Work Structures and Shifts:
An Empirical Analysis of
Software Specification Teamwork

Salah Bendifallah and Walt Scacchi

Computer Science Department
University of Southern California
Los Angeles, CA 90089-0782

Abstract: The study and support of teamwork in up-
stream software development activities (e.g., specification,
design) have been approached from a variety of perspec-
tives. Those which address aspects of the division of la-
bor typically focus on authority or communication struc-
tures. In this paper, we examine how teams of engineers
develop software specifications, from a perspective empha-
sizing the division of labor in terms of the work structures
themselves. We present a new typology of work struc-
tures and report on an empirical investigation of these work
structures. We examine the teamwork process followed by
each of five comparable teams of specification developers.
The teams worked over a ten-day period with state-of-the-
art specification resources to deliver functional specification
documents meeting prescribed quality standards. Our data
and analysis show the recurrence of various kinds of shifts
in the teams’ work structures. We discuss the resulting pat-
terns of work structures and shifts and their implications.
In particular, separative work structures were associated
with improved specification teamwork efficiency, whereas
integrative work structures were associated with improved
specification product quality.

Keywords: Teamwork, Empirical Studies, Software
Specification, Conway’s Law.

1 Introduction

Twenty years ago, the participants at the Garmisch con-
ference raised the issue of the relationship between group
structure and system structure in large software develop-
ment projects [32]. This relationship has been referred to as
“Conway’s law”, after the researcher who had investigated
it [13]. Conway pointed out the likelihood of a “mirror”
relation between the structure of the design group and the
structure of the resulting system design. This suggested the
potential for effective management of large projects through
judicious choice of group structure.

In large software development projects, upstream ac-
tivities (e.g., specification or design) like downstream ones
require teams acting in well-coordinated ways. They also

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

©1989 ACM 0270-5257/89/0500/0260$00.75

260

require teams to act over extended periods of time within a
particular organizational context. Many empirical studies
of large projects done since the Garmish conference indicate
that improving the efficiency and effectiveness of the earli-
est upstream activities is key to reducing development costs
and increasing product quality [7,14,30]. Although Con-
way’s conjecture still appears to provide a potential basis
for such improvements, the problems of teamwork in up-
stream software development activities remain poorly un-
derstood [15]. It is uot clear, for example, what division of
work is appropriate for developing a large functional spec-
ification for an emerging software system, whose structure
is typically unknown at the onset of the specification pro-
cess. Concomitantly, the support provided (if at all) by
current technologies for specification and design teamwork
is generally limited (see for instance [9,10]).
Effective solutions require two complementary efforts:

1. Understanding, through empirical field studies and
experiments, how small teams of software specifiers
or designers develop specification or design products
with state-of-the-art technologies in selected organi-
zational and temporal contexts [4,15,16]; and

2. Exploiting this understanding to provide appropriate
computer-support and teamwork guidance to assist
in the cooperative development of high-quality spec-
ification or design products [11,12,20].

In this paper, we focus on an empirical study of specifi-
cation development activities. We are concerned with how
a specification team organizes its work over periods of sev-
eral days to weeks in performing a prescribed project task
constrained by quality standards [4]. To address this con-
cern, we have analyzed specification teamwork in terms of
work structures. Broadly defined, a work structure (WS)
for a team task is the manner in which the components of
the task are distributed among team members [25,33]. We
view work structures as forming a third dimension of team
structures, in addition to authority structures and commu-
nication structures, the two dimensions traditionally em-
phasized in studies of software engineering teams [17,29)].

Recommended by: Pamela Zave

In looking at specification development by teams, we em-
phasize instead the teamwork tasks themselves and their
division in the course of project work [4]. By examining the
actual history of teamwork, we are able to highlight various
types of organizational “breakdowns” ! which contribute to
the redirection of a team’s work flow and to shifts in the
team’s work structures. Such breakdowns can lead to sub-
stantial losses of productive effort and unhappy tradeoffs
between team effort and product quality.

The rest of this paper is organized as follows: After
a brief review of related research in Section 2, Section 3
presents a taxonomy of work structures we have developed
to understand specification teamwork. We use this taxon-
omy to examine the work process of five specification teams
we have investigated through a field study in the System
Factory project at the University of Southern California
[35]. After describing our field study set-up in Section 4, we
present our findings in Section 5. Our findings address the
types of breakdowns the specification teams encountered,
the consequent shifts in the teams’ work structures, and the
resulting patterns of work structures followed by the teams.
Section 6 discusses these findings and their implications for
efficiency and effectiveness in specification teamwork, and
Section 7 closes the paper with a summary and suggestions
for further research.

2 Related research

Our research is closely related to the few but varied em-
pirical investigations of team performance and team struc-
tures in software engineering that have appeared since the
Garmisch conference. Such investigations have been ap-
proached from a variety of perspectives [27,43], each of
which provides particular insights for understanding team
performance and teamwork processes and designing strate-
gies and tools to support them.

