The SMART Approach for Software Process Engineering
(Research Paper)

Pankaj K. Garg: Peiwei Mil Thuan Pham;
Walt Scacchitand Gary Thunquest?

Abstract

In this paper we describe a methodology for soft-
ware process engineering and an environment, SMART,
that supports it. SMART supports a process life-cycle
that includes the modeling, analysis, and execution of
software processes.

SMART’s process monitoring capabilities can be
used to provide feedback from the process execution to
the process model. SMART represents the integration
of three separately developed process mechanisms, and
it uses two modeling formalisms (object-oriented data
representation and imperative-style programming lan-
guage) to bridge the gap between process modeling,
analysis, and execution.

SMART demonstrates the meta-environment con-
cept, using a process modeling formalism as in-
put specification to a generator that produces
Process-Centered Software Engineering Environments
(PSEEs). Furthermore, SMART supports a team-
oriented approach for process modeling, analysis, and
execution.

1 Introduction

In a typical large-scale software engineering effort,
a variety of activities are carried out by several people
over extended time periods. Process models, as repre-
sentations of these activities and their characteristics,
provide the following benefits:

e With the use of a process model, the steps that
need to be carried out for a project can be made
explicit to answer questions such as, what should
be done next?.

*Hewlett-Packard Labs., Palo Alto, CA 94304, USA.

tInformation and Operations Mgmt. Dept., University of
Southern California, Los Angeles, CA 90089, USA.

{Software Engineering Systems Division, Hewlett-Packard
Company, Fort Collins, CO. Now at Eriksen, McClure & As-
sociates Inc., 4840 Pearl East Circle, Suite 301E Boulder, CO
80301

0270-5257/94 $3.00 © 1994 IEEE

341

o Often, to ensure the quality of a software system,
quality guidelines suggest that a set of activities
be carried out in a particular order. A process
model can help in determining the relationship
between the quality guidelines and the process,
e.g., whether the process is in conflict with the
quality guidelines or not.

e A process model can be analyzed with respect to
its internal consistency, completeness, and cor-
rectness. For example, we can find out the max-
imum number of parallel activities that can be
carried out in a process (for scheduling purposes),
or whether there are any redundant activities in a
process (the outputs of which are not being used).

e Usually, a software process involves routine, au-
tomatable activities that are mixed with activities
requiring creative thought. Based on a process
model, such routine activities can be extracted
from the process and embedded within a comput-
ing environment such that they can be automated.

o A large-scale software effort requires coordinat-
ing the work of several people over extended time
periods. An explicit process model helps team
members understand and coordinate who is do-
ing what and when. Similarly, communication
between people can be improved as individuals
can better understand the information needed by
other activities and individuals.

o With the use of a process model, process objec-
tives can be developed, and measurements de-
fined, to collect data to analyze the process ex-
ecution against these objectives. These can be
used for both continuous process improvement or
to radically change the process.

A common hypothesis within the process model-
ing research community is that the benefits of process
models will be easier to realize with the use of a multi-
formalism approach to process modeling (for example,
see [2, 8]). In order to experiment with this hypothesis,

we have developed the SMART approach for software
process engineering. SMART combines two formalisms
for process modeling within a single framework.

Within the SMART approach, we use both an object-
oriented knowledge-based formalism for process mod-
eling and an imperative-style programming language
for process programming. The roles of the formalism
are made clear with a methodology supporting the
process life-cycle. The object-oriented representation
is used mainly for process analysis and quality assur-
ance, while the programming language representation
is used to provide process guidance, automation, and
measurement.

SMART provides a mechanism to derive the pro-
cess programming language representation from the
object-oriented representation. This is akin to the
code-generation capabilities of common application
generators. In this regard, SMART is a meta-
environment that accepts a process model as its input
specification, then generates a process program which
produces an executable PSEE [14]. However, since
there is additional information available in the pro-
cess program representation regarding activities, this
step cannot be fully automated in all cases.

Early results of working with SMART have success-
fully demonstrated the utility of the approach. For ex-
ample, we have used SMART for modeling the change
management process that has been used in the re-
search community [15], as well as more complex pro-
cesses, such as those conforming to MIL-STD-2167A.
In each case, the programming language version of the
process model was automatically generated from the
object-oriented representation.

