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Abstract

In this paper, we describe our efforts to support the modeling and simulation of processes associated with software system
acquisition activities. Software acquisition is generally a multi-organization endeavor concerned with the funding, management,
engineering, system integration, deployment and long-term support of large software systems. We first describe our approach
supporting the modeling and simulation of software acquisition processes using a software process architecture (SPA). We then
introduce how we support the distribution, concurrent execution and interoperation of multiple software process simulations using
the high-level architecture (HLA) and run-time infrastructure (RTI) to address the complexity of software acquisition process
architectures. To illustrate this, we provide examples from the design and prototyping of a Web-based environment that supports
the modeling and simulation of acquisition process architectures. This environment thus serves as a new kind of software process
test-bed that can demonstrate and support experiments incorporating multiple software process simulation systems that interoperate
in a distributed and concurrent manner across a network. © 2001 Elsevier Science Inc. All rights reserved.

1. Introduction

Software acquisition includes the processes typically
associated with the software engineering life cycle.
However, acquisition also includes processes that fund,
manage, integrate, deploy and support software systems
before, during, and after their software engineering life
cycle. The need to address processes for systems and
software engineering, inter-organization coordination
and overall project management together is what es-
tablishes our baseline of interest in modeling and sim-
ulating software acquisition processes.

Software acquisition processes are often large-scale,
involve multiple enterprises and stakeholders, and are
expensive, long-lived and frequently plagued with pro-
cess coordination problems (Boehm and Scacchi, 1996;
GAO, 1997; SA-CMM, 2000). Large-scale characterizes
the fact that tens-to-hundreds of distinct processes for
engineering, project management, and customer/gov-
ernment oversight must be articulated and coordinated.
The participation of many enterprises reflects at the top-
most level the division of effort between customer,
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contractor and acquisition program office enterprises.
Contractors in turn often organize teams of sub-con-
tractors, sometimes numbering into the thousands, into
a virtual enterprise that collectively engineer and deploy
the system being acquired. Similarly, the contractor
team may involve hundreds to thousands of software
developers who will produce and deliver millions of
source lines of code. Consequently, program acquisi-
tions for military systems or public infrastructure sys-
tems (e.g., air traffic control) cost billions of dollars.
Finally, long duration reflects the fact that some pro-
grammatic acquisitions for large systems span 10-20
years from initiation through deployment and post-
deployment support. Thus, modest improvements in the
efficiency or effectiveness of acquisition processes or
process configuration, can realize savings in millions of
dollars, many person-years (or person-decades) of en-
gineering effort, and improve the quality of the delivered
systems (ARO, 1999).

Given the complexity of large acquisition efforts, we
choose to examine software acquisition processes from an
architectural perspective. In this regard, our position is
that modeling and simulating software acquisition pro-
cesses requires some kind of factoring to manage their
complexity. Factoring is needed to realize both a sepa-
ration of concerns through a factorable architecture of
interconnected and interrelated processes, as well as

0164-1212/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212(01)00102-9



344 S.J. Choi, W. Scacchi | The Journal of Systems and Software 59 (2001) 343-354

facilitating, guiding or managing the scalable composition
of component processes that together constitute software
acquisition. Factoring also enables the partitioning, dis-
tribution and concurrency of process activities spread
across many participating enterprises. Subsequently, in
order to be able to construct and simulate factorable
models of software acquisition processes, we require ar-
chitectures that can separate and configure a distributed
web of software acquisition processes. An architectural
perspective also enables us to explore the potential for
formulating families of common software processes into
a product line (Bergey et al., 1999), or better said, process
line. Therefore, we will refer to this structured web as a
process architecture for software acquisition.

The focus of our research effort here is to describe our
approach to modeling and simulating architectures for
software acquisition processes (cf. Boehm and Scacchi,
1996; Scacchi and Boehm, 1998; Schooffet al., 1997). We
describe our approach supporting the simulation of
software acquisition processes within a process architec-
ture. Along the way, we introduce how we employ the
high-level architecture (HLA) and run- time infrastruc-
ture (RTT) (Kuhl et al., 1999) to support the distribution,
concurrent execution and interoperation of multiple
software process simulations to address the complexity of
software acquisition process architectures. Such an in-
vestigation can help us determine whether the HLA can
serve as a wide-area or global test-bed that could enable
the interoperation of multiple software process simula-
tions that have been independently developed by loosely
coupled community of software process researchers or
practitioners located around the world. Finally, we in-
troduce the design and prototyping of a Web-based en-
vironment that supports the modeling and simulation of
acquisition process architectures, as well as a variety of
analyses and process prototyping capabilities.

