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A description of environments for VLS| and software de-
velopment is provided. Many similarities exist because of
the common difficulties of building complex systems in
either software or hardware. These similarities include
support for the complete system life cycle as well as the
differences, e.g., the overwhelming need for simulation
aids in the VLS| design domain. Development environ-
ments of the future will have to be able to support both
disciplines because distinctions between the two continue
to disappear, and because large systems need to incor-
porate both hardware and software components in their
designs.

1. OVERVIEW

This report elaborates on the discussions of the Design
Environments Working Group that took place at the
Workshop on VLSI and Software Engineering, in Rye,
N.Y., in October, 1982. Our purpose is to address how
environments for hardware/VLSI design and software
development are similiar and different, survey the avail-
able development environments, and speculate on what
will be available in the near and long-term futures.
While our working group was not able to come to a con-
sensus on what constitutes the ultimate development
environment of the future, we were able to identify
many of the most desirable features. We believe that
these can be attained with extrapolations of available
technology. Our most significant observation is that fu-
ture environments for system development must en-
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compass both hardware and software design. This is be-
cause the two design approaches share much in
common, and because future systems will require ele-
ments of hardware and software design, as distinctions
between the disciplines continue to blur.

The report is organized as follows. In the next sec-
tion, we describe the guiding principles behind environ-
ments for hardware and software development. Since
engineering support for the complete system life cycle
is a crucial aspect of development environments, Sec-
tion 3 defines the life cycles for both hardware and soft-
ware development. Section 4 describes the basic func-
tions of a development environment. In Section 35, we
discuss what is similar and what is different in the cur-
rent environments for VLSI and software. Finally, in
Section 6, we describe the state-of-the-art in design sys-
tems for VLSI and software development, and look to
what should be available in the near term future. We
also speculate on what could be available in the more
distant future, tempering the view with some of the dif-
ficulties likely to be encountered in developing future
design systems. Section 7 contains our summary and
conclusions.

2. GENERAL PRINCIPLES

The following “list of principles” represents our view of
the most important features of a development environ-
ment for either hardware or software design. Any fu-
ture design system must give careful attention to the
provision of these features.

Easy to use user interface. The users of a design
system are designers, not design system implementors,
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and should not have to learn the intricacies of a com-
plex system to get their design tasks completed. The in-
terface should use menus extensively, helping to lead
designers through the system with little effort. It should
be able to operate in both expert and novice user mode,
s0 as not to hinder the experienced user. Finally, graph-
ical display of information, especially design data, pre-
sents it in a more meaningful way, and should be used.

Integrated support for the entire system life
cycle. The environment should support a system de-
velopment project through its entire life cycle, from in-
ception through completion. Most development systems
only provide help for a piece of the overall problem.
Support should be included for project management
(e.g., budgeting and scheduling), as well as design, im-
plementation, maintenance, and validation of a system
being constructed.

Layered, portable, evolvable development environ-
ment. No single development system will be suitable
for all computing environments, application domains,
and application team organizations. Therefore, it will
be important that the environment be structured to fa-
cilitate the incorporation of alternative implementa-
tions of components of the development environment.
For example, a simpler user interface package would be
used with dumb terminals than if sophisticated engi-
neering workstations were available. It should be pos-
sible to personalize the environment to a given appli-
cation domain. Configurable language-directed text
editors are examples of tools that provide such a capa-
bility. In addition, the development environment itself
will evolve over time through incorporation of new fa-
cilities and components, and provision must be made to
make this evolution as effortless as possible. Clean in-
terfaces between components will be critical.

Environment does not restrict methodology.
Development environments should aid the design pro-
cess without constraining it. Several methodologies
should be supported by the environment, since different
methodologies may be appropriate for different com-
ponents of the overall system. The design system must
provide adequate performance, so as not to restrict de-
signers from rapidly iterating between the stages of the
life cycle.

3. ENGINEERING THE SYSTEM LIFE CYCLE

The “life cycle” of a system development project de-
notes the set of formal activities that occur in producing
a system. These activities span from the conception of
a system through its routine use and evolution. Ideally,
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we would like to support these activities with automated
tools and a system engineering methodology for their
use [7]. While comprehensive life cycle support is the
goal, we do not yet understand what is required to pro-
vide this to project managers and system engineers
alike. Nonetheless, we can describe what our current
understanding is and where there is need for further
investigation.

The development and evolution of a VLSI or soft-
ware system follow a similar, but distinct course. These
activities (or “stages”) of the life cycle for VLSI or soft-
ware system include:

Initiation and Acquisition: making a commitment to ac-
quire or develop a new computing system

Requirements Analysis: determining why the system is
needed and what resources must be available to sup-
port its development and use

Selection and Partition: determining whether the sys-
tem components are available and choosing between
alternative divisions of hardware and software com-
ponents to be built

System Specification: describing what computational
functions the desired system is to perform

Architectural Design: organizing and dividing system
functions across computational modules and people
who will build them

Detailed Design: designing algorithms and procedural
units that realize the computational modules

Implementation: coding and integrating designed com-
ponents in preparation for installation in another
environment

Testing: verifying that the implemented system fulfills
system specifications while validating its per-
formance

Documentation: providing a written record of what the
system does and how to use it

Use: operating the developed system under a variety of
idiosyncratic circumstances according to the discre-
tion of its users together with the mistakes they
make in using it

Evaluation: evaluating the operation, performance, and
applicability of the system in light of changing
circumstances

Evolution: enhancing, tuning, repairing, and converting
the installed system to maintain its useful operation

However, the apparent sequential order of these ac-
tivities does not reflect the order we have actually ob-
served [22, 34, 35].

The real work of system development entails artic-
ulating a variety of system descriptions, transforming
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these into an operational system, and evaluating them
and the developed system to establish a basis for its im-
provement. This work is by necessity incremental, it-
erative, and ongoing. However, we are not yet at a point
where system engineering environments are available to
thoroughly support this work. Thus, much of this work
must either be done manually or else shoehorned into
some existing tool assembly during system de-
velopment.

