement of the results or conclusions presented should be ascribed to the research sponsor or the U.S. Government. Prof. John Noll of the Computer Science Dept. at the University of Colorado at Denver, and Dr. Andre Valente, previously at the USC Information Sciences Institute and now at fastv.com, contributed to the concepts, techniques and tools that we have incorporated in this study. All of these contributions are greatly appreciated.

References

ARO, Implementing Acquisition Reform in Software Acquisition, Navy Acquisition Reform Office, http://www.acq-ref.navy.mil/turbo/refs/software.pdf, 1999.

J.K. Bergey, M.J. Fisher, and L.G. Jones, The DoD Acquisition Environment and Software Product Lines, Technical Note CMU/SEI-99-TN-004, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA, 1999.

B.E. Boehm and W. Scacchi. Simulation and Modeling for Software Acquisition (SAMSA), Final Report, Center for Software Engineering, University of Southern California, Los Angeles, CA, http://sunset.usc.edu/SAMSA/samcover.html, March 1996.

S.C. Choi and W. Scacchi. Extracting and Restructuring the Design of Large Software Systems, IEEE Software, 7(1):66-73, January 1990.

J. Choi and W. Scacchi. Formalization and Tools Supporting the Structural Correctness of Software Life Cycle Descriptions, Proc. IASTED Conf. on Software Engineering, International Association of Science and Technology for Development (IASTED), Las Vegas, NV, 27-34, October 1998.

DD21 Information System, http://dd21.crane.navy.mil, 2000.

R. Fujimoto. Parallel and Distributed Simulation, Wiley and Sons, New York, 1999.

GAO, General Accounting Office. Air Traffic Control--Immature Software Acquisition Processes Increase FAA System Acquisition Risks, Report GAO/AIMD-97-47, 1997.

HLA. High-Level Architecture Web Site. http://hla.dmso.mil, 1999.

F. Kuhl, R. Weatherly and J. Dahmann. Creating Computer Simulation Systems: An Introduction to the High Level Architecture. Prentice-Hall PTR, Upper Saddle River, NJ, 2000.

N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software Architecture Description Languages. IEEE Trans. Software Engineering, 26(1), 2000.

M.E. Nissen, K.F. Snider and D.V. Lamm. Managing Radical Change in Acquisition. Acquisition Review Quarterly, 5(2):89-106, Spring 1998.

P. Mi and W. Scacchi. A Knowledge-Based Environment for Modeling and Simulating Software Engineering Processes. IEEE Trans. Knowledge and Data Engineering, 2(3):283-294, 1990.

P. Mi and W. Scacchi. A Meta-Model for Formulating Knowledge-Based Models of Software Development. Decision Support Systems, 17(3):313-330.

J. Noll and W. Scacchi. Supporting Distributed Configuration Management in Virtual Enterprises, in Software Configuration Management, edited by R. Conradi, Lecture Notes in Computer Science, Vol. 1235:142-160. 1997.

J. Noll and W. Scacchi. Supporting Software Development in Virtual Enterprises. J. Digital Information, 1(4), February 1999.

J. Noll and W. Scacchi. Process-Oriented Hypertext for Organizational Computing, Journal of Networking and Computer Applications (to appear, 2000).

R.A. Radice, N.K. Roth, A.C. O'Hara and W.A. Ciarfella. A Programming Process Architecture. IBM Systems J. 24(2):79-90, 1985.

W. Scacchi. Experience with Software Process Simulation and Modeling, J. Systems and Software, 46:183-192, 1999.

W. Scacchi. Understanding Software Process Redesign using Modeling, Analysis and Simulation, Software Process--Improvement and Practice, (to appear), 2000.

W. Scacchi and B.E. Boehm. Virtual System Acquisition: Approach and Transition. Acquisition Review Quarterly, 5(2):185-215, Spring 1998.

W. Scacchi and P. Mi. Process Life Cycle Engineering: A Knowledge-Based Approach and Environment. Intelligent Systems in Accounting, Finance and Management, 6(1):83-107, 1997.

W. Scacchi and J. Noll. Process-Driven Intranets: Life-Cycle Support for Process Reengineering. IEEE Internet Computing, 1(5):42-49, September-October 1997.

W. Scacchi, A. Valente, J. Noll and J. Choi. A Web-Based Environment for Research in Software Systems Acquisition. (submitted for publication), June 2000.

R.M. Schooff, Y.Y. Haimes, and C.G. Chittister. A Holistic Management Framework for Software Acquisition, Acquisition Review Quarterly, Winter 1997.

M. Shaw and D. Garlan. Software Architecture: A New Perspective on an Emerging Discipline, Prentice-Hall, Englewood Cliffs, NJ, 1996.

SA-CMM, Software Acquisition Capability Maturity Model, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA. 2000.

 http://www.sei.cmu.edu/arm/SA-CMM.html
SPMN, Software Program Managers Network. The Condensed Guide to Software Acquisition Best Practices, October 1997. Available from SPMN at http://www.spmn.com/products.html.

STSC, Software Technology Support Center. Guidelines for Successful Acquisition and Management of Software-Intensive Systems: Weapon Systems, Command and Control Systems, Management Information Systems. Volumes 1 & 2. (Version 2.0) Dept. of the Air Force, June 1996. http://stsc.hill.af.mil/stscguid.asp

� The use of the HLA framework is mandated by policy of the U.S. Department of Defense when developing distributed simulation systems [HLA 1999]. However as our effort is research oriented, then we were not required to use it. Nonetheless, its standardized use does make it a candidate for evaluation in our research.

1
9