The perspectives employed in investigating team struc-
tures differ in the aspects of the division of labor they ad-
dress. Authority structures and communication structures
have been the primary focus of most studies of program-
ming teams, pioneered by Weinberg [42], Mills [31] and

Baker [1]. Essentially, Mills’ and Baker’s “chief-programmer”

(CP) team structure and Weinberg’s “egoless-programming”

(EP) team structure represent alternative distributions of
authority and communication flows. These team structures
were the subjects of further studies, such as by Scott and
Simpson in 1975 [36] and by Mantei in 1981 [29]. Mantei
compared CP and EP team structures along the authority
dimension (controlled vs democratic) and the communica-
tion dimension (centralized vs decentralized). She further
proposed a third, hybrid team structure, with controlled
authority and decentralized communication, and discussed
task situations suitable for each of the three kinds of team
structures.

1The word “breakdown” is used here as in [5,22,44], to denote an
emergent distuption of the flow of work.

261

With their emphasis limited to authority and communi-
cation structures and downstream software activities, these
studies could not address the underlying partitioning and
allocation of development tasks among team members. In
upstream activities, on the other hand, issues of task parti-
tioning and allocation take on paramount importance. For
example, the inherent composition of a software system’s
functional specification is usually unknown at the onset of
the specification process; it may even remain unknown, due
a desire to prevent partitioning biases, until work starts on
developing an architectural specification.

Other studies have appeared which involved software
engineering teams (see [3]) but did not consider the team
structure among their independent variables. For exam-
ple, Boehm and colleagues conducted an experiment at the
University of California, Los Angeles, with seven teams of
graduate software engineering students to evaluate the rel-
ative merit of the specifying approach and prototyping ap-
proach to software development [8]. Although their paper
indicated that most teams adopted an EP-like structure,
the main independent variable being investigated was the
development approach itself, effectively precluding mean-
ingful comparative results concerning team structures. An-
other such example is that of the “Cleanroom” experiment
conducted by Selby and colleagues at the University of
Maryland [37]. There, the 15 three-person teams adopted a
CP team structure, but again, the focal independent vari-
able was the development approach, whereby the first ten
teams applied Cleanroom while the later teams applied a
more traditional approach. Naturally, this also precluded
comparative results concerning team structures.

More recently, Curtis and colleagues [15,16,24,28] have
reported the results of field studies conducted by MCC re-
searchers in the framework of the Leonardo project (30].
They are, like us, concerned with the actual processes of
cooperation and breakdowns involved in upstream software
development activities, but from a different perspective.
The field study reported in [15], for example, spanned 19
software projects in nine companies to generate a model of
how team consensus is reached through coalition formation
within large design teams in the early stages of the speci-
fication process. This and their other studies thus address
primarily the cognitive and communicative aspects of up-
stream software development activities. They focus on the
analysts’ and designers’ mental models of the product in
progress during the software activity, and on breakdowns
which affect these models or arise from idiosyncracies and
other incompatibilities in contending models.

In contrast, our analytical perspective is drawn from
empirical studies of technical work organization in various
settings [5,6,19,22,23,26,27,40]. In this perspective, we em-

2This is the relationship traditionally addressed in the software en-
gineering literature through the notion of “ work breakdown structure”
(see for instance [41]).

phasize the teams’ work tasks themselves and how the orga-
nization of these tasks evolves in the course of the software
development activity, in conjunction with progress on the
product and changes in the project setting. This includes
in particular paying attention to three sets of relationships:
(1) among work tasks (i.e., task to task, task to subtask)
2, (2) between work tasks and people (i.e., who works on
which task or subtask) and (3) among the workers as they

relate to the work tasks (i.e., who works with whom on a
task or subtask) [40]. In software specification teamwork,

such task partitioning and allocation choices lead to several
potential choices of work structures, which we present next.

3 Work structures

The first step in determining a WS for a team task is to
consider whether the task is partitionable. A useful distinc-
tion'in this regard is that between “divisible” and “unitary”
tasks [38,39]:

divisible task A task that a team can readily divide into
subtasks, each of which may be effectively carried out
independently by a different subteam or team mem-
ber. Each subtask of a divisible task can itself be
further divided, unless it is considered unitary.

unitary task A task whose potentially distinguishable parts
are sufficiently interdependent to warrant being treated
as a whole for effective performance.

The other step in determining a WS for a team task is to
consider whether the task is a product development task (or
“product task”) [20] or whether it is instead a “meta-task”
[20]. Meta-tasks are tasks whose outcome is not a product
or product-in-progress but a decision about managing the
ordering and execution of product tasks (e.g., a plan, a
schedule, a WS, etc.). The choice of work structures for
a team’s meta-tasks is constrained by the authority and
communication structures adopted by the team.

e When the authority and communication structures
are respertively democratic and decentralized [29] (as
in an egoless-programming team structure [42]), meta-
tasks are always considered unitary. Furthermore, in
the spirit of a democratic authority structure, meta-
tasks are readily handled through negotiation when-
ever their outcomes concern more than one team mem-
ber.