Although these system life cycle activities are famil-
iar to most system engineers and project managers, the
organizational arrangements that affect the ease by
which these activities can be completed are less famil-
iar. It is not that system developers are not aware of
these conditions; instead, it is more a matter of the ex-
tent to which these social conditions are explicitly ac-
counted for when organizing and performing hardware
or software system development [23, 35]. Nonetheless,
the grouping of system life cycle activities listed above
does provide a simple conceptualization of the history,
organization, and performance of a system develop-
ment effort that we can further examine.

3.1 Initiation and Acquisition

A software or VLSI system i1s initiated when partici-
pants propose and make the decision to acquire it. Ac-
quisition denotes a binding commitment of organi-
zational resources needed to perform system
development. The proposed system somehow meets
local “needs” that existing systems do not. The needs
substantiate the decision to acquire the system. How-
ever, on closer examination, the possible range of con-
flicts within identified needs is large. For example, the
need to acquire a new computer-aided design system
for VLSI development may depend upon (a) overcom-
ing organizational contingencies such as frequent fail-
ures or delays with the existing circuit design facilities,
(b) the perceived ease with which design activities (or
designers) can be better controlled, (c¢) the apparent
technical benefits arising from standardized circuit pat-
terns generated by the new system, (d) whether users
are convinced that the new system will make their work
more satisfying or entertaining, (e) possessing a “state
of the art” VLSI design work station that will help at-
tract or retain talented engineering staff, and (f) reduc-
ing the lead time necessary for complex circuit devel-
opment. The point here is not whether all of these needs
can be met; instead, whose agenda are they on, how are
they prioritized, who determines the priorities, and
whose interests are met when some need is fulfilled. In
any case, this organizational phase of a system’s life
cycle puts the development effort into motion and
shapes its direction.

15

3.2 Requirements Analysis

Participants are concerned with two kinds of system re-
quirements, nonoperational and operational. Nonoper-
ational requirements indicate the package of computing
resources that the new system assumes must be in place
to ensure its proper operation.’ These requirements may
indicate that certain development tasks or production
processes be structured to be compatible (i.e., made ef-
ficient) with the new system. On the other hand, oper-
ational requirements for a system are expressed in
terms of its performance characteristics (e.g., response
time), standard interfaces, engineering quality prac-
tices, testability, reusability, user-orientation, and so
forth. Finally, requirements for the system to be cost
effective, produced within resource constraints, deliv-
ered on schedule, and easy to use and manage have
both operational and nonoperational implications.
Taken together, none of these requirements specify
what the system’s operations are. Instead, they outline
preferences of participants to achieve a certain kind of
engineering discipline through the life cycle of the sys-
tem under development. Subsequently, these require-
ments form the criteria for evaluating the success of the
system development effort. As such, what we need is
some sort of “system requirements planning” facility
that can take these preferences and system require-
ments as input. Managers, users, and engineers could
then use the facility to produce plans coordinating their
system development activities. Further, such an auto-
mated tool must operate with incremental updates to its
inputs as well as be interfaced to system development
databases. However, such a tool is not yet available.

3.3 Selection and Partition

Once a binding decision is made to acquire a new sys-
tem, which system will do the job? Should the system
be developed with in-house staff or should it be pur-
chased elsewhere? Going with in-house staff facilitates
the cultivation of local product and production knowl-
edge useful in system maintenance. But if the system to
be developed represents an unfamiliar or unproven
technology, uncertainty over project completion within
resource constraints may point to a lack of incentives
for an in-house effort. Going with off-the-shelf compo-

'A computing package consists of not only hardware and soft-
ware systems, but also organizational facilities to operate and main-
tain these systems, organizational units to prepare data and analysis,
skilled staff, money, time, management attention, application spe-
cific knowhow, stafl commitment to modern engineering practices,
and policies and procedures for ensuring the orderly production of
additional applications [21, 35].
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nents, on the other hand, requires figuring out whether
they will do the job in the target system. Subsequently,
what criteria can be used to filter information for read-
ily available components: (1) developer reputation, (2)
prior experience of similar users, (3) performance char-
acteristics, (4) quality of available documentation, or
(5) ease of fit into local computing arrangements? In
any case, uncertainty over what to consider in selecting
system components is present. Thus, it is very likely
that the system selection will be influenced either by the
mobilization of participants favoring one component
set, or by the participants whose input is trusted by
those making the decision.

How to partition a system into hardware and soft-
ware components is a related problem. Partitioning a
system is more art than science. The final result de-
pends on the order in which partitioning decisions are
made. When no ordering prevails, the resulting parti-
tioning tends to be ad hoc and circumstantial. Alter-
natives to this can be found through experimentation
via system simulation, subsystem prototyping, or
through the prior experience of system developers on
similar projects. However, experimentation to evaluate
partitioning trade-offs can be very costly. In short, we
lack a notation and calculus for expressing the trade-
offs between hardware and software system compo-
nents as well as the automated tools that support such
analyses.

3.4 System Specification

What is the system to do? What are the objects of com-
putation and what operations are applied to them? How
can these specifications be represented so that either
their internal or external consistency, completeness,
and correctness can be checked? Clearly, use of system
specification languages and analysis tools helps. If the
application domain for the system being specified is
bounded and well understood, then a system generator
may be available that produces a working implemen-
tation of a system from its specification. Examples in
software include the so-called “application generators”
popular in business settings, whereas in VLSI we have
aids such as PLA generators. However, system gener-
ators that transform more general system descriptions
into modular implementations are still subjects of ad-
vanced research. Subsequently, evaluating or trans-
forming the specifications of either VLSI or software
systems is an error-prone, manual activity. But it is not
clear that more automation will eliminate difficulties in
system specification.