In this paper we describe the various concepts un-
derlying SMART and their implementation. We start
in Section 2 with a description of the SMART process
engineering life-cycle. An overview of the architecture
of SMART is given in Section 3. In Section 4, we de-
scribe the SMART support for the various stages of the
process life-cycle, including: process modeling, analy-
sis, embedding, execution, and feedback. We discuss
related work in Section 5. Finally, we conclude with
some suggestions for future work along these direc-
tions in Section 6.

2 Process Life-Cycle

One approach to process modeling is to consider the
models as programs in the traditional programming
sense [20]. An important benefit of process programs
is that they can be machine executable and therefore

342

1 Develop Process Model
Analyze Process Model
Process
Feedback ¢
Embed Process Model

Execute and Monitor
Process

Figure 1: The SMART Software Process Engineering
Life-cycle

automated. However, much like the development of
complex software systems entails more than program-
ming, similarly the development of complex software
processes—those needed to support the development
of large or very large software systems-entails more
than process programming. As such, our work has led
to an initial formulation of a software process engi-
neering life-cycle that is founded on the incremental
development and iterative refinement of software pro-
cess models, as shown in Figure 1.

Four stages of the software process engineering life-
cycle, which we focus in this paper are process mod-
eling, analysis, embedding, and execution with moni-
toring.

e Process Modeling

Process modeling involves eliciting and captur-
ing informal process descriptions and converting
them into formal process models. The concepts
used in defining a process model usually depend
on the considerations that are important for the
organization, and the process model is best de-
veloped in conjunction with the people who are
participants in, or are affected by, the process.
Therefore, at this stage of the process life-cycle,
it 1s important that the concepts used in the lan-
guage for process modeling be familiar to the peo-
ple affected by the process and well understood

by them. For this reason, we advocate the use
of meta-modeling wherein a process modeler can
specify the vocabulary and concepts used for pro-
cess modeling.

Process Analysis

This involves the evaluation of the static and
dynamic properties of a process model, includ-
ing its consistency, completeness, internal correct-
ness, and traceability. Examples of useful static
analysis are to find out: the maximum number
of activities that can be carried out in parallel
within a process, the number of activities that
use the output of a particular activity, and other
descriptive statistics.

At this stage, one might want to carry out a sim-
ulation that involves symbolically executing pro-
cess models in order to determine the path and
flow of intermediate state transitions in ways that
can be made persistent, replayed, queried, dy-
namically analyzed, and reconfigured into mul-
tiple alternative scenarios. For example, hypo-
thetical agents and resources can be assigned to
the process and the process engine started. Dur-
ing the execution, one can discover dependencies
between activities and agents, e.g., Agent; can-
not start any work unless Agent, has finished the
requirements activity.

Multiple graphic views or visualizations of the
software process at this stage help in under-
standing process flow relationships. For exam-
ple, sometimes it is useful to view the process
from an activity viewpoint, while at other times
it might be useful to view it from a data-flow or
role-specific viewpoint.

Process Embedding

Once a process has been successfully analyzed for
various properties, it can be embedded and exe-
cuted within a software engineering environment.
This involves assigning and scheduling specified
users, tools, and data objects to the process.

A shift in process representation needs to occur
at this stage. While the process model in the
modeling and analysis stages of the life-cycle is
mainly used for communication, understanding,
and analysis, the process model at the embed-
ding stage is mainly used to derive an executable
PSEE. Therefore, specific software tools, such
as Emacs, need to be associated with the pro-
cess model, whereas in the earlier stages it would
have been sufficient to say that a tool of class

343

“text-editor” is required. Similarly, in the earlier
stages we could have modeled a “Requirements
Document” in the abstract, while at this stage
that will be bound to some data objeet identifier,
which eventually resolves to a path specification
or named file in the local network file system.

Process Execution and Monitoring

Finally, the process is executed within the orga-
nization. The PSEE that was generated in the
stage above is used to guide or enforce the pro-
cess. While the process is being executed, it can
be monitored by the PSEE such that information
regarding the ordering and duration of activities
can be tracked. In addition, any departures from
the specified process can be collected. Such in-
formation can be abstracted and fed back to the
first stage of developing the process model.