¢ In contrast, when the authority and communication
structures are (a) controlled and centralized [29] (as
in a chief-programmer team structure [1]) or (b) con-
trolled and decentralized (as in Mantei’s hybrid team
structure [29]), meta-tasks may be either unitary or

divisible.

In the context of the System Factory project at the Uni-
versity of Southern California [35], project teams readily
adopted an egoless-programming team structure for speci-
fication development. Consequently, in this study, our con-

262

cern for meta-tasks is limited to those that are unitary and
involve more than one team member; we thus leave out
details about meta-tasks carried out independently by par-
ticular team members.

Starting from the distinctions between unitary and di-
visible tasks and between product tasks and meta-tasks, we
have defined a taxonomy of work structures for software
specification teamwork (see Figure 1). This taxonomy en-
compasses two classes of work structures based primarily on
the distinction between unitary and divisible tasks, leading
to six distinct types of work structures. We examine these
in turn.

3.1 Work structures for unitary tasks

A unitary team task leads to four alternative types of work
structures. The first two types correspond to situations
where the unitary aspect of the task is handled by exploit-
ing the potential synergy of collective interactions, such as
in face-to-face meetings. The third type corresponds to sit-
uations where the unitary aspect of the task is viewed as
warranting single-handed action. The fourth type corre-
sponds to situations where the unitary task can be handled
on several fronts in parallel.

o Negotiative WS: This is the case where the team
task is a meta-task, and the result of the task is a
consensual outcome of negotiation. The collective ac-
tion involves primarily negotiation and the consensual
outcome is a decision about the organization of work
itself, e.g., a WS, plan, or schedule for a task. This
is in contrast with the remaining five types of work
structures, all for product tasks, where the outcome
of team action is a prescribed specification product
or subproduct.

e Integrative WS: This is the case where the final
product of the task is a consensual outcome of con-
certed action. It is the outcome of collective action by
a subteam or by the whole team, where the collective
action involves continually concerted participation in
the elaboration of a communal, consensual version
of a prescribed specification product or subproduct.
Accordingly, the evolving outcome of the overall team
task is kept integrated at all times.

¢ Delegative WS: This is the case where the final
product of the task is a single-version outcome of in-
dividual action. The task outcome results from the
action of one individual team member to whom the
task is entrusted.

o Replicative WS: This is the case where the final
product of the task is a multiple-version outcome of
redundant action. The task outcome includes many
comparable and reconcilable outcomes of redundant
parallel actions on a prescribed specification product
or subproduct. This happens when a team elects to
have two or more subteams (or individual members)

Work Structures

AN

for meta-tasks Negotiative WS
Integrative WS
for product tasks < Replicative WS
) Delegative WS
Prediscriminative WS
for product tasks <
Separative WS

Figure 1: Taxonomy of work structures

simultaneously carry out the same task and thus ob-
tain several candidate versions of the task outcome.
Subsequently, these versions can be integrated into a
comprehensive outcome by comparison, superposition
or aggregation.

3.2 Work structures for divisible tasks

A divisible team task leads to two alternative types of work
structures. In both cases, the objects of the task (e.g.,
functional specification document, formal functional spec-
ification) and the set of actions entailed by the task are
divided. Each subtask involves a part of the whole object
and its corresponding subset of particular actions, so that
each subtask can be viewed as an idiosyncratic portion of
the task. The final outcome of the whole task is obtained by
rejoining the object partitions under their current linking
constraints:

¢ Prediscriminative WS: This is the case where task
partitioning is done along vested, predetermined links.
Such links are those that reflect the document sec-
tioning imposed through the functional specification
document outline provided in the project’s documen-
tation standards. The cleavages among partitions are
explicit in the required sectioning, and hence integra-
tion of the outcomes is typically not an issue. In-
tegration merely involves inserting and juxtaposing
the outcomes of the subtasks in their predetermined
places, as indicated by the values of the links, i.e., the
(sub)section numbers and/or headings .

e Separative WS: This is the case where task par-
titioning is done along heuristically determined links.
Such links are not imposed by the project’s documen-
tation standards. They are instead created idiosyn-

3These links are typical of those used in software engineering hy-
pertext systems [20], and in particular in the “assembly line” model of
software development [21].

cratically by a team when the need is felt to super-
impose a temporary partitioning on an object which,
according to the project’s documentation standards,
should be considered monolithic and eventually de-
livered as such. Unlike in the case of a prediscrimi-
native WS, novel conceptual cleavages must be per-
ceived in the task (e.g., cleavages among functional
requirements for, say, the task of developing separa-
tively a formal functional specification) and carefully
delineated. Subsequently, separation of foci is main-
tained throughout the duration of the task until they
are resolved at integration time.