Problems found in specifications may be due to ov-
ersights in their preparation or conflicts between partic-
ipants over how they believe the system should func-
tion. Although a system specification language or
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methodology may serve as a medium of communication
among participants, these aids do not resolve conflicts
that might exist between participants; instead, they
may make them more apparent. Therefore, who decides
how to resolve a specification conflict? Who has a visi-
ble stake in achieving a particular outcome? How will
specification responsibilities be divided among partici-
pants? Each of these questions points to tacit or explicit
negotiations between project participants that occur in
the course of developing system specifications. Further,
the outcome of these negotiations will shape how stable
the specifications will be and how frequently they must
be reiterated.

3.5 Design

Designing a system entails deriving its configuration
and detailing the computational procedures and objects
from the available specifications. Developing the sys-
tem’s architectural design means articulating an ar-
rangement of system modules (e.g., a “floor plan™) that
progressively transform the objects of computation into
the desired results through local computational units.
This articulation includes (1) choosing a system design
technique, (2) developing and rationalizing alternative
configurations, (3) employing a standardized notation
for describing system architecture and module inter-
faces, (4) determining the order of module development
(i.e., top-down, bottom-up, hardest-first, easiest to test,
user interfaces first, etc.), (5) mapping system config-
uration onto staff to divide the labor, (6) performing
system design, and (7) renegotiating any of these if
local circumstances do them in.

On the other hand, developing a system’s detailed
design means articulating a symbolic description of the
computational procedures organized in the architec-
tural design. This stage of design requires interactive
access to user knowledge of the procedures being codi-
fied into the system. This knowledge is usually dis-
persed across many participants with varying degrees
of familiarity and commitment to the precision of artic-
ulation required for computational codification. Since
this knowledge is difficult to access, gather, evaluate,
codify, and stabilize, system designs will be plagued
with errors of omission or misarticulation. As these
problems emerge, system designs and possibly the soft-
ware development artifacts preceding them will be re-
defined and reiterated.

3.6 Implementation

System implementation involves coding the design into
an operational form. Choice of programming language
for software, or layout format for VLSI comes into play



Environments for VLSI

here. Techniques for verifying that the implementation
systematically realizes the system’s design, specifica-
tions, and requirements must be considered. Addition-
ally, the choice may be constrained by the kinds of au-
tomated optimizations and performance validations
sought. However, implementation also includes intro-
ducing early versions of the system to users for hands-
on evaluation.

Much hand-holding between system engineers and
users can take place to smooth the introduction. If users
believe that the system is being imposed on them with-
out their earlier participation, then a variety of counter-
implementation actions may appear marking their re-
sistance to the system’s introduction. Therefore, to
ensure the system’s integration into an existing com-
puting environment, participants will engage in a series
of negotiations to (1) establish sustained service for the
new system, (2) get enhancements to the delivered sys-
tem to improve its fit, (3) eliminate major systemn bugs,
and (4) train new users. But participation of users with
the system’s developers earlier in the life cycle may ob-
viate the need for these negotiations.

3.7 Testing

In testing a software or VLSI system, we seek to verify
that the implementation is a consistent, complete, and
correct realization of the system’s designs, specifica-
tions, and requirements. Formal testing of systems is
still very costly and not widely practiced. Ideally, this
verification could be controlled through selectively gen-
erating test data that allows system developers to eval-
uate the system’s static (control-flow), symbolic, and
dynamic (data-flow) behavior. However, most system
testing is heuristic and generally performed through
system simulation or hands-on operation.

The division of labor in testing a system usually
leads system developers to perform isolated tests on sys-
tem components and users to discover additional prob-
lems as the delivered system supports more routine
usage. Then, when difficulties (“bugs™) appear, a col-
lective effort begins to try to locate the source of the
problem. This effort usually entails a partial reconstruc-
tion of what transpired and how to make it appear
again for further study and correction. Well-organized
system development documentation helps, but if it’s not
available, people who might know about how the sys-
tem works in its current form must be found and en-
gaged. This situation grows worse if the attribution of
responsibility for the bug or its adverse effects is un-
clear. Thus, if the reconstruction is marked by uncer-
tainty and frequent negotiations, participants may sub-
sequently choose to work around the system anomaly
leaving it for other staff to rediscover, reconstruct
(again), and attempt to rectify.
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3.8 Documentation

Documentation represents the most tangible product of
system development activities. However, its utility has
a very short cycle unless effort is directed to continually
update it. We usually hear more about (and experi-
ence) the inadequacy of available system documenta-
tion than of its superlative comprehensiveness.

Standards and incentives for good documentation
are few. Users need one kind, developers another, and
maintainers possibly a third. If the system development
process has been volatile or behind schedule, then doc-
umentation may be put off.

Documentation work is labor intensive and revealing
of personal communication skills. System evolution
continually makes obsolete available documentation
unless countervailing support is provided. Further, un-
corrected system aberrations may not be documented
since they may be used as evidence indicating either a
lack of interest or lack of technical competency by cer-
tain participants. In short, in order to assure high qual-
ity of the most visible—and in the long term, the most
important products of system life cycling—develop-
ment and use of system documentation must be
planned, organized, staffed, controlled, coordinated and
scheduled in much the same way as the system must
be. This suggests that life cycle engineering tools must
also support the development and evolution of system
documentation in a manner similar to the development
of the system itself.

3.9 Use

How systems get used is not well understood from an
engineering viewpoint. We do not know the extent to
which well-engineered systems are easier to use. But we
do know that system use is shaped by (1) the discretion
a participant has over when and for what he/she can
use the system, (2) how easy it is to learn how to use an
unfamiliar system, (3) what kinds of mistakes or errors
are likely to be encountered in using the system, and
(4) how easy it is to integrate the system into the exist-
ing computing environment and established work rou-
tines [21, 22, 23]. Each of these arrangements is artic-
ulated only after a period of hands-on use of the system.
These conditions cannot be thoroughly predicted during
initial system development. However, as new systems
are cycled through various user groups, the demands
placed on the system (i.e., its requirements) change and
subsequently so must the system. The system also
changes because of staff turnover, thereby requiring
new staff to (re)negotiate the arrangements which
shape their use of the system. Thus, circumstantial con-
ditions in the work setting play a large role in deter-
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mining the pace at which a system is consumed and
evolved.