Process Feedback

An important aspect of our process engineering
life-cycle is that it does not assume that once a
process model has been developed it remains fixed
forever. On the contrary, we anticipate a process
engineering life-cycle in which the process models
can evolve to accommodate changes in the exe-
cution environment of the process. An example
change in the environment could be when a new
way of doing a particular aspect of the process
is discovered. For instance, suppose that pro-
grammer modifies code by using an edit-compile-
debug cycle, and that this has been modeled in
the embedding knowledge-base. Therefore, when-
ever there is a task of modifying code, it is em-
bedded within the PSEE with the activities of
edit, compile, and debug. At some point during
the execution of these activities, a programmer
may discover a static analysis tool and start us-
ing it with the edit activity. Therefore, the task
of modifying code becomes into an edit-analyze-
compile-debug cycle. The new activity of analyz-
ing the code can be recognized by the PSEE, and
an appropriate message can be sent to the process
embedding tool.

This feedback can be utilized by the process em-
bedding tool to improve its transformation of fu-
ture process models. Therefore, future program-
mers need not discover the use of the static analy-
sis tool themselves, since knowledge of its use will
be available for them from past experience with
the process embedding tool.

In this manner, the process life-cycle is an evolu-
tionary life-cycle in which the processes developed are
incrementally enhanced and continuously improved.

3 SMART Architecture and Implemen-

tation

The high-level architecture of SMART is shown in
figure 2. The major components of SMART are:

e A Team Database that maintains the process
model developed during the modeling and analy-
sis stages of the process life-cycle. This is a multi-
user object-oriented database.

o A set of workspaces called Workshops [5] that
maintain a role-specific process model for each
person on the process modeling team.

o A set of Editors and Browsers for each person
on the process modeling team that allows them
to manipulate the process model.

e The SynerVision process execution and mon-
itoring tool connected to a host of SoftBench
compatible tools through a Broadcast Mes-
sage Server (BMS). SynerVision, SoftBench, and
BMS are commercially available products from
Hewlett-Packard. However, a large number of
CASE vendors now provide tools that are com-
patible (i.e., encapsulated to run) with SoftBench,
thus the range of possible PSEEs built with
SMART is substantial.

SMART represents the integration of three sepa-
rately developed process mechanisms: SynerVision
from HP’s SESD product division, Matisse from HP
Laboratories, and the ARTiculator from USC. Syn-
erVision is a process execution and monitoring tool
that operates with the SoftBench programming en-
vironment. Matisse is a knowledge-based team pro-
gramming environment [10]. The Articulator is a
knowledge-based process modeling, analysis and sim-
ulation system [18]. This combination was facilitated
by three main characteristics of the systems being
combined: (1) the eztensibility of Matisse [10], (2) the
Articulator’s meta-modeling formalism, and (3) the
openness of SynerVision. The Matisse team program-
ming environment maintains an object-oriented team
information base of software related information. This
object hierarchy was extended to incorporate the con-
cepts and mechanisms of the Articulator meta-model

Othi
Worksﬁg) S

344

Other .
SynerVision’s
(Users)

File System(s)

1 D}tea%qalsc

(Users)

Softbench
Tools

sho p

BMS

[Editor | [Browser |

A

Figure 2: The Architecture of SMART

formalism. In this way, all process modeling and anal-
ysis functionality, as well as all process models oper-
ational with the Articulator’s formalism, were ported
with little effort. Last, SynerVision is an open tool
that broadcasts information about its activities on a
Broadcast Message Server. Appropriate messages can
therefore be sent to SynerVision and messages from
SynerVision can be used for process feedback.

As shown in the figure, SMART is a multi-user sys-
tem that spans and supports the process life-cycle. At
the process modeling and analysis stages, the multi-
user capabilities are provided by the maintenance of
the process model within the Matisse team program-
ming environment. Matisse supports multiple users by
providing optimistic concurrency control on a shared
information space with each user having their own in-
dividual information spaces. The information spaces
(both shared and individual) contain medium-grained
versioned software objects with automation and con-
sistency rules on their property modifications [10]. At
the process execution and monitoring stages, SynerVi-

sion provides multi-user capabilities by using the ca-
pabilities of the Network File System (NFS). SynerVi-
sion supports both individual and team tasks as well
as task delegation. Therefore, SMART provides role-
specific workflow management for all team members
with process guidance (or enforcement), automation,
and performance feedback.