Each subtask of a divisible task in turn involves an appro-
priate choice among the five types of work structures for
product tasks. Thus, some divisible tasks may be simple,
whereas others may be complex:

e A simple divisible task is such that all its subtasks
are carried out through delegative work structures.
In this case, we do not indicate the subdivisions in
our representation of work structures (as illustrated
in Table 1). For example, a prediscriminative WS
for a simple divisible task is merely indicated by the
single label P in the table.

o Complex divisible tasks are such that at least one
of the subtasks is carried out through a WS other
than delegative. In this case, we explicitly account
in our representation for the work structures for all
the subtasks. This situation is illustrated in Table
1 in several instances of a prediscriminative WS. For
example, the notation P(D, D, I} (see the sixth row
of the table) indicates a prediscriminative WS with
three task partitions, one of which is allocated to more
than one team member and handled through an inte-
grative WS.

263

1. Review and understand the users’ requirements document,

. Understand the functional specification approach and functional specification standards prescribed in the
project, and find and understand a specification library exemplar constructed using the approach and
standards and relevant to the desired functional requirements;

. Develop an informal functional specification which reflects the desired functional requirements;
. Develop a consistent and complete formal functional specification; and

5. Develop a functional specification document satisfying the project’s documentation standards.

in particular the desired functional requirements;

Figure 2: Prescribed work tasks for specification development

Looking at this taxonomy immediately raises questions
about the relative merit of adopting one type of WS over
another for a given team task [4]. To answer such questions
in the domain of software specification, we conducted a
field study in which we investigated the work structures
adopted by five teams of specification developers during a
recent cycle of the System Factory project at the University
of Southern California [35]. Before discussing our findings
and their consequences, we will briefly present the set-up
for our field study.

4 TField study set-up

We observed the functional specification development activ-
ities carried out by five teams using the Gist specification
approach [2,11] over a period of ten calendar days. The
teams had five to seven members and spent between 132
and 230 person-hours of teamwork to complete their tasks,
depending on the team. We collected data through anno-
tated participant-observation, * structured and open-ended
interviews, a questionaire, and evaluation of the functional
specification documents the teams produced at the end of
the common timetable. At the onset of the specification
development process, every team but one had access to a
relevant exemplar (i.e., “reusable”) specification that might
be useful for completing their task.

Apart from this difference, all the teams had access to
the same basic resources, had similar training in software
engineering, and had to specify systems of comparable com-
plexity (see [11] for examples of such systems). Also, all
the teams initially adopted an egoless-programming team
structure [42], whereby a team’s authority structure is demo-
cratic and its communication structure is decentralized [29].
Furthermore, all the teams had access to the same specifi-
cation tool [11] and guidance, with no prior exposure to the
Gist specification development approach. The sequence of
work tasks prescribed to the teams for developing a func-
tional specification document, including a formal specifica-
tion written in Gist, is shown in Figure 2.

4We had participant-observer positions in the project, in connection
with our respective roles as project supervisor/teaching assistant and
project manager/instructor. In these positions, we would generally
observe, take notes, and infrequently answer questions, but otherwise
leave the teams to act as they saw fit.

264

The same quality standards were prescribed to all the
teams. The Gist language used by the teams [10,11,34]
included the modularization construct “agent”, which pro-
vided a suitable testbed for investigating work structures
for specification teamwork. The agent construct allowed
specification developers to circumscribe a particular sys-
tem behavior and allocate it to a selected component of
the overall system being specified [18,34]. The construct
could moreover be exploited to devise potential ways of
dividing functional specification development work among
teammates wanting to follow a separative WS.

The first step in our investigation was to determine
which work structures were adopted by the teams for their
specification tasks. The second step was to explore the con-
sequences of our findings. We summarize our analysis and
findings in the next section and their implications in the
subsequent section.

5 Patterns of work structures and
shifts

The specification process followed by each of the five teams
is shown in a succinct representation in Table 1. This
coarse-grained description shows the chain of work tasks ac-
tually carried out by the teams (left column) and the work
structures followed by each team for each of these work
tasks. Space not permitting, we show in each case only
the type of WS adopted, and leave out indications of mode
of interaction, subteam composition, and other aspects of
task performance. These details are described elsewhere
[4]. We will refer to Table 1 in describing the specification
teamwork process and discussing our findings.

5.1 Anticipated work structures and shifts

At the onsct of the software specification process, the teams
needed to evaluate available resources, both those prescribed
in the project set-up and those available elsewhere (e.g.,
a team member’s own personal computer and printer at
home). The teams also needed to consolidate their author-
ity and communication structure, as well as to establish a
WS for carrying out each of the prescribed work tasks. This

was the basis for managing their specification development
work.

Team T1 T2 T3 T4 5
Size 6 7 7 7 5
Exemplar no yes yes yes yes
pre-planning | N—pR—pPI | N—BR—PI | N—DPR—PI | N—PR—PI | N—pR—PI
planning N = N = N = N = N =—
I I I I — s I — S
1 I+ 1 S S
P(D, I, I) P(D, L 1) P(D, L 1) P (D, S—bI, I)| P(D, D, 1)
D D D D D
R R R D D
D I I D D
development | 1 :t I+ 1+ It —p 1 —b
of N
preliminary R —p s+ s+
draft I
development i+ i+ 1+ s+ s +
of processable N
version of FFS D
do?ument N —-’ P+ p+ N ——» P(D, D, I)
write-up D P (D, S—PI, D)
document D —’ Dt D+ Dt Dt
integration N —-’
I
document R R R N ' D
review R
preparation D —p 1+ 1+ N —p Dt
for ’
delivery 1: I
Legend:

* The labels D, I, N, P, R, and S stand for the kinds of WS adopted, repectively
Delegative, Integrative, Negotiative, Prediscriminative, Replicative, and Separative;

* a WS label followed by + indicates the occurrence of shifts within the WS;

* a regular arrow (—f>) indicates ananticipated shift while carrying out a task
(planned shifts between tasks are not explicitly indicated);

* a bold arrow (—}) indicates an unanticipated shift while carrying out a task.