2. Approaches to modeling software process architectures

We describe four concepts in this section. The first is
a language we developed for modeling, prototyping and
enacting software and business processes, called PML.
Second, we describe how we extend and combine PML
with software architectural design constructs to model a
software process architecture (SPA). Third, we evaluate
the use of PML and the HLA as schemes for modeling
an SPA. Last, we describe how an SPA can be integrated
into a Web-based environment for modeling software
acquisition processes that can be simulated across a
distributed run-time infrastructure.

2.1. PML: A language for modeling software processes

Noll and Scacchi (2001) have developed and dem-
onstrated the design of PML and its Web-based run-

time environment. PML has been used to model a subset
of acquisition processes at the US Office of Naval Re-
search in legacy as-is, redesigned to-be, and transitional
here-to-there forms (Noll and Scacchi, 2001). The legacy
processes span more than 120 problem-solving tasks as
process steps that occur in multiple locations within/
between ONR’s national and international offices.

PML is a declarative language for modeling and
specifying complex processes. It acts as an extensible
process markup notation that can be compiled into an
executable form to support process prototyping and
process enactment across the Web, as well as serving as
a person-in-the-loop process simulator (Scacchi, 2000).
These capabilities enable multi-user process modeling,
analysis, walkthrough, redesign, and enactment across a
distributed virtual enterprise of cooperating networked
enterprises (Noll and Scacchi, 1999; Scacchi and Noll,
1997).

The design of PML was based on compatibility with
the knowledge-based software process meta-model that
we had previously developed and used in our process
modeling and simulation efforts (Mi and Scacchi, 1990,
1996; Scacchi, 1999). According to this process meta-
model, agents (people or programs) perform processes
using tools that require resources in order to provide
intermediate or final products. Process resource re-
quirements and provision are specified using predicate
expressions that serve as pre-conditions or post-condi-
tions on process enactment (Noll and Scacchi, 1999,
2000). Process flow is ordered using sequential, condi-
tional, iterative or concurrent control constructs. Pro-
cesses are also decomposable into a hierarchy of sub-
processes or action steps. Finally, processes associate
tools for process enactment that are connected through
interpretable scripts that explicitly invoke: (a) client-side
routines, forms processing, applets or helper applica-
tions, or (b) server-side programs or servlets. Subse-
quently, the run- time environment for PML was
designed to operate in a fully distributed manner with-
out a centralized administrative authority (Noll and
Scacchi, 1999, 2000). Thus, PML is based on relatively
mature software process modeling techniques combined
with constructs geared for deployment and use on the
Web. Exhibit 1 displays an excerpt of a low-level ac-
quisition process sequence specified in PML.

process Proposal_Submit {
action submit_proposal {
agent {Principallnvestigator}
requires {proposal}
provides {proposal.contents = =file}
script {““(p)Submitproposal contents.\
(p)BAA to which this proposal responds: \
input name = ‘baa’ type = ‘string’ size = 16)\
p)CBD source for this BAA: \
input name = ‘cbd’ type = ‘string’ size = 50)\
br)Proposal title: (input name = ‘title’

(
(
(
(



S.J. Choi, W. Scacchi | The Journal of Systems and Software 59 (2001) 343-354 345

type = ‘string’ size = 50))\

(br)Submitting Institution: (input name =
‘institution’ type = ‘string’ size =25)\
(br)Principal Investigator: (input name =PI’
type = ‘string’

size =20)\
Email: (input name = ‘Plemail’ type = ‘string’
size =20)\

(br)Contact: (input name= ‘contact’ type=
‘string’ size = 20)\
Email: (input name = ‘contactEmail’ type=
‘string’ size = 12)\
(br)Proposal contents file: (INPUT NAME
=‘file’ TYPE = ‘file’)”’
H
H
action submit_budget {
agent {Principallnvestigator}
requires {proposal}
provides {proposal.budget= = file}
script {“(p)Submitbudget.\
(br)Proposal title: (input name = ‘title’
type = ‘string’ size = 50))\
(br)Budget file: (INPUT NAME = ‘file’
TYPE = “file’)\
(br)Email address of contact: (input name =
‘user_id’ type = ‘string’)”’
}
H

action submit_certs {
agent {Principallnvestigator}
requires {proposal}
provides {proposal.certs = =file &&
proposal.certifier = = user_id}
script {*“(p)Submitelectronically signed
certifications.\

(br)File containing signed certifications:
(INPUT NAME = ‘file’
TYPE =‘file’)\

(p)User ID of signature: (input name = ‘user_id’
type = ‘string’)”’
H
H
H

Exhibit 1. An excerpt from an acquisition process
specified in PML for submitting a software research or
development proposal (Noll and Scacchi, 2001).