4 SMART Support for Process Engineer-
ing Life-Cycle

Based on the description of the process engineer-
ing life-cycle in Section 2, it is clear that the life-cycle
is as complex as, or perhaps more complicated than,
the traditional software product life-cycle. Therefore,
much as the software product life-cycle requires a com-
prehensive complete solution [11] so does the PE life-
cycle. The SMART approach represents a step in this
direction by providing support which spans the pro-
cess life-cycle.

In this section, we present an overview of the sup-
port capabilities of SMART for the four stages of the
process engineering life-cycle identified earlier.

4.1 Modeling, Analysis and Simulation

SMART utilizes the knowledge-based Articulator ap-
proach for modeling, analyzing, and simulating com-
plex organizational processes [18]. The Articulator
utilizes an object-oriented knowledge representation
scheme for process modeling.

4.1.1 Modeling

The Articulator’s resource taxonomy, explained in de-
tail elsewhere [18], serves as a process meta-model that
provides an ontological framework and vocabulary for
constructing software process models (SPMs). At the
base level, the process meta-model states that soft-
ware processes can be modeled in terms of agents
who perform tasks using tools or systems that con-
sume (utilize) or produce (modify) resources. Further,
agents, tools, and tasks are resources (i.e., resource
subclasses), which means they can also be consumed
or produced by other agents and tasks. For example,
a project manager may produce staff through staffing
and allocation tasks that consume departmental bud-
gets. These staff may then assigned to other rou-
tine or creative production tasks using the provided
resources (e.g., computer workstations, CASE tools,
desktop publishing packages, schedules, and salary) to

345

construct the desired products or services (e.g., appli-
cation programs and documents). Instances of SPMs
can then be created by binding values of correspond-
ing real-world entities to the classes of corresponding
entities employed in the SPM. For instance, Mary may
be the project manager who is responsible for getting a
set of documents produced for an external client, and
she is authorized to assign 2-3 individuals in her de-
partment to use their desktop Unix workstations that
run Motif 1.2 and FrameMaker software in order to
get the reports produced by the end of the week.

The agents, tasks, product resources, tools, and sys-
tems are all hierarchically decomposed into subclasses
of arbitrary depth that inherit the characteristics of
their parent classes. Further, these resource classes
and subclasses are interrelated in order to express rela-
tionships such as: control-flow relationships (sequen-
tial, iterative, conditional, optional, or concurrent),
task/resource pre- and post-conditions, authority re-
lationships among agents in different roles, product
compositions, SE tool/system aggregations, and oth-
ers [18]. Thus, in using these classes of process mod-
eling entities, we are naturally led to model SE pro-
cesses as a web of multiple interacting tasks that are
collectively performed by a team of developers using
an ensemble of tools to consume and produce prod-
ucts [16].

In addition, the meta-model enables us to model
other complex phenomena associated with organiza-
tional processes, such as agents’ resource sovereign-
ties (i.e., the set of resources under the control of an
agent), authority relationships among agents, artic-
ulation strategies [19], technology transfer strategies,
etc. Accordingly, these relationships are defined in the
meta-model, used and then instantiated in the SPMs.
Then, we can use SMART to .query, analyze, and simu-
late process models (cf. {18]).

4.1.2 Analysis

As the process meta-model provides the semantics
for SPMs, we can construct computational func-
tions that systematically analyze the consistency,
completeness, traceability and internal correctness of
SPMs [18]. These functions represent batched or in-
teractive queries to the knowledge base. At present,
we have defined a few dozen parameterized query
functions that can retrieve information through nav-
igational browsing, direct retrieval, or deductive in-
ference, as well as what-if simulations of partial or
complete SPMs [18]. Further, most of these analysis
functions incorporate routines for generating different
types of reports (e.g., raw, filtered, abstracted, para-

phrased, or publication format) that can be viewed
interactively or incorporated into publishable docu-
ments.

4.1.3 Simulation

Simulation entails the symbolic performance of pro-
cess tasks by their assigned agents using the tools,
systems, and resources to produce the designated
products. Using the previous example, this means
that in the simulation, Mary’s agent would “execute”
her project management tasks according to the task
precedence structure specified in the SPM instance,
consuming simulated time and effort along the way.
The simulation makes progress as long as task pre-
conditions or post-conditions are satisfied at each step
(e.g., for Mary to be able to assign staff to the report
production task, such staff must be available at that
moment, else the simulated process stops, reports the
problem, then waits for new input or command from
the simulation user).