* the double-lined arrow (@) points to the pattern of work structures and shifts
originally planned by each team for the six kinds of development tasks;

* FFS stands for Formal Functional Specification.

Table 1: Patterns of work structures and shifts

For the initial pre-planning and planning tasks (see Ta-
ble 1), we observed that all the teams adopted the same
types of work structures. For pre-planning tasks, the teams
followed a negotiative WS. Each team then shifted to a
replicative WS so that the team members could evaluate,
each on his or her own, their understanding of the pre-
scribed functional specification approach. To consolidate
the results of these initial accommodation tasks, each team
then shifted to an integrative WS with a face-to-face meet-
ing. Subsequently, for planning tasks, the teams shifted to
a negotiative WS.

The outcomes of these preparatory self-management tasks

for the teams included:

265

1. An elaboration of the originally prescribed work tasks
(cf. Figure 2) into a sequence of major tasks, includ-
ing those corresponding to distinct kinds of intermedi-
ate specification document subproducts (see the last
six rows of the first column in Table 1); and

2. A sequence of work structures whereby each team in-
tended to organize its cooperative execution of each
major task.

As shown in the rows corresponding to planning tasks in
Table 1, these sequences of work structures involved a num-
ber of anticipated shifts. In most cases, these shifts corre-
sponded to the anticipated progression from one kind of
task to another. In other cases (e.g., notably in the cases
of teams T4 and T5), these shifts were anticipated within
the same kind of task. Anticipated shifts resulted from
each team’s initial assessment of appropriate adjustments
of its mode of cooperation to the intrinsic requirements of
the different tasks needed to produce its deliverable docu-
ments. They also resulted in part from each team’s initial
assessment of circumstantial constraints in the project set-
up, and in particular to the amount of scheduled interaction
each team’s members originally desired to maintain during
the performance of each task.

5.2 Breakdowns and unanticipated shifts
in work structures

Breakdowns [5,22,44] in the orderly execution and succes-
sion of anticipated tasks or subtasks often led the teams
to make adjustments through unanticipated shifts in their
work structures. We will look first at the various sources of
breakdowns which emerged for the teams, and then at how
the teams handled their work structures in recovering from
these breakdowns.

recovery required the team to accommodate to the new
project situation, the team did so by making unaenticipated
shifts in its affected work structures.

The subsequent choice of a suitable WS depended on
three sets of factors:

1. The intrinsic requirements of the task at hand;

2. The amount of scheduled interaction the team’s mem-
bers desired to maintain in the course of carrying out
the task; and

3. The team’s assessment of the time-quality tradeoffs
warranted by the breakdowns.

5.3 Scope of shifts in work structures

Whether anticipated or unanticipated, all shifts in work
structures involved adjustments either in the type of WS
or within a WS. Anticipated shifts, such as those shown in
the row corresponding to planning tasks in Table 1, involved
primarily adjustments in the type of WS adopted to suit
each of the major teamwork tasks. Depending on the team,
unanticipated shifts included either mostly shifts in type of
WS — in the cases of teams T1 and T4, or mostly shifts
within a WS — in the cases of teams T2, T3 and T5.

Unanticipited shifts in type of WS Teams T1 and
T4 experienced frequent unanticipated shifts in type of WS
primarily because their choices of work structures for devel-
oping their preliminary draft turned out to be inadequate
in the face of the time-quality tradeoffs warranted by some

Sources of breakdowns We found that breakdowns emerged of the breakdowns the teams encountered:

from three kinds of sources:

1. Idiosyncratic aspects of the project set-up: for exam-
ple, the short and somewhat pressured timetable of
ten calendar days, the usability of some basic com-
puting resources such as printers, the usability of the
formal specification technique and tool provided, the
reusability of specification library exemplars, and the
distribution of team members’ skills and interests;

2. Changes in the project set-up in the course of the
specification process: for example, changes in the ex-
pected availability of some basic computing resources,
the discretionary availability of some team members,
the avaijlability of accessory resources, and the distri-
bution of team members’ skills and interests; and

had

WS adequacy: for example, effects of work structures
followed so far, or of originally anticipated work struc-
tures on team efficiency or quality of the products in
progress.