3.10 Evaluation and Evolution

Local participants regularly evaluate how well-deliv-
ered systems work and how useful they are. As their
experience with a system grows, so will a system’s ap-
parent inadequacy. System developers or users will seek
enhancements, adaptations, repairs, or conversions as
this occurs. System maintenance is really just ongoing,
incremental system development. It is done to improve
system performance, to keep the system usable, or to
reduce the cost of its use. It can also be supported with
the same automated tools used during initial system de-
velopment. However, systems developed without con-
temporary engineering aids will be more difficult (and
costly) to maintain.

The care and attention to detail by which mainte-
nance work gets done shapes long-term system usabil-
ity. However, many conditions counter an ideal practice
of system maintenance: (1) system users often have
more requests for enhancements than can be realized
within the local computing environment, (2) poor qual-
ity of development documentation complicates the ease
of figuring out where to make system alterations, (3)
maintenance work often competes with new system de-
velopment for staff attention, (4) multiple system ver-
sions appear when maintenance activities are not coor-
dinated or when unwanted alterations are resisted by
users, (5) turnover of system development staff frag-
ments local system knowhow, and (6) bureaucratic
mechanisms such as “change control boards” create a
new source of resistance that must be engaged (or by-
passed) in order to keep the system well integrated as a
computing package. As maintenance activities lag,
users may begin to take on maintenance work in order
to keep the system usable. Otherwise, they work around
the system through ad hoc extensions. Subsequently, as
this arrangement becomes too demanding for users or
as new technological alternatives appear, participants
may let the system sink in order to establish the “need”
to acquire a new system. This of course marks the ter-
mination of one system life cycle and the initiation of
another.

3.11 Summary

Overall, there is a high degree of concurrency across
the activities occurring during a VLSI or software sys-
tem’s life cycle. Each life cycle activity requires a dif-
ferent kind of description of the system being devel-
oped. A complete and consistent description is the
desired product of each activity, although these descrip-
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tions will often be incrementally constructed and re-
vised. Developing these descriptions using a machine-
processable language or formal notation appears to be
a key to providing automated life cycle support tools.
However, three higher-order problems remain:

articulating the various system descriptions,

establishing a mapping or set of transformations be-
tween successive system descriptions, and

evaluating the completeness, consistency, and correct-
ness of the system descriptions vis-a-vis one another.

These activities are by necessity incremental, iterative,
and ongoing reflecting many system sublife cycles. But
as we improve our ability to engineer this cycling, a
growing array of resources must be provided, new tools
will be necessary, new forms or subdivisions of work
will emerge, and a more complex web of organizational
and technological arrangements will appear which
must be managed [23, 34, 35].

4. COMPONENTS OF A DEVELOPMENT
ENVIRONMENT

A development environment for software—hardware
systems should ideally consist of a well-integrated set of
tools that support all the activities occurring during the
system life cycle. We delineate here some of the more
important components of such a development environ-
ment, focusing only on those parts of the overall life
cycle that are subsequent to the decision to (re)develop
a system. Thus, we do not discuss any managerial tools
that might be used in reaching such decisions: these
might include, e.g., tools which support project sched-
uling, resource accounting, etc.

In essence, the development of an integrated soft-
ware—hardware system involves:

the acquisition of a specification of the problem from
the end user(s) of the system

the actual design and implementation of the system

the subsequent evolution of the design and implemen-
tation as a result of changes in the requirements
and/or specifications (until a decision to supplant
the system by an entirely new one is eventually
made).

The system development process typically involves
reasoning at several different levels of abstraction. For
instance, these include:

representation independent or “abstract” problem spec-
ifications (wherein the only objects and operations
present are those of direct interest in the problem
domain),
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high-level model dependent “programs” that embody a
recipe for the solution of the problem, and

any other levels of abstraction that facilitate the sub-
sequent implementation in terms of some combina-
tion of (1) software executing on one or more general
purpose host computers, and (2) special purpose
hardware. Two examples of such levels of abstrac-
tion are (i) architectural descriptions of systems, and
(ii) electrical descriptions of circuits.

It is desirable to have design paradigms wherein the
choice of a final implementation medium (hardware or
software) is not fixed a priori. This mandates that a uni-
form perspective be adopted both in the specification of
the problem to be solved and, in as far as is possible, in
the development of an implementation. Ideally, a prob-
lem specification must be representation independent,
and as close to the user’s conceptualization of the prob-
lem as possible. However, there is sometimes a trade-
off involved between the use of completely representa-
tion independent (axiomatic) specifications (e.g., [18],
[121, [31]), and the use of conventional high-level lan-
guages as “‘specification” languages that yield specifi-
cations that are more or less representation dependent.
While there are promising axiomatic specification tech-
niques being investigated, the average (current day)
system designer is not yet adept at writing formal spec-
ifications; in fact, most tend to be put off by the mere
presence of formalism, although there are notable ex-
ceptions. A second, and more technical, issue is that it
is sometimes not easy to specify a desired behavior ax-
iomatically because of inadequate understanding about
the problem domain. In such cases, it may not always
be feasible to invest the extra effort required to acquire
such an understanding due to project deadlines. Con-
sequently, an alternative specification technique that is
viable in such circumstances is useful as a practical al-
ternative: this can generally take the form of an under-
standable “specification” in a high-level language.

4.1 Design Paradigms and Support Tools

Given that a problem specification is available, it is nec-
essary to follow some design paradigm to obtain an im-
plementation that is consistent with this specification.
The tools needed to support this design process will, in
general, depend on the particular design methodology
adopted. We will here attempt to convey a flavor of
some of the concepts involved by considering the tools
that are needed in the context of a design paradigm dis-
cussed in [38, 39].