2.2. Modeling software process architectures

Researchers at CMU, UC Irvine, USC and elsewhere
has been investigating new languages, tools and envi-
ronments that focus attention on software system ar-
chitectures (e.g., Medvidovic and Taylor, 2000; Shaw
and Garlan, 1996). In our work, we chose to adopt ar-

chitecture design (AD) techniques and constructs from
this related research in order to support the modeling of
software process architectures. Furthermore, since our
focus on SPAs for acquisition is within the purview of
government and military enterprises, we chose to ex-
plore the viability of the HLA framework in developing
distributed simulations of processes within an acquisi-
tion SPA.

ADs are used to specify the components, connectors,
interfaces and interconnection configuration of com-
posite software systems. Components are objects that
encapsulate new/legacy application programs or com-
mercial-of-the-shelf software products. Connectors are
object types that encapsulate application program in-
terfaces (APIs), middleware, protocols, software buses,
or other messaging mechanisms that enable the intero-
perability and exchange of parameter values, data ob-
jects or control signals between components. Both
components and connectors have interfaces that specify
application resources. In some AD languages, interfaces
may also specify logical pre-conditions of imported re-
sources, and post-conditions on exported resources.
Further information about components and connectors
can be specified or automatically extracted to include
network host address, author/owner, and timestamp
attributes (e.g., for time of most recent modification)
(Choi and Scacchi, 1990). Finally, the configuration of
software system architectures specifies which compo-
nents are connected to which connectors through com-
patible interfaces. As a result, configurations can be
developed and deployed across a network, as well as
analyzed to verify its consistency, completeness, trace-
ability and internal correctness (Choi and Scacchi,
1998).

Historically, process architectures were used to pro-
vide a conceptual framework for process management
tasks, and to provide mechanisms for specifying soft-
ware processes with entry (“pre”’) and exit (““post’)
conditions for each process component (Radice et al.,
1985). These early process architectures lacked an ex-
plicit process modeling language or execution environ-
ment. In contrast, PML provides notational forms for
component processes enacted by agents using tools
whose resource requirements and product provisions are
specified with explicit pre-/post-conditions. PML tool
scripts serve as connectors that interconnect application
programs to a process component. PML process com-
ponents are then interconnected through control flow
constructs interpreted by the PML run-time infrastruc-
ture (Noll and Scacchi, 2001).

In PML, processes, resource interfaces, resources and
connectors (tool scripts) are first-class objects. Process
models and SPAs specified in PML can therefore be
made more specialized or more generic depending on
whether instance-level details are included or not. Ge-
neric processes specified in PML enable the construction
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of common families of software processes that can be
tailored for reuse across multiple software acquisition or
development projects (cf. Bergey et al., 1999). For ex-
ample, the US Navy has recently begun the acquisition
of a new fleet of battleships that will be researched,
developed, built and deployed over the next 15-20 years
(DD21, 2001). These ships are software-intensive sys-
tems involving dozens of mission-critical application
programs constituted from millions of source lines of
code (Scacchi and Boehm, 1998). As these ships can be
acquired in a serial manner, then the opportunity exists
to articulate, refine and continuously improve a family
of common software acquisition processes, rather than
simply using a rigid standard process or developing a
custom process for each ship’s system acquisition. Thus
the potential for a PML-like process modeling language
to serve as the basis for a reusable SPA has real, prac-
tical and well-motivated applications.

In our view, an SPA should enable the composition,
deployment and configuration management of multi-
version processes for software development or use in a
manner that scales to distributed and networked enter-
prises (Noll and Scacchi, 1997, 1999, 2001). SPAs should
be able to incorporate or reference other process/appli-
cation software components distributed across an in-
tranet (cf. Scacchi and Noll, 1997) or the Internet (Noll
and Scacchi, 1999). This further implies the potential for
process components to be mobile and transportable
across the Internet, either as part of their deployment or
enactment. This means people who seek to collaborate
can send/receive or publish/subscribe to software pro-
cess models, modify or add additional process compo-
nents, then choose to keep them for local use, or
otherwise forward them to someone else. Furthermore,
if heterogeneous process modeling notations are to be
deployed and made to interoperate, then an SPA must
be able to support this compositional capability. Finally,
an SPA must also serve as a basis for simulation—that is,
simulation of multiple concurrent and distributed soft-
ware processes, as is found in the domain of software
acquisition. To address these needs, we have been in-
vestigating the HLA and its associated RTI as a
framework for modeling and simulating process archi-
tectures supporting software acquisition.