Unanticipated shifts in work structures Upon the
emergence of breakdowns affecting a team’s work, the team
members adopted a negotiative WS. They discussed de-
sirable interventions with other project participants, with
project management, or with support personnel. Then, if

266

¢ Team T1’s integrative WS in the absence of an exem-
plar specification to help in the gradual development
of its draft led to schedule slips. The team thus had to
often shift away from the types of work structures it
had anticipated to follow, in favor of work structures
which would allow it to complete its tasks by the de-
livery deadline. In contrast, the potential inefficiency
inherent in teams T2 and T3’s choices of integrative
work structures was mitigated by the availability of a
specification exemplar.

e Team T4’s adoption of a separative WS without suffi-
cient forethought about the integration of its heuris-
tic partitions led to quality problems. Fortunately,
these problems were readily uncovered by one team
member the team had elected to also act as quality
monitor. Subsequently, the team had to often shift
away from the types of work structures it had an-
ticipated to follow, in favor of work structures which
would allow it to improve the quality of its deliverable
without trading off too much time. In contrast, team
T5 did not monitor integration problems that could
result from its choice of separative work structures.
Consequently, it did not experience a need for shifts
away from its anticipated work structures. Eventually

though, it lost in the time-quality tradeoffs by deliv-
ering a specification document of diminished quality.

Shifts within work structures Such shifts were made
to accommodate breakdowns affecting various aspects of
task performance. The main aspects thus affected included:

1. The manner in which the team realized the particular
type of WS adopted for carrying out a task:

(a) The composition (how many team members and
who) of the subteams available for the tasks at
hand; for example, some team members may not
be available for a particular task because of prior
commitments;

(b) How team or subteam members could interact,
e.g., through

o discretionary interaction (in the case of any
of the six types of work structures),

o face-to-face meeting with a central display -
VDT or chalkboard (in the case of integra-
tive or negotiative work structures), or

o face-to-face meeting with multiple VDT’s (in
the case of integrative work structures);

2. The inherent requirements of the task at hand:

(a) The specification subproducts used as inputs to
the tasks and their status (e.g., components of
processable specification and the extent to which
they could be integrated);

The resources specifically mobilized for the task,

whether prescribed in the project (e.g., formal
functional specification analysis tool, laser printer)

(b)

or discretionary to the teams (e.g., personal printer}

and

Pivotal subtasks of the major task at hand (e.g.,
reuse of formal functional specification fragment,
maintenance of formal functional specification
analysis tool).

(¢)

5.4 Principal patterns of work structures
and shifts

A careful examination of Table 1 reveals a variety of pat-
terns in the sequences of work structures resulting from
both anticipated and unanticipated shifts in each team’s
specification process. These patterns reflect the team’s
original choices of, and anticipated shifts among, work struc-
tures for the different kinds of tasks. They also reflect the
number and kinds of shifts the chosen work structures ac-
tually underwent during the process.

For pre-planning and planning tasks (cf. Section 5.1),
all of the teams followed the same pattern of work struc-
tures and anticipated shifts. However, for several of the
development tasks, the teams anticipated and followed dif-
ferent types of work structures to carry out the same task.

267

Such was the case for the tasks of developing the functional
specification itself (i.e., developing a preliminary draft of
the informal and formal functional specifications, and de-
veloping a processable version of the formal functional spec-
ification). For these specialized tasks of the process, both
integrative and separative work structures (the two extreme
types of work structures) were viewed as suitable for the
tasks. Subsequently, the sequences of work structures and
shifts followed for these tasks formed two basic patterns:

® a separative pattern in the case of teams T4 and T5;
and

e an inlegrative pattern in the case of teams T1, T2 and
T3.

Even for the document consolidation tasks, which are generic
to the development of any document, roughly three pat-
terns were followed from document write-up to preparation
for delivery: one by team T1, another by teams T2, T3 and
T4, and yet another by team T5.

6 Discussion

Our investigation has resulted in several insights about the
specification teamwork process:

1. In many cases, the teams followed different work struc-
tures for different kinds of tasks. In most of these
cases, the shifts in work structures that teams made
when progressing from one kind of task to another
were anticipated.

. The teams also made shifts in work structures within
a task. Some of these shifts were anticipated, but
most were unanticipated. Unanticipated shifts were
made in response to breakdowns in the project set-up
affecting the task at hand.

. Anticipated and unanticipated shifts occurred in ei-
ther of two ways: a shift in the type of WS or a
shift within a WS. The latter involved aspects of task
performance such as the mode of interaction (e.g.,
face-to-face meeting vs discretionary interaction) and
the resources mobilized for the task (e.g., provided
TE€SOUTCES VS ACCESSOIY IESOUTCes).

. In many cases, the teams followed different work struc-
tures for the same kind of task. This resulted in a
variety of patterns of work structures and shifts. Ei-
ther of two predominant patterns was followed for the
task of developing the functional specification itself:
an integrative pattern or a separative one.

These findings have implications for computer support of
the software specification teamwork process and for the in-
trinsic effectiveness of the process.

A major implication of our findings for computer sup-
port of specification teamwork is that this entails providing
support for a variety of work structures and shifts. Poten-
tial support strategies should target all three aspects of this

variety: the different types of work structures, anticipated
shifts, and unanticipated shifts. Our group has undertaken
efforts in this direction {21,20].