We have used the Articulator environment to
model, analyze, and simulate a variety of large-scale
SE processes, including those in use in industrial or-
ganizations (e.g., [22]). However, at present, our focus
in on supporting symbolic rather than analytical (e.g.,
discrete event) simulation capabilities, whereas ana-
lytical simulation capabilities are required to simulate
a large sample of process instantiations.

4.2 Process Embedding

The process embedding stage involves the semi-
automated transformation of the process representa-
tion from the object-oriented representation, of the
analysis stage, to a representation suitable for execu-
tion within a PSEE. Figure 3 shows this transforma-
tion process.

As shown in the figure, the object-oriented pro-
cess model is first automatically transformed into a
process template via themodel transformer. This
template is a description of the process in an extended
Bourne shell script language [4] that is understood by
SynerVision [13]. The process template can be mod-
ified by the process-engineer to provide additional
information, perform name substitutions, etc. These
are typically once-only modifications; changes that are
more commonly used can be specified as rules to the
model transformer.

The process template is then insiantiated within
SynerVision, resulting in a process-centered software
engineering environment. In this manner, SMART il-
lustrates the capabilities of a meta-environment [14],

Design-Engineer

Process

M
Tran?gs'rlner

SS
Template SynerVision

Template
nstangtiation

I

Bvs [

Text-Editor
SoftBench
Process-Engineer Tools
IProcess-
Centered
SoftBench

Figure 3: The Embedding of a Process Model in a
Process-Centered Software Engineering Environment.

i.e., an environment for the generation of an environ-
ment.

The model transformer needs to convert the various
abstract representations, i.e., process model classes,
to actual instances of environment components. For
example, whereas in the analysis stage it would suf-
fice to say that a text-editor is required for the
modify-code activity, for the template we need to
specify the exact editor from the environment, e.g.,
SoftEdit from SoftBench, that will be required for the
process execution. Similarly, we need to associate the
object identifiers (e.g., file path name) that will rep-
resent the various modules of the target system.

Some of the knowledge required by the generator
can be coded into the object hierarchy for the process
models. For example, an organization can a priori
specify the various text-editors that are available for
use. In cases where the constraints identify only one
choice for a class of objects, that choice can be made
automatically by the generator; otherwise, a multiple
choice menu can be generated for the process engi-
neer’s assistance.

In this manner, over a period of time, an organiza-
tion can evolve a rich knowledge-base for automating
future processes. If a project has embedded, success-

fully used, and refined process models through sMaRT,
then subsequent projects can be aided by the choices
made in prior projects. Similarly, the generation of a
changed process model that has been evolved within
SMART can benefit from the choices made in the pre-
vious embeddings of the model. Thus, SMART is de-
signed to both facilitate process improvement and to
iteratively mature process models.

4.3 Process Execution and Monitoring

Process execution within SMART is supported
through HP’s process execution product called Syn-
erVision [13]. Details on this tool can be obtained
from the technical literature on the product. As such,
we present highlights to illustrate the process execu-
tion and monitoring capabilities of SynerVision.

Syner Vision presents the user with an agenda-based
window that lists the tasks for that user and possibly
the tasks of other people in the project team. The
tasks are displayed with a set of attributes that are
determined by the user using a rich filter mechanism.
The tasks can be displayed either in a graphical task
hierarchy or they can be presented as a nested list.

The user clicks the mouse at task representations
to perform various operations on them which check
and/or modify task attributes. The semantics of
an attribute modification determine the actions that
need to be taken for the PSEE. For example, an at-
tribute modification of the status of a task from New
to Execute means that work on the task is started.
SynerVision checks to make sure that this transition
does not violate any constraints that may have been
specified in the process. Also, a menu called Actions
is activated with a list of activities available with the
currently executing task. The user can then use that
menu to instantiate process actions. A simple action
may be to invoke another tool in the PSEE using the
Broadcast Message Server (BMS). A complicated ac-
tion may involve the execution of a Unix Shell script [4]
that may run over a period of time. Finally, users can
also add new tasks to a process template already in-
stantiated in SynerVision. However, tasks in an in-
stantiated process template that a user chooses not to
perform can be marked as “abandoned” but cannot be
deleted.