2.3. Modeling SPAs using the high level architecture

The HLA is a proposed IEEE standard for specifying
how to structure a distributed and concurrent simula-
tion system that is composed from multiple simulation
systems or simulation components. Interested readers
unfamiliar with this standard or the commercial tech-
nologies that support it should consult its key references
(HLA, 1999; Kuhl et al., 1999). However, in simple
terms, HLA serves as an architectural framework for
integrating and interoperating object-oriented (OO) and

non-OO simulation systems, much like CORBA serves
as a framework for integrating OO and non-OO appli-
cations. In contrast to the PML, HLA uses application
program interfaces (or remote method invocation in-
terfaces) to pass data or control signals across its RTI.
Thus HLA can be viewed as an implementation level
approach to specifying how multiple simulation systems
will be integrated in order to interoperate. HLA is also a
military standard required for use in the development of
distributed simulation systems for military applica-
tions. > Thus, HLA is more specialized and more
domain-specific than CORBA.

Up to this time, there is no record of the use of HLA
to support the organization or composition of multiple
interacting software process simulation systems or sim-
ulation components. Similarly, we could find no evi-
dence of the use of distributed and concurrent software
process simulations, though the simulation of other
kinds of parallel and networked systems have been ad-
dressed (Fujimoto, 1999). So we have chosen to explore
the use of HLA as a basis for structuring the organi-
zation of multiple process components that can be de-
scribed using an SPA, then concurrently simulated as a
distributed simulation system. Furthermore, the com-
mercial availability of an RTI that supports HLA-based
simulations led us to choose to use it to investigate its
feasibility in demonstrating distributed and concurrent
simulation of a process architecture for software ac-
quisition. Subsequently, the SPAs we have designed
were modeled in PML as a process-oriented hypertext
(Noll and Scacchi, 2001). At the same time, we sought to
implement simulations of these processes using the HLA
framework, so that we can evaluate the capability of the
RTI to integrate and interoperate distributed simulation
components. The following example characterizes one
such SPA modeling and simulation effort.

Let us consider a software acquisition process archi-
tecture that involves three types of interacting compo-
nent processes to model the following kinds of entities:
software consumer enterprises; software producer
(contractor) enterprises; and a program manager to fa-
cilitate interactions between them. Additionally, we in-
clude a single process connector to interconnect the
consumer to produced processes. Such an architecture
might be visually depicted as shown in Fig. 1. Fig. 2 then
displays a partial view (many object attributes not
shown) an HLA object hierarchy (called the HLA
Federate Object Model) for the components and con-
nectors shown in Fig. 1.

2 The use of the HLA framework is mandated by policy of the US
Department of Defense when developing distributed simulation
systems (HLA, 1999). However as our effort is research oriented, we
were not required to use it. Nonetheless, its standardization and
widespread use does make it a candidate for evaluation in our research.
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Fig. 1. A software process architecture for acquisition with multiple
process components that pass messages using a globally shared process
connector (the Fulfillment Mechanism).

When using the HLA to integrate and interoperate
multiple simulation systems, developers must satisfy
three constraints in order to be compatible with the
HLA. These constraints are imposed on any use of
HLA as part of conformance to its standards definition
and conditions of usage. First, each process simulation
component must adhere to a set of ten rules for in-
teroperating with other simulations (Kuhl et al., 1999).
Second, each simulation must use an explicit Interface
Specification that describes how and in what form it

can exchange data and simulation events. Third, each
simulation must express data about its public (exter-
nally visible) state in form of the HLA Object Model
Template (OMT). Each of these requirements bears
some further description, though the interested reader
should consult the external references for details be-
yond our exposition here (HLA, 1999; Kuhl et al.,
1999).

First, of the 10 rules, five specify constraints on how
simulation components interact with one another as a
federation. For example, one rule states that when op-
erating as a federation, the representations of all simu-
lation associated object instances shall be in the
component simulation, and not in the RTI they use to
exchange object instances or values. The other five rules
apply to individual simulation components. For exam-
ple, one such rule states that each simulation component
shall be able to update and/or reflect any attributes, as
well as send/receive interactions, as specified in their
HLA compatible simulation object model.

Second, conforming to the Interface Specification
requires use of an HLA RTI that is linked into a sim-
ulation to enable interaction with other distributed
simulations. The RTI supports six categories of func-
tionality that model and manage how HLA simulations
can interact through the global broadcast and syn-
chronization of events that are communicated via shared
publish/subscribe registries. The SPA shown in Fig. 1
should be able to conform to this constraint, using its
connector as a global mechanism for broadcasting and
synchronizing events exchanged across different simu-
lation process components.

HLA object class
hierarchy for a
software acqiasition
process architecture

Fig. 2. HLA object class hierarchy model for a software acquisition process architecture.