The principal implication of our findings for the intrinsic
effectiveness of the specification teamwork process concerns
the relative merit of different patterns of work structures
and shifts. We found that the two predominant patterns of
work structures and shifts for functional specification devel-
opment (i.e., integrative and separative) had consequences
for the overall effectiveness of the process [4].. To obtain
quantitative indicators of effectiveness, we collected data
about teamwork efficiency and specification product qual-
ity. We looked in particular at the total number of person-
hours expended by each team in the specification process
(prorated to team size) and at the scores obtained by each
team upon evaluation of its delivered document against the
prescribed quality standards. The quality criteria we con-
sidered included for example the frequency of errors in the
formal specification (determined by the automated speci-
fication processor [11]), and the structure of the delivered
formal specification.

We thus found that integrative and separative patterns
of work structures resulted in opposite iradeoffs between
(1) efficiency of the process and (2) quality of the deliv-
ered specification documents. The breakdowns the teams
encountered had magnified some inherent characteristics
of each pattern of work structures. In spite of the short
and somewhat pressured timetable, integrative teams read-
ily invested more time than anticipated to reach consensus
and obtain a high-quality product. In contrast, separa-
tive teams sought throughout to minimize face-to-face in-
teraction 5. Thus, even though such interaction could have
helped resolve quality problems stemming from their initial
partitioning and allocation of the functional specification
development task, separative teams responded to the time
pressure with a tradeoff detrimental to quality. This was
eventually reflected in the structure of the formal specifica-
tions obtained by the teams, as separative teams delivered
for example much less cohesive formal specifications than
integrative teams [4].

Overall, our data and analysis suggest that primarily in-
tegrative patterns will result in higher product quality, while
primarily separative patterns will result in higher efficiency.
Thus, if a high quality specification is the desired outcome,
then we should encourage and facilitate integrative work
structures. On the other hand, if a specification must be
developed rapidly, then we should encourage and facilitate
separative work structures. These hypotheses are the sub-
ject of a follow-up study reported elsewhere [4].

5While primarily integrative teams approximated a unit ratio of
time expended in face-to-face interaction to time expended individually,
for primarily separative teams this ratio was halved.

268

7 Summary and conclusion

Twenty years ago, the software engineering community raised
the issue of the relative effectiveness of different forms of
team structuring in large projects. Subsequently, most em-
pirical studies of the issue focused essentially on comparing
alternative authority and communication structures suit-
able for downstream software activities. In upstream soft-
ware activities, however, the most critical variable for team
structuring concerns instead the underlying task partition-
ing and allocation among team members, i.e., the work
structure itself.

In this paper, we have presented a taxonomy of work
structures for software specification teamwork. We have
then used this taxonomy in a comparative field study to
examine the specification development process followed by
five teams working under prescribed quality standards, in-
cluding a standard for the structure of the formal specifica-
tion the teams had to deliver as a section of their spec-
ification document. We presented the patterns of work
structures the teams followed, the variety of breakdowns
they encountered, and the shifts in work structures as well
as the concomitant time-quality tradeoffs they made in re-
sponse to these breakdowns. For the task of developing the
functional specification itself, the teams followed primarily
integrative or separative work structures. This choice had
implications for subsequent time-quality tradeoffs, with op-
posite results for each of the two patterns. While integra-
tive teams were the least efficient, they produced higher-
quality results. On the other hand, separative teams were
the least effective in terms of resulting product quality but
were the most efficient. The difference in product quality
was reflected, in particular, in the structure of the formal
specifications the teams delivered. Whether this lends cre-
dence to generalizing Conway’s law to work structures is
naturally a question for further research.

Our findings also suggest that work structures represent
a significant variable affecting software specification quality
and productivity. Further, the influence of work structure
variation may dominate that of the particular specification
technology in use. Similarly, our findings suggest that spec-
ification technologies which either ignore the role of work
structures or implicitly assume a particular work structure
could have adverse consequences. They could potentially
diminish specification quality or productivity if the work
structures that specifiers adopt clash with that embedded
in the technology. Such matters also require further study.

Acknowledgements

We thank George Bekey, Deborah Estrin, Pankaj Garg, Les
Gasser, Elihu Gerson, Aziz Jazzar, Ron Rice, Leigh Star,
Lucy Suchman and Terry Winograd for their comments on
earlier reports of this work. We further thank Pankaj Garg,
Les Gasser and Ron Rice for the extensive comments they
have provided on a draft of this paper. Last but not least,
we thank our anonymous reviewers for the insightful revi-
sions they have suggested.

References

(1]

(2]

(3]

[4

_—

(5

(7

(8]

10]

(11]

(12]

(13]

F.T. Baker. Chief programmer team management
of production programming. IBM Systems journel,
11(1):56-73, 1972.

R. Balzer, N. Goldman, and D. Wile. Operational
specification as the basis for rapid prototyping. ACM
SIGSOFT Software Eng. Notes, 7(5):3-16, 1982.