Both software and hardware design may be viewed
as the process of representing the abstractions of objects
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and operations relevant to a given problem domain
using primitives that are already available [31].

When synthesizing programs, the primitives used are
those provided by the lower-level abstractions: these
may either be chosen from an available library, or
be explicitly supplied.

When synthesizing hardware implementations, the
“primitives” available during conventional (i.e.,
printed circuit board) logic design are in the form of
off-the-shelf chips; this is quite analogous to synthe-
sizing programs. On the other hand, considerable
flexibility in the number and nature of the primitives
is available when doing special purpose VLSI design:
this potentially enables the structure of the problem
to be more directly mirrored in silicon.?

In the event that a truly abstract specification of a
system is not viable for some reason, a high-level lan-
guage program may be viewed as comprising a “speci-
fication” of the system, e.g., GIST [16] and Ada [13].

Depending upon the availability of axiomatic or
high-level problem statements, there are two ap-
proaches to system design that one may adopt:

One can attempt to synthesize special purpose (soft-
ware/ VLSI) systems proceeding from abstract, rep-
resentation independent, specifications of problems.
This paradigm can potentially mirror the structure
intrinsic to a problem directly in an implementation
structure in silicon, and thus provide a way of tailor-
ing machine architectures to specific problems. As a
consequence of the modularization inherent in such
specifications at different levels, parts of the system
may either be in software or hardware.

Alternatively, a (more or less representation depen-
dent) specification of the problem in the form of a
program can be transformed into a hardware imple-
mentation and/or more efficient software im-
plementation.

We now outline some of the prototypical components
that need to be present in a development environment
to support the design paradigm alluded to above.
Briefly, these include tools that help interface with the
end user(s), tools that aid in the development and eval-

*In the solution of a specific problem using specific technology,
however, the number of primitives is usually quite small; e.g., pass
transistors, boolean logic gates, flip-flops, multiplexors. This is
partly necessary to reduce the complexity of the design process at
this stage: such primitives are at a very low level, their correct im-
plementation depends critically upon the technological *“‘design
rules,” and usually require substantial effort to be “debugged.” [t is
somewhat fortuitous that a small number of carefully chosen prim-
itives suffices for a large class of problems.
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uation of a system, and tools which support the evolu-
tion of a system after its initial design. We believe that
in the long run it is important to base such tools on a
reasonably cohesive theory of the various aspects of the
design process, rather than to merely have an ad hoc
collection of tools. Research therefore needs to be di-
rected into gaining fundamental insights in such areas,
rather than emphasize attempts to build fancy “front-
ends” for otherwise ill-designed development environ-
ments [26].

4.2 Interacting with the User

To facilitate user interaction at the different levels of
abstraction involved in the design process, it is conve-
nient to use different forms of syntactic sugaring (even
multiple external representations): e.g., both formal
and informal textual forms for high-level specifications,
graph representations for networks, and more detailed
(color) graphic layouts for viewing lower level circuit
structures.

It is possible to build knowledge based “expert” sys-
tems that have “natural-language” interactions with a
user and aid in the acquisition of the initial problem
specifications. Since the problem domain typically de-
termines the most convenient way(s) of interfacing with
a user, such user “front ends” should be designed so as
to be extensible. We envision the sophistication of such
front ends to improve with progress in related areas
such as artificial intelligence, and to eventually include
more-or-less natural language dialogue, speech recog-
nition and visual sensors.

Backend interfacing: rapid prototyping. Inorder to
facilitate interfacing with the other design development
tools that form the “core” of an environment, it is use-
ful to minimize the number of different forms that the
input to this backend can assume. We believe that such
an interface should allow for both axiomatic specifica-
tions and high-level language programs.

To facilitate rapid prototyping, it is desirable that
the initial specifications be “interpretable” or “execut-
able” to some degree. In particular, in order to ensure
that the specifications do in fact embody the user’s re-
quirements, it is important to provide for some dialogue
with the user that enables a clarification of the system’s
understanding of the problem. A tool that is able to ac-
cept various forms of user queries and answer them,
e.g., using formal manipulation systems, a simple da-
tabase retrieval mechanism, etc. is therefore useful in
this context.

In general, it is convenient to have a means of pro-
totyping systems at various levels of abstraction, so as
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to be able to exploit the design details as they are
fleshed out. For example, one potential advantage of
prototyping at a lower level is that more accurate in-
formation about various performance metrics can be
obtained.

4.3 Design Development Tools

The paradigm of development followed can be viewed,
to a greater or lesser extent, as a transformation of the
problem statement expressed at a higher level of ab-
straction into a form that elaborates at a lower level of
abstraction the representation of some of the constructs
used.

Linguistic primitives. In order to support specifica-
tion and reasoning at different levels in the design spec-
trum, it is important to have appropriate linguistic
primitives, and languages that embody these. Examples
of the kinds of primitives that are useful include: prim-
itives that enable axiomatic specifications; primitives
for parameterization of the design (yielding what are
sometimes known as “macro languages”); primitives
for describing the composition of design components
(“interconnection primitives™); primitives to describe
component interfaces, etc. It is important to be able to
specify environmental characteristics of systems and
performance characteristics [40]. These primitives may
either be embodied in a “broad spectrum” language, or
be viewed as a set of distinct languages.

Several common processes such as editing, pattern
matching and replacement, and parsing are used at al-
most all levels in the design hierarchy and can benefit
from language tailored tools such as editors, pattern
matchers etc. [39, 46]. Further, tools that aid in symbol
manipulation are useful in computing complexity mea-
sures of designs at various stages of development [41].
A machine-readable documentation of the history of a
development, which incorporates the reasons for adopt-
ing strategic decisions, will aid in the incremental rede-
sign of the systems in responses to evolving
specifications.