348 S.J. Choi, W. Scacchi | The Journal of Systems and Software 59 (2001) 343-354

Third, expressing public simulation state data via
OMTs suggests a scheme reminiscent of how the ex-
tensible markup language, XML, can be used to dis-
seminate the syntax and instances of object data types
over the Web. Note that the operational or interpre-
tative semantics of objects is not transmitted, thus the
exchange of information requires a prior understanding
and agreement as to what the objects and instances
mean. This in turn implies that knowledge of objects is
distributed among all the simulation components, and
thus the potential exists for different simulation com-
ponents to exchange common objects, but establish
their meaning locally. This is in marked contrast to the
use of process meta-models, which support process
simulation and interoperability through a centralized
semantic data model (Mi and Scacchi, 1990, 1996).
Maintaining and updating a centralized semantic
model is much easier than maintaining distributed
simulation object semantics local to each simulation.
The effort required to maintain and evolve distributed
object semantics does not scale with the incorporation
of more simulation components. In fact, it does just the
opposite, it generates a combinatorial explosion of
possible object meaning inconsistencies and propagated
updates.

Thus, we came to the following dilemma in order to
use the HLA to model SPAs for distributed simulation:
HLA is not a general-purpose architecture for modeling
and interoperating application systems or software
processes. The three constraints that guide its use im-
pose a specific architectural style that assumes global
broadcast and synchronization of events to facilitate
interoperability, while sacrificing ease of maintenance
and evolution. Nonetheless for prototyping and evalu-
ation purposes, where the semantics of process simula-
tion objects is limited, then the HLA is a plausible
candidate to investigate the potential of the distributed
and concurrent simulation of interacting software
processes, albeit within a pre-determined architectural
style.

3. Simulation of software acquisition process architectures

In the previous work, we have demonstrated and
comparatively examined different approaches to the
simulation of software processes (Scacchi, 1999, 2000).
This includes the introduction of person-in-the-loop
software process simulators that enable interactive ex-
ploration (e.g., browsing, prototyping and walk-
through) of software processes (Scacchi, 2000). Given
the approach to modeling and analyzing software
process architectures we introduce in our current effort,
we need to explain and demonstrate how simulation of
software acquisition processes fits into our overall
scheme.

3.1. A software acquisition process simulator

We continue to employ and extend the process sim-
ulator techniques noted above, but now we apply them
to the domain of software acquisition process architec-
tures. As our software process architectures are config-
ured and interlinked (i.e., “hyperlinked”), then their
internal/external representation can be navigated as a
process-oriented hypertext (Noll and Scacchi, 1999,
2001). This capability provides a basis for providing
Web-based process prototyping, simulator and enact-
ment services. Using PML as the basis for modeling
SPAs, we were able to produce a software acquisition
process simulator whose operations and capabilities are
similar to what we achieved and demonstrated in pre-
vious work (Scacchi, 2000). However, now we are able
to enrich the experience of people interacting with an
acquisition process simulator through the ability to
model and link collateral assets for simulating multiple,
interacting software processes in a manner that can be
distributed and accessed over the Internet/Web, as we
will show later. Accordingly, in Fig. 3, we display the
view of a software process simulator for one process step
modeled in PML (cf. Exhibit 1).

3.2. A test-bed for simulating architectures for software
acquisition processes

Beyond providing a process simulator that supports
the navigational walkthrough of software acquisition
processes one step at a time, we also are investigating the
use of architecture-level simulation techniques to assess
the dynamic performance of alternative process enact-
ment scenarios associated with different software ac-
quisition processes or process architectures. Here we
have been exploring how the RTI for the HLA can be
adapted to support the simulation (i.e., simulated en-
actment of process events or state transitions) of soft-
ware process architectures. Current implementations of
the RTI provide a framework to simulate, monitor,
measure and display the performance of a distributed or
federated software system architecture (e.g., see http://
www.pitch.se/pRTI). However, our challenge is to de-
termine the appropriateness and performance of the
RTI as a simulation facility for distributed software
processes and software process architectures in general,
and for architecture of distributed software acquisition
processes in particular. Accordingly, we set out to pro-
totype a distributed and concurrent simulation of an
architecture of software processes using the RTI.