V.R. Basili, R.W. Selby, and D.H. Hutchens. Exper-
imentation in software engineering. IEEE Trans. on
Software Engineering, SE-12(7):733-743, July 1986.
S. Bendifallah. Understanding Software Specification
Teamwork: An Empirical Analysis and Model. PhD
thesis, Computer Science Department, University of
Southern California, Los Angeles, 1989. (Forthcom-
ing).

S. Bendifallah and W. Scacchi. Understanding soft-
ware maintenance work. IEEE Trans. Software Eng.,
SE-13(3):311-323, March 1987.

F. Blanchard and A. Cambrosio. Disaligning macro,
meso and micro due process: A case study of office
automation in quebec colleges. In Proc. Conference of
Office Information Systems, pages 118-125, Palo Alto,
CA, USA, March 23-25 1988.

B.W. Boehm. Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

B.W. Boehm, T. Gray, and T. Seewaldt. Prototyping
versus specifying: A multiproject experiment. IEEE
Trans. Software Eng., SE-10(3):290-303, May 1984.

G. Bruns. Technology assessment: Paisley. Technical
Report STP-296-86, MCC Software Technology Pro-
gram, September 1986.

G. Bruns, D. Bridgeland, and D. Webster. Technology
assessment: Gist. Technical Report STP-369-86, MCC
Software Technology Program, November 1986.

A. Castillo, S. Corcoran, and W. Scacchi. A unix-
based gist specification processor: The system factory
experience. In Proc. 2nd. Intern. Data Engineering
Conf., pages 522-529, 1986.

J. Conklin and M.L. Begeman. gibis: A hypertext tool
for team design deliberation. In Proc. Hypertezt’87
Workshop, pages 247-251. The U. of North Carolina,
Chapel Hill, NC, November 13-15 1987.

M.E. Conway. How do committees invent? Datama-
tion, 14:28-31, April 1968.

[14] B. Curtis. By the way, did anyone study real program-

mers? In Empirical Studies of Programmers (First
Workshop), pages 256—262. Ablex Publishing Corpo-
ration, 1986.

269

(15]

(16]

[17]

(18]

(19]

20]

(21]

(22]

(23]

(24]

(25]

(26]

B. Curtis, H. Krasner, V. Shen, and N. Iscoe. On
building software process models under the lamppost.
In Proc. 9th Intern. Conf. on Software Engineering,
pages 96-103, March 30 - April 2, Monterey, CA, USA,
1987.

J.J. Elam, D.B. Walz, H. Krasner, and B. Curtis. A
methodology for studying software design teams: An
investigation of conflict behaviors in the requirements
definition phase. In G.M. Olson, S. Sheppard, and
E. Soloway, editors, Empirical Studies of Programmers
(Second Workshop), pages 83-99. Ablex Publishing
Corporation, 1987.

R. Fairley. Software Engineering Concepts. McGraw-
Hill, New York, 1984.

M.S. Feather. Language support for the specifica-
tion and development of composite systems. ACM
Trans. on Programming Languages and Systems, 9,
April 1987.

J. H. Fujimura. Constructing ’do-able’ problems in
cancer research: Articulating alignment. Social Studies
of Science, 17(2):257-293, May 1987.

P.K. Garg and W. Scacchi. On designing intelligent hy-
pertext systems for information management in soft-
ware engineering. In Proc. Hypertezt’87 Workshop,
pages 409-432. The U. of North Carolina, Chapel Hill,
NC, November 13-15 1987.

P.K. Garg and W. Scacchi. Composition of hypertext
nodes. In Proc. OnLine Information ’88, pages 63-13,
volume 1. London, England, 6-8 December 1988.

L. Gasser. The integration of computing and routine
work. ACM Trans. Office Infor. Systems, 4(3):205-
225, July 1986.

E.M. Gerson and S.L. Star. Analyzing due process
in the workplace. ACM Trans. Office Infor. Systems,
4(3):257-270, July 1986.

R. Guindon, H. Krasner, and B. Curtis. Breakdowns
and processes during the early activities of software
design by professionals. In G.M. Olson, S. Sheppard,
and E. Soloway, editors, Empirical Studies of Program-
mers (Second Workshop), pages 65-82. Ablex Publish-
ing Corporation, 1987.

R.G. Hunt. On the work itself: Observations concern-
ing relations between tasks and organizational pro-
cesses. In E.J. Miller, editor, Task and Organization,
pages 99-119. John Wiley & Sons, New York, 1976.

A. Jazzar. Understanding the Production and Con-
sumption of Software Documents: An Empirical Anal-
ysis and Model. PhD thesis, Computer Science Depart-
ment, University of Southern California, Los Angeles,
January 1988.

(27]

28]

(31]

(32]

[33]

34]

(35]

(36]

(37]

R.Kling and W. Scacchi. The web of computing: Com-
puter technology as social organization. Advances in
Computers, 21:1-90, 1982. Academic Press, New York.

H. Krasner, B. Curtis, and N. Iscoe. Communication
breakdowns and boundary spanning activities on large
programming projects. In G.M. Olson