SynerVision allows process users to both estimate
and track time for task completion. A clock mecha-
nism tracks the amount of time spent in “executing” a
task. In order to ensure privacy of time data, the time
a user spent on a particular task is visible to that user
only. The user can at her discretion choose to share
that information with other team members. Timing

347

information is also generated as a log file that can be
edited for sharing purposes. Thus, SynerVision helps
process users identify variances in estimated versus ac-
tual time allocation, whereby high variances indicate
tasks or task steps whose definition could be revised
or otherwise improved.

There are pre-defined attributes that characterize
each tasks, e.g., status, owner, duration, etc., and ad-
ditional attributes can be added by the user. Tasks
can be delegated to other members of the project by
modifying certain task attributes (e.g., changing the
owner), then dispatching the task. In turn, users who
receive delegated tasks can then accept or refuse them.
Tasks also have a text attribute called Notes. Users
of the PSEE can use this field to enter rationale for
actions taken or feedback about the process, e.g., how
useful a particular task description was, whether a
task needs to be decomposed into several smaller ac-
tivities, useful hints that help when performing the
task, etc.

The execution of the process is tracked by SynerVi-
sion for various information such as time spent on an
activity, tools invoked, users who have worked on dif-
ferent tasks, and any user notes or feedback. This data
1s made available to the users in a variety of standard
report formats.

4.4 Process Feedback

Process feedback is implemented within SMART by
exchanging messages through the Broadcast Message
Server (BMS) between SynerVision and the process
modeling knowledge-base. For example, when a new
action is added to a task, or a new person is added
to the access list for a particular task, SynerVision
broadcasts a message on the BMS indicating that the
particular modification has been made to the task.
This message can be unparsed by the modeling tool
to add to its knowledge base. When a new action has
been added, the knowledge-base adds this fact to its
task decomposition. When a new user is added to the
access list, the knowledge-base adds this information
to its agent specification for the task. Over a period of
time, this information can be used to help characterize
how the process evolved, which is useful for subsequent
model development.

Another useful feedback mechanism is the process
activity logs. As each activity is performed by a user,
SynerVision’s messages can be used to log the fre-
quency with which each activity has been executed,
the ordering of activities with respect to each other,
and the objects on which the activities have been in-
voked. This information can then be analyzed by an

automated tool to infer redundant activities of the
process model, incorrect dependencies or ordering of
activities in the model, and so forth, all of which can
be used to revise and improve modeled processes.

5 Related Work

The PRISM project [17], which has a methodology
for developing process models and a PSEE, is the work
most closely related to ours. The process engineering
life-cycle that we suggest is similar to the four vertices
of the PRISM approach. However, the PRISM ap-
proach does not support the concept of meta-modeling,
which is an important aspect of our approach. Using
meta-modeling, a process modeler can define the con-
cepts that will be used for process modeling. In the
PRISM approach, the modeler uses the concepts of
FUNSOFT nets for process modeling. An important
aspect, missing from the PRISM approach described
in [17], is the stage of process execution feedback for
improving the process model and aiding in the devel-
opment of future process models.

The process engineering life-cycle that we suggest,
as part of the SMART approach, is similar to the im-
provement paradigm suggested by Basili and Rom-
bach, in the TAME approach [3]. Both the sMART
and the TAME approach share the idea of building
up an experience base that can be useful for future
software project planning. However, the emphasis in
the TAME approach is on collecting metrics based on
the Goal-Question-Metric (GQM) paradigm; the em-
phasis in the SMART approach has been to provide a
general framework in which different kinds of analy-
sis are possible. In this regard, we hypothesize that
a GQM paradigm can be implemented in SMART, us-
ing its meta-modeling capabilities. Moreover, the sup-
porting environment described in the TAME approach
was quite weak, a reflection of the state-of-the-art in
Software Engineering Environments at that time [3].
The SMART support environment with SynerVision,
Matisse, Articulator, and SoftBench, overcomes this
limitation.

Another tool that uses multiple formalisms to sup-
port the different stages of the process life-cycle is
Process WEAVER, built by Cap Gemini Innovation
of France [9]. However, the multiple formalisms in
Process WEAVER are used for different purpose -
they are used to model different aspects (and details)
of a process. Therefore, automatic generation of a
process template, or concepts of process feedback are
not relevant within the Process WEAVER context.