According to the HLA, system simulation compo-
nents are designated as federates (Kuhl et al., 1999). So
we designed a software acquisition process architecture
consisting of four interoperating process federates (i.e.,
component processes) that could be performed concur-
rently. These were processes for:
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Fig. 3. Display view of a single process step from a software acquisition process simulator.

o Software consumer: Process components of this type
simulate a consumer enterprise (e.g., the US Navy)
that seeks a new component-based software applica-
tion system. The enterprise then requests software
system components to be developed by a contractor.
Each consumer enterprise eventually receives the re-
quested components, then puts the component to
use. Then the consumer requests more components
until its needs are met. Multiple concurrent instances
were allowed to execute in order to simulate multiple
consumer enterprises that can independently request
software components to be produced and shipped.

o Software producer: Process components of this type
simulate a contractor enterprise that produces soft-
ware for a consumer in response to a submitted re-
quest for a software component. Once prepared, the
requested component is shipped to the consumer as
part of its deployment. Multiple concurrent instances
were allowed to execute, in order to simulate multiple
producer contractors (or a team of contractors) that
could service requests for software (product) compo-
nents, produce and ship them.

o Fulfillment mechanism connector: This process com-
ponent simulates a fulfillment and deployment
mechanism used to represent the basic operation of

a wide-area workflow infrastructure that transports
consumer requests and producer shipments. This pro-
cess waits for consumer requests, transmits them to
the relevant producer whom in turn responds with a
product shipment in reply. A single instance of this
process was allowed to execute.

e Manager: This process component simulates a pro-
gram manager (or acquisition program office) that fa-
cilitates the flow of information from the consumers
through the fulfillment and deployment mechanism
to the producers, then back to the consumers with
the requested and shipped component products. A
single instance of this process was allowed to execute.

These processes are relatively simple, yet they represent

basic processes involved in the internal operations and

external interactions among a group of enterprises that
participate in a software acquisition. These processes, as
described above, can obviously be modeled and simu-
lated as a single overall process using a conventional
single-threaded simulation package. However, our
challenge is to model and simulate these as four con-
current process types whose instances can be distributed
to run on one or more multi-threaded run-time plat-
forms. We chose to skip the effort to implement our
software process architecture simulation test-bed using
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multiple networked computers, since that seemed to be
primarily a task in network programming that would
not contribute significant results to our investigation,
though the HLA and RTI can support such a capability.

We implemented three process simulation compo-
nents and one process connector, following the SPA
depicted in Fig. 1. Accordingly, we implemented the
four software process simulation federates, conforming
to the HLA object models (see Fig. 2), in Java. Java was
chosen in part for compatibility with our PML and
Web-based acquisition process modeling and simulator
environment (Noll and Scacchi, 2001; Scacchi and Noll,
1997) and with the Java-based HLA RTI available to us.
Each of the four acquisition process simulation com-
ponent types was implemented as an OO program in
approximately one thousand source lines of Java code
(about 4000 Java SLOC in total). At least 80% of this
code is needed to facilitate use of the HLA RTTI interface
specification and the simulation messaging OMT re-
quired by the HLA standard. The Java code required to
create the user interface displays and monitor the exe-
cution of the process simulation component is not in-
cluded in this source code figure, since they employ
reusable library packages. The simulation programming
task was also simplified through our reuse and modifi-
cation of a similar multi-federate simulation system ex-
ample that is supplied by Kuhl et al. (1999) to help
document and explain how the HLA and RTI frame-
work is used. Suffice to say that there are many low-level
implementation details that we will not describe here
involved in the programming of the four types of soft-

ware acquisition processes in Java to make it conform to
the three principal constraints required to use the HLA
and RTI. Our results and what we learned from our
efforts now follow.

3.3. Results from simulating an SPA when using HLA and
RTI

One of the principal results we obtained is an oper-
ational prototype of a distributed and concurrent Web-
compatible environment for simulating an SPA that
entails multiple interacting processes for acquisition.
Given that such an accomplishment has not been re-
ported before, it merits consideration for what was
achieved and how, as well as what was not realized. In
contrast, we did not focus on simulating software pro-
cesses specific to a particular acquisition program at this
time, since this follow-on experimentation requires the
modeling and simulation test-bed environment and ca-
pabilities that we have developed and describe here.
Thus, we will discuss some of the operational capabili-
ties that can be demonstrated and observed at the user
interface of this test-bed. More importantly, we can
identify six additional results that follow from the cre-
ation and evaluation of this approach to simulating
software process architectures.