It has been observed that the global strategy that
guides a design depends to a large extent on (1) the
performance requirements desired of an acceptable im-
plementation and (2) the characteristics of the global
environment that the resulting system is intended to
function in. The tools needed to support the acquisition
of information needed for the transformations and to
support the mechanisms of the transformation process
itself are therefore important ingredients of a develop-
ment environment.
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Evaluation/verification. Once a system has been
designed, it is usually desired to evaluate its perfor-
mance along one or more dimensions. Examples of rel-
evant characteristics include, for instance,

memory and time utilization (in software im-
plementations);

paging frequency (for virtual memory systems);

communication traffic density (in distributed systems);
etc.

chip area, response time, throughput, reliability (for sil-
icon implementations).

Tools to measure performance along these and other
dimensions, and support the validation of designs are
an important part of an overall development environ-
ment.

Simulation and testing. It is useful to be able to en-
sure at some intermediate stages in the development of
a system, that a design is consistent with the specifica-
tions and has approximately the right performance
characteristics. Although there are a few isolated in-
stances where formal verification is being used in prac-
tice, the prevalent modes of improving the probability
of a design being correct are still testing and simulation.

In particular, “simulation” is fast becoming a very
important tool in the existing VLSI design cycle,
whereas it is not as widely used nor as applicable in the
milieu of software systems. On the other hand, “soft-
ware testing” can be thought of as the (software) coun-
terpart of (hardware) simulation. Just as in the case of
software it is well known that testing can only help in
the detection of bugs and can never demonstrate their
absence, simulation of a hardware circuit usually helps
in reducing the number of logical and electrical errors
in a design, and cannot guarantee their absence.

In software, simulation is typically used only for sys-
tems that have characteristics that cannot be determin-
istically modeled very well, e.g., operating systems. In
addition, it is used for software modeling of systems
wherein the various interactions in the problem do-
mains are not well understood, e.g., war games.

A circuit may malfunction because of errors in its
logical design, or due to unforeseen electrical charac-
teristics of the circuit elements used, or due to fabri-
cation faults during reproduction. “Simulation” in the
sense it is used in the hardware domain is used to re-
duce the probability of the first two happening, whereas
“hardware testing” is used to detect erroneous circuit
function after fabrication. Simulators in the hardware
domain need to model both the electrical characteristics
of circuits as well as their logical behavior. It is recog-

21

nized by now that it is not practical to simulate large
circuits at the device level using a simulator like, say,
SPICE, because of the computational explosion that oc-
curs. It is therefore important to have hybrid or multi-
level (hierarchical) simulators in the development en-
vironment that allow simulation at the functional,
logical, switch, and electrical levels, and that allow for
a smooth transition between the various levels.

Test/simulation data generation: testing environ-
ments. Testing plays an important role both in the soft-
ware system development life cycle and in the devel-
opment of hardware systems. However, as pointed out
above, there is a substantially differing set of require-
ments in software and hardware testing, mainly be-
cause of different interpretations of the terms. In the
case of software, duplication is almost error-free, and
testing relates primarily to testing the design of the
logic of programs and their robustness. In hardware de-
sign, duplication (i.e., fabrication) is far from error
free, and therefore testing plays a major role in both the
logical design of the system, and in testing for the cor-
rect fabrication of ostensibly correctly designed
components.

A set of support tools for test data generation, both
for software and hardware and modules, is needed. In
addition, it is important to have test beds or “drivers”
that allow a software or hardware module to be
“plugged in” and tested. In particular, apparatus for
physically testing the functionality of fabricated chips
is needed, as well as the ability to embed a chip in a
software/hardware environment that simulates the ac-
tual environment in which the module is intended to
function.

4.4 Configuration and Version Control

As any nontrivial system evolves, it typically goes
through a cycle of design, implementation, and rede-
sign. Besides being intrinsically quite complex, such a
system consists of nontrivial subcomponents that are
developed by several people and updated by several oth-
ers. Further, there are usually multiple versions of a
system in existence at any one time, both in the hands
of different end users and in use by the designers them-
selves during the development phase. The utility of tools
(even very primitive ones) that aid in keeping track of
different versions and configurations of software sys-
tems, e.g., various releases to different end users, has
been established beyond doubt. We believe that it is im-
portant that a richer set of support facilities than those
existing in current version control systems like SCCS is
needed. Some examples of such systems are the per-



22

sonal information environment developed by Bobrow
and Goldstein [17] that support a layered network
model of software systems (including various perspec-
tives of a program), and systems like SOLID (an evo-
lution of the programmers workbench at Bell Labora-
tories that facilitates in installing different versions of
large systems). The initial experiments with such envi-
ronments to support evolution of designs have been that
a methodology for using the underlying tool is needed
for efficient usage (e.g., if a layered network model is
to be prevented from becoming a very expensive file sys-
tem). Of course, it is desirable that such a set of facil-
ities be reasonably well integrated into the remainder
of the development environment.

4.5 File and Operating System Services

The development of a sophisticated system environment
is critically dependent upon the underlying file and op-
erating system capabilities available. In this sense, such
capabilities are so basic that a certain minimal stan-
dard is indispensable to enable the development of good
environments. On the other hand, once such capabilities
are provided, they can be (and are) taken for granted
for the most part.

In order to ensure that a system scales smoothly as
its functions grow or as the size of the problems it can
be applied to grows, it important to have a large enough
address space (at least 24 bits, and preferably 32 bits
of addressable code space). It has been experienced that
space, rather than time, is the limiting factor in ex-
panding existing systems, in the sense that once the
available space limits have been reached, a radical
redesign is needed. Of course, faster machines lead to
improved response times and in turn to improved pro-
grammer productivity.

File support facilities are also important, particu-
larly the ability to have segmented files and some form
of direct accessing mechanism. Here, the addressing
capabilities needed are typically larger: 32 bits may be
enough for all of the code in a system but not for its
data, e.g., dictionaries and medical and legal data bases
can contain several billion characters very easily. Ro-
bustness of the underlying file system and storage
mechanisms then becomes quite important.