348

Moreover, Process WEAVER uses a modified Petri-
net based approach (transition nets) for modeling the
activities of a process, which limits it to an activity-
centered view of the process. The object-oriented,
rule-based representation of SMART can simultane-
ously provide a product-centered, activity-centered,
or a resource(agent)-centered view of the process. As
with SMART, Process WEAVER supports the integra-
tion with other tools in the environment using the ser-
vices of a BMS, and Process WEAVER provides an
agenda based view of a user’s work context.

The MELMAC [7] environment also supports the
notion of using multiple formalisms for process rep-
resentation. In the MELMAC environment, multiple
application views or layers of the process model are
represented in the same intermediate level. The inter-
mediate layer is represented using an extended Petri-
net formalism of FUNSOFT nets. MELMAC also sup-
ports the ideas of process visualization, simulation,
and to some extent feedback. However, in the SMART
approach, the process models are not simply views of
the process-in-execution, but they are a totally dif-
ferent representation of the process. In this manner,
the SMART models can be quite different from their
process-in-execution counterparts, thereby permitting
a greater degree of freedom in supporting the different
stages of the process life-cycle.

Several research projects in Europe are also advo-
cating the use of some extended form of Petri-nets
for modeling and analyzing software processes [1, 12].
In contrast, we advocate a knowledge-based approach
to process modeling and analysis, for several reasons.
The knowledge-based approach provides for incremen-
tal specifications of the process models such that we
can query, analyze, and reason about a partial spec-
ification of a process model. Using a knowledge-
based approach, information about the organizational
setting can be captured once and encoded in the
knowledge-base. Subsequently, that information does
not need to be repeated for each new process model.
Finally, a knowledge-based approach supports ab-
straction mechanisms for data products, processes,
and organizational structures much more easily than
Petri-nets can. On the other hand, Petri-nets are best
at representing issues about concurrent activities and
their analysis.

To summarize, none of the prevailing software pro-
cess engineering environments today supports the full
process engineering life-cycle. However, we have been
able to demonstrate supporting mechanisms for the
process life-cy:le activities described in Section 2.
Similarly, it should be noted that though our focus is

targeted at software process engineering, our approach
can also be applied to other engineering domains (e.g,
Electronic Design Automation, Agile Manufacturing)
and to conventional business processes, albeit in a rad-
ically innovative way [6].

6 Status and Future Work

The SMART prototype is currently operational. We
have used it to model several processes and generate
process programs from them. So far we have not ex-
perimented with it for executing and monitoring any
actual industrial software projects, which we hope to
do in the future. Such experiments will be able to test
the veracity of the feedback mechanisms that we have
built.

Early trial experiments, within our group, suggest
that an important support aspect missing from SMART
is that of process acquisition. The SMART approach as-
sumes that a process definition exists that can be en-
coded in at least a tabular form with activities, their
inputs, outputs, and resource requirements. However,
in real situations, the issues of which activities to in-
clude in the model, and at what level of granularity,
are very complicated. This is compounded by the fact
that different participants of the process have differ-
ent viewpoints on the process. Organization design
theorists have developed some manual techniques to
address this issue, for example see [21]. We need
to incorporate such techniques within frameworks like
SMART to more fully support the process engineering
life-cycle. Thus, this represents an important area for
future research.

Acknowledgments

We thank Martin Griss and Kevin Wentzel of HP
Labs for their support of this project. We thank Ralph
Hyver and Joe O’Brien from HP’s University Affairs
department who have significantly contributed in sim-
plifying the logistics of our collaboration and providing
support for it. We thank Tom Christian, Dave Pug-
mire, and Chung Tung of SESD for their support of
this project.

References

[1] S. Bandinelli and A. Fuggetta. Computational
Reflection in Software Process Modeling: the

349

(2]

4]

(5]

(6]

(7

9

(10]

SLANG Approach. In Proceedings of the 15* In-
ternational Conference on Software Engineering,
pages 142-144-153, Baltimore, MD, May 1993.
IEEE Computer Society.

S. Bandinelli, A. Fuggetta, C. Ghezzi, and
A. Morzenti. A Multi-Paradigm Petri Net Based
Approach to Process Description. In Proceedings
of the T** International Software Process Work-
shop, Yountville, CA, October 1991. IEEE Com-
puter Society Press.