3.3.1. The user interface to a distributed SPA simulation
environment

Figs. 4-6 provide a view of the user interface that
monitors and displays state transition (on the left sides)
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and event message histories (on the right sides) associ-
ated with instances of three types of software process
simulation components. These are, first, the Software
Consumer processes that solicit and approve proposals
to produce software systems that they acquire. Second,
the Software Producer processes that submit proposals
in response to solicitation requests to develop software
systems then prepare and ship those software systems
those whose proposals have been approved by a Soft-
ware Consumer; and the flow of software artifacts
(proposals, software shipments, etc.) through the Ful-
fillment Mechanism connector. The “Position” field in-
dicates a parameter value that denotes the ordering of
messages flowing among the acquisition process partic-
ipants. The “SoftwareComp” and ‘“Name” are also
parameter values that associate an identifier with specific
software artifact instances (which are also ‘“‘compo-
nents”’) that are being acquired as they move from
Consumers to Producers and back, while traversing the
Fulfillment and Manager processes. The Manager view
primarily tracks the origination and termination of
event notifications and is not shown. Finally, Fig. 7
provides a view of the user interface that graphically
depicts an overall global state of a multi-process, multi-
instance interaction while simulating a software process
architecture for software acquisition.

3.3.2. Interoperation of multiple process simulation com-
ponents

Using this simulation environment, we are able to
demonstrate multiple software process simulations
whose interoperation is distributed and concurrent,
through the use of independent control threads. The
execution and interoperation that is realized through
the message passing scheme supported by the HLA and
RTI is monitored and displayed through the user in-
terfaces described above. This result represents an ad-
vance in the development of new infrastructures that
support software process simulation. Furthermore, our
expectation is that adding more content and complex-
ity to the process simulation dynamics would have little
impact on the simulation code that interfaces to the
RTIL.

3.3.3. Architectural-level simulation of software processes

Though our simulations model relatively simple
processes and process connectors for software acquisi-
tion, they demonstrate the HLA and RTI can be used to
implement and simulate software process architectures.
The process simulation components that are organized
into a SPA may be distributed, interoperate, and execute
concurrently. Architecture-level simulation is a tech-
nique that enables process simulation at a new, more
abstract ““system of systems”” level of detail, compared to
the granularity of conventional software process simu-
lation systems. Such a technique has not previously been
employed in simulating software processes, and thus
represents a new technique for analyzing complex soft-
ware processes whose process simulation components
may be physically distributed, but logically centralized
(cf. Noll and Scacchi, 1999).

3.3.4. Use of Web-compatible technologies

We implemented our distributed software process
simulation test-bed using Java to simulate software ac-
quisition processes that were specified and modeled in
PML. Such a convenience though not an advance,
nonetheless supports the construction, navigation and
geographically distributed simulation of software pro-
cesses and process simulation components. This may
enable people working in multiple enterprises that are
nationally or internationally distributed to access and
refine shared models of software processes, which is an
important consideration in a domain like software ac-
quisition (Noll and Scacchi, 1999; Scacchi and Boehm,
1998; Scacchi and Noll, 1997).

3.3.5. Reusable approach and framework for integrating
distributed software process simulations

As shown in Kuhl et al. (1999) the impact of adding
additional simulation components can be modest, once
the cost of interfacing them to the RTI and HLA object
model templates is incurred. Thus, part of the attraction
to the use of the HLA and RTI for simulating SPAs is
the ability to reuse, integrate and interoperate more
process component simulations for other software ac-
quisition processes, sub-processes, etc. once they are
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encapsulated to run with HLA and the RTI. Subse-
quently, the next step is to add more realism and detail
to our software acquisition process simulations in line
with what we have already achieved with those modeled
in a process-oriented hypertext (Noll and Scacchi, 2001).

Beyond this, the capability we demonstrated with the
development of our HLA and RTI test-bed can be in-
dependently reproduced with reasonable effort. We have
characterized the general terms of our implementation
and have indicated reference citations for where others
may acquire the HLA and RTI resources from which we
started. Thus, our approach to developing a distributed
software process simulation environment for experi-
mentation is reusable, as is the framework we employed.

3.3.6. Partial demonstration of scalability

The set of preceding results help demonstrate that
there may be a path towards the construction and op-
eration of a scalable approach and infrastructure that
can support the integration and interoperation of inde-
pendently developed software process simulations. Such
a “virtual test-bed” for software process simulation does
not yet exist, but the preceding results perhaps suggest a
way it could (or could not) happen. If researchers and

practitioners agree to build and use software process
simulations or simulation components that are com-
patible with the HLA and RTI, then this form of global
scalability could be realized. However, our experience
with HLA and RTI though suggests that such effort may
be undesirable from a technical standpoint, based on the
assumption of a single architectural style. Similarly, it
may be unrealistic from a pragmatic standpoint, unless
participants in the software process simulation com-
munity are willing to collectively migrate their efforts
onto process simulation servers that are compatible with
the HLA and RTI.