Various support features of a similar nature, whose
main objective is to free the system designer from low-
level considerations while providing him with a reason-
ably powerful set of primitives include: good process
and memory management, swapping facilities, object
management support utilities (e.g., garbage collection,
reference counting), interrupt facilities, exception han-
dling, software and hardware dynamic monitoring
functions for various performance measurements, etc.
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In addition, it is important that any software support
routines already existing (or that are written in differ-
ent languages) be easily integratable; in order to facil-
itate this, mechanisms to enable interlanguage com-
munication must be provided. Microprogrammability,
and the ability to speed up some of the basic support
tools by casting them in hardware must also be feasible
to some reasonable degree.

4.6 Database/Library Services

Several of the design functions may be viewed as ap-
propriate manipulations being performed on relevant
sets of objects. The integration of various tools there-
fore involves sharing some of these sets of objects.
While it is possible to view some of these functions as
being provided by a database management system (e.g.,
[20]), whether or not they are explicitly labeled as such
is largely a matter of taste and/or historical prece-
dence. Examples of the objects manipulated by a sys-
tem would include libraries of programs (indexed by
relevant attributes of the implementations), available
implementations of standard (or widely used) hardware
modules, cell sets implementing primitive functions and
tailored to various technologies, etc. The database fa-
cilities should provide for accessing the various library
entries when indexed by the relevant attributes. This
system should support the evolution of the entries them-
selves and the existence of several versions of objects
that perform similar functions. It is obvious that the
system include many of the features of version control
systems and other environments like PIE [17].

4.7 Implementation Services

When the initial startup cost for some component of a
development environment is capital intensive, a cen-
tralized set of services may be made available to a rea-
sonably circumscribed community of users. A success-
ful example of such a service is the MOSIS facility
provided by DARPA (through ISI) that enables mem-
bers of the DARPA community to have their designs
fabricated despite the lack of an in-house fabrication
facility. This centralization has the benefit of localizing
the choice of vendors and insulating the user from de-
tails of the fabrication process (to some extent). The
emergence of such centralized silicon foundries is anal-
ogous to the development of university wide computing
centers in the 60s and early 70s (in the absence of every
department or research project having its own comput-
ing facility). A more geographically centralized exam-
ple is the MACSYMA consortium, which provides ac-
cess to symbolic computation facilities (located at
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MIT) to members of the consortium; these facilities are
accessible through various international networks.

One obvious advantage of such centralized facilities
is that the cost per user is reduced. Further, in some
cases, the existence of a single or limited number of
such centers either implicitly or explicitly imposes some
community wide standards, e.g., the use of CIF files to
describe fabrication masks. A potential disadvantage of
this is the fact that undesirable features may creep into
such standards prematurely, thus harming the com-
munity in the long run. The existence of such a cen-
tralized facility cannot obviously be used to pursue re-
search in the service provided by that facility and
therefore does not eliminate the need for research cen-
ters to explore improved fabrication methods, symbolic
computation methods, etc.

5. DIFFERENCES AND SIMILARITIES BETWEEN
VLS| AND SOFTWARE

The similarities and differences between software and
VLSI Systems can be seen by examining what is under-
developed in both areas and what is being done at
present.

5.1 Similarities

The complexity of systems under development and the
number of people participating in those developments
are increasing. Subsequently, the costs of developing
these complex systems are rising. How to best organize
and perform these development projects with the people
and resources at hand is not well understood. However,
producing and cultivating such an understanding are
key factors in overall system development productivity
[10, 35]. Use of automated environments that support
comprehensive system life cycle engineering is likely to
be another factor as they become available for software
and VLSI.

New system development environments for VLSI
and software applications increasingly rely upon formal
notations or language-based system descriptions to sup-
port automated processing of each system life cycle ac-
tivity. Because of this, a common set of automated tools
that can be specialized to process these descriptions can
be developed.

In general, there appear to be enough similarities be-
tween the development process for complex software
and VLSI systems that automated environments, engi-
neering methodologies, and project management strat-
egies tailored for one technology may be applicable to
the other. However, differences in the development pro-
cess for software and VLSI must be supported before
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comprehensive hardware-software “factories” can be
built.

5.2 Differences

Although limited, we have more experience with soft-
ware environments than those for VLSI. VLSI is a
younger technology: tools and engineering environ-
ments for VLSI are still quite new. Software environ-
ments such as UNIX-PWB and Interlisp have a large
user base [45]. However, environments supporting the
development of real-time software systems or complete
system life cycle engineering are not widely used, if
they are even available.” In addition, the importance of
life cycle engineering efforts is not yet recognized
throughout the VLSI development community.

More substantial difference between VLSI and soft-
ware system development appears in later stages of
their system life cycles. However, we should expect this
since VLSI systems require a physical fabrication. This
physical fabrication does not occur with software.

Clearly, there can be differences at each stage of the
life cycle for VLSI and software systems. But these dif-
ferences are subtle and usually specific to the system
application domain or to the system development meth-
odology in use.

With VLSI, preliminary circuit implementations
must be made to test circuit operation with different
fabrication constraints or circuit layouts to improve
production yield. To minimize the chance of discover-
ing fatal circuit design errors at such a late develop-
ment stage, many VLSI simulation tools are used. Sim-
ulators for fabrication process characteristics are
employed to either reveal electrical faults or verify cir-
cuit designs.* VLSI systems also undergo physical in-
spection and test upon fabrication and packaging.
These evaluations are usually performed with expen-
sive, special-purpose testing equipment. Since there can
be fabrication or packaging variations (e.g., flaws) in
individual copies of the same mass-produced circuit,
statistical samples of production chips must be evalu-
ated to determine current yield and ways to improve it.
Widely used software systems are not tested in this
manner.