V. R. Basili and H. D. Rombach. The TAME
Project: Towards Improvement-Oriented Soft-
ware Environments. IEEE Transactions on Soft-
ware Engineering, 14(6):758-773, June 1988.

S. R. Bourne. The UNIX Shell. The Bell System
Technical Journal, 57(6):1971-1990, July-August
1978.

G. M. Clemm. The Workshop System: A Practi-
cal Knowledge-Based Software Environment. In
Proceedings of the 3rd ACM software engineering
environments conference, pages 55-64, December

1988.

T. Davenport. Process Innovation: Re-
engineering Work through Information Technol-
ogy. Harvard Business School Press, Cambridge,
MA, 1993.

W. Deiters and V. Gruhn. Managing Software
Processes in the Environment MELMAC. In
Proc. of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Soft-
ware Development Environments, pages 193-205,
1994.

W. Deiters, V. Gruhn, and W. Schafer. Process
Programming: A Structured Multi-Paradigm
Approach Could be Achieved. In Proceedings of
the 5** International Software Process Workshop.
IEEE Computer Society Press, September 1989.

C. Fernstrom. Process WEAVER: Adding Pro-
cess Support to Unix. In 2*¢ International Con-
ference on Software Process, pages 12-26, Berlin,
Germany, 1993. IEEE Computer Society.

P. K. Garg, T. Pham, B. Beach, A. Deshpande,
A. Ishizaki, K. Wentzel, and W. Fong. Matisse: A
Knowledge-based Team Programming Environ-
ment. Technical Report HPL-92-104, Hewlett-
Packard Company Labs, Palo Alto, August 1992.
To appear in International Journal of Software
Engineering and Knowledge Engineering.

(1]

(12]

(13)

(14]

(15]

(16]

(17]

(18]

(19]

(20)

(21}

P. K. Garg and W. Scacchi. A Hypertext System
to Manage Software Life Cycle Documents. IEEE
Software, pages 90-98, May 1990.

V. Gruhn. Validation and Verification of Soft-
ware Process Models. PhD thesis, University of
Dortmund, Germany, 1991.

Hewlett-Packard Company, Palo Alto, CA. De-
veloping SynerVision Processes, May 1993. Part
number: B3261-90003.

A.S. Karrer and W. Scacchi. Meta-Environments
for Software Production. International Journal
on Software Engineering and Knowledge Engi-
neering, 3(1):139-162, 1993.

M. Kellner, P. Feiler, A. Finkel-
stein, T. Katayama, L. Osterweil, M. Penedo, and
H. D. Rombach. Software Process Modeling Ex-
ample Problem. In Proceedings of the 6% Inter-
national Software Process Workshop, Hakodate,
Hokkaido, Japan, October 1990.

Rob Kling and Walt Scacchi. The Web of Com-
puting: Computing Technology as Social Organi-
zation. In M. Yovits, editor, Advances in Com-
puters, volume 21, pages 1-90. Academic Press,
Inc., 1982.

N. H. Madhav)i, V. Gruhn, W. Dieters, and
W. Schafer. PRISM = Methodlogy + Process-
Oriented Environment. In Proceedings of the 12t*

International Conference on Software Engineer-
ing, pages 277-289, March 1990.

P. Mi and W. Scacchi. A Knowledge Base En-
vironment for Modeling and Simulating Software
Engineering Processes. IEEE Trans. Knowledge
and Data Engineering, 2(3):283-294, 1990.

P. Mi and W. Scacchi. Modeling Articulation
Work in Software Engineering Processes. In
1t International Conference on Software Process,
pages 188-201, Los Angeles, CA, 1991. IEEE
Computer Society.

Leon Osterweil. Software Processes are Soft-
ware too. In Proceedings of the 9% International
Conference on Software Engineering, pages 2-13,
April 1987.

G. A. Rummler and A. P. Brache. Improving Per-
formance: How to Manage the While Space on
the Organization Chart. Josey-Bass Publishers,
San Francisco, 1990.

350

[22] L. G. Votta Jr. Comparing One Formal to Infor-

mal Process Description. In W. Schifer, editor,
Proceedings of the 8% International Software Pro-
cess Workshop, Wadern, Germany, March 1993.
IEEE Computer Society Press.