3.3.7. Successful demonstration of a novel approach
modeling and simulating software processes

Overall, the six preceding results provide evidence as
to both the plausibility and viability of modeling and
simulating multiple, interacting and distributed software
processes through the use of software process architec-
tures. Software architectures and architectural design
techniques have emerged elsewhere within the software
engineering community. The approach and results we
describe indicate that the concepts and techniques as-
sociated with software system architectures can be
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adopted and adapted for use in modeling and simulating
complex software processes that span and interlink
multiple enterprises. Such an advance may help realize
the ability to specify, analyze and understand software
processes of a greater organizational and managerial
complexity than have heretofore been demonstrated or
realized. As such, we have helped move one step closer
to the ability to design, redesign, or optimize the web of
software processes associated with the acquisition of
software-intensive systems.

4. Discussion and conclusions

We now turn to highlight and summarize what is new
in this research.

To our knowledge, this work represents the first effort
to investigate and provide results on how software
process modeling and simulation tools, techniques and
concepts can be applied to the domain of software sys-
tem acquisition. Software acquisition processes are
large-scale, involve multiple distributed enterprises and
stakeholders, and are expensive, long-lived and fre-
quently plagued with process coordination (interopera-
tion) problems. However, our research challenge is not
to simply model and simulate software acquisition
processes as just another software process. Instead, we
find the domain of software acquisition imposes chal-
lenges for modeling and simulating software processes in
a way that is factorable into distributed and concurrent
components, since acquisition processes in practice are
inherently distributed and concurrently in operation in
multiple enterprise settings. Thus, we chose to model
and simulate software acquisition processes in a manner
that reflects and embodies how such processes are
physically dispersed, while logically configured to in-
teroperate. To help demonstrate this, we used two Web-
compatible approaches to modeling software acquisition
processes: one based on a declarative process modeling
language PML and its process-oriented hypertext in-
frastructure; the other based on the implementation of
OO programs (in Java) that encapsulate interfaces to the
HLA standard and RTI specification.

This in turn serves as motivation for establishing and
evaluating software process architectures as a technique
to address these challenges. This is the second area in
which we have contributed. Up to this time, it appears
that software process modeling and simulation efforts
have assumed or been targeted to operate with one
model at a time in a single thread address space. This is
particularly true of efforts that rely in the use of com-
mercially available packages for discrete-event, contin-
uous system (e.g., systems dynamics) or entity-state
simulation. Interoperation of multiple, distributed and
concurrent software process models or simulations is
generally beyond the scope or capability of these pack-

ages. In contrast, our interest was to investigate the
modeling and simulation of multiple interacting soft-
ware processes as a system of process simulation systems
with interfaces that can be interconnected to enable re-
source, data or control flow through process connectors.
In this regard, we have introduced how software archi-
tecture concepts can be used to model and simulate
software process architectures that are logically cen-
tralized, but physically distributed.

Next, we described how software process architec-
tures could be evaluated with a distributed process
simulation environment. We demonstrated a test-bed
environment that supports the simulation of the con-
current interoperation of distributed software acquisi-
tion processes and multi-threaded process instances.
Our test-bed implementation was demonstrated with
relatively simple software acquisition processes. Such an
environment is best viewed as a test-bed for simulating
and evaluating large sets of complex interacting soft-
ware processes where scalability and networked distri-
bution are required. The acquisition of large military or
public infrastructure application systems have such a
requirement. Nonetheless, there is a cost to be incurred
for the use of such an environment. However, in our
view large and multi-enterprise processes for software
acquisition may be a well-suited domain for incurring
such costs, since the analyses and decision-making in-
sights that are enabled through modeling and simulation
are well justified (Brown et al., 2000). In contrast, the
test-bed environment is probably too much mechanism
to simulate small or simple software processes where
distribution and concurrency are not essential aspects of
the problem domain.

We also introduced an effort to use and assess the
viability of the HLA and RTI as a standards-based
platform for simulating the performance of software
acquisition processes that are configured as a distrib-
uted, concurrent architecture. This effort was posed in
contrast to a companion effort based on mature soft-
ware process modeling language and techniques. Here
we came to find that subtle differences in how the se-
mantics of software processes can impact which archi-
tectural styles may be most effectively employed when
modeling and simulating software process architectures.
This was an unexpected result, since to us it represents a
barrier for integrating and interoperating multiple in-
dependently developed software process models and
component process simulations. Thus, the current HLA
may not be the best choice for modeling and simulating
distributed, interacting software processes.

Finally, we believe software process architectures,
together with new architectural frameworks and envi-
ronments for modeling and simulating distributed,
multi-component software process architectures repre-
sent promising new areas for further research and de-
velopment within the software process community.
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Capabilities such as these provide new opportunities to
conduct experiments and software process performance
evaluation studies at a new level of granularity, and with
a new kind of test-bed infrastructure. This paper thus
describes some initial steps into these areas.
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