Design libraries are used differently in the two dis-
ciplines. Some VLSI design methods (e.g., standard
cell, gate arrays) consist of selecting the implementa-
tion of functions from a library and wiring them up to

*Real-time software systems often have performance require-
ments for timing behavior similar to those for VLSI systems.

“A current stumbling block in the use of VLSI simulation tools
is the lack of a common language or engineering methodology that
coordinates interaction between them.
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form the system. While software systems make exten-
sive use of standard subroutine libraries, the design of
the system is not influenced by the libraries to the same
extent. Note however that early link and load systems
were not unlike modern gate array systems, in that
standard functions were selected from libraries and
linked together to form an executable program.

In summary, the similarities between software and
VLSI systems arise from the ways system engineering
work is organized and performed. The development of
either software or VLSI systems usually requires the
articulation, transformation, and evaluation of various
system descriptions within a single computational me-
dium. On the other hand, the differences between VLSI
and software systems arise because VLSI circuit de-
scriptions must also be transformed (fabricated) and
evaluated across computational and physical media.

NEAR TERM PROSPECTS AND FUTURE
SCENARIOS

6.1 Available Now

For software systems, there already exist good operat-
ing and programming system environments. These in-
clude Bell Lab’s UNIX [33], the Programmer’s Work
Bench [14], and the InterLisp System [42]. Other sys-
tems supporting various activities in the software life
cycle can be found in currently available surveys [19,
45]. A comprehensive, up-to-date survey on available
software development methodologies can be found in
[15].

For VLSI, many integrated environments for circuit
design exist, but these support a fixed, and often pro-
prietary, methodology (e.g., IBM’s Engineering Design
System and various vendors’ design systems). These
support the entire range of circuit design activities, but
are often tuned for a particular implementation envi-
ronment, thus limiting the transportability of designs.
To our knowledge, there is no integrated CAD environ-
ment that provides either complete system life cycle
coverage or independence from circuit design
methodology.

On the other hand, workstation-based systems are
beginning to emerge that place complete sets of design
tools in the hands of individual designers [36]. How-
ever, the tools are presented as a loose confederation,
and frequently lack integration. Workstation system
designers are directing a great deal of effort towards
building their tool sets around an integrated system de-
velopment database to reduce these problems.

Except for the earliest and most strategic activities
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of the development cycle (product requirements, system
specification, etc.), where the most commonality in de-
velopment approaches is to be found, little has been
done to combine the hardware and software develop-
ment environments. As has been mentioned in Section
3 above, tools are needed for the combined environment
to aid in partitioning a system into its hardware and
software components. Fundamental research remains
to be done to better understand the process of system
partitioning.

6.2 Desired Future Capabilities

Expert systems technology as well as other artificial in-
telligence techniques will be applied in future develop-
ment environments. The environment will not only
adapt to the system developer/user as she/he pro-
gresses from novice to expert, but it will also take a
more active role in aiding system development deci-
sions. The system developer/user can concentrate on
the higher level strategic issues of design, such as spec-
ification of functions to be implemented, while the en-
vironment does the low-level tasks, such as choosing de-
tailed structures for implementing these functions.
Additionally, the environment should be able to keep
track of the developer/user interactions with various
system components and provide a range of problem-
solving or diagnostic help services if needed.

A major problem with current development environ-
ments is that there is little support for making system
components reusable across a wide spectrum of appli-
cations. Examples of reusable components include tech-
nology-independent cell libraries for VLSI circuits and
machine-independent subroutine packages for soft-
ware. Continued research must be directed towards the
issues of how to make portable systems. In particular,
we must develop ways to specify the behavior of a sys-
tem component in a technology independent manner.

Related to the issue of technology independence is
support for families of implementations and families of
algorithms. Given a specification of the performance re-
quirements of a system, a development environment
will eventually be able to select among alternative im-
plementations of the same functional unit. The environ-
ment should enable a designer to explore the space of
alternative implementations of his design, with different
combinations of performance metrics, such as area,
speed, and power tradeoffs.

Finally, when all of these facilities are incorporated
into the “ultimate” developrent environment, the ques-
tion arises as to how to keep the whole thing manage-
able. The performance and usability of the system must
remain reasonable, even as more powerful facilities are
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being added. An ability to tailor the development en-
vironment to specific projects and technologies should
help to maintain adequate performance. Techniques for
adapting the system to the expertise of system engi-
neers, project managers, and other users must be de-
veloped, to avoid overwhelming them with the sheer
complexity of the computational environment.

7. SUMMARY

Developing larger, more complex VLSI or software sys-
tems will remain very costly. Automated environments
are expensive and resource intensive [32]. Accordingly,
automated environments which support the life cycle
engineering of complex systems will probably not re-
duce these costs; instead they may help keep them from
rising too quickly. Substantial cost savings and produc-
tivity boosts are still elusive. Thus, we might look be-
yond automated system engineering tools to find the
breakthroughs we seek. Perhaps the answers lie in dis-
covering new ways to organize and perform system de-
velopment work, and to manage the flow of production
resources. Nonetheless, the tools we can identify are be-
coming more important.

In this report, we described the desirable features of
environments for system (hardware and software) de-
velopment. We emphasized the need for development
environments to support the entire system life cycle,
and discussed the significant events that constitute that
life cycle. Important components of the environment
were identified. We also described the large degree of
similarity among development environments, and
pointed out the few differences. Capabilities of existing
development environments were reviewed, and we of-
fered speculations about the future.

One of the goals of the workshop was to identify
where VLSI and software engineering intersect. With
respect to development environments, we discovered
that the intersection was large, and that systems that
support VLSI and software development share many of
the same requirements and need to provide the same
solutions. Development environments of the future will
support complete system life cycle engineering, where
components of the system can be realized as either
hardware or software subsystems. Future environments
will take a more active role in the development process,
and will support families of alternative system imple-
mentations, with a greater emphasis on portability of
designs. Builders of such environments will be faced
with the challenge of providing a powerful, flexible sys-
tem that is both easy to use and does the job with little
overhead.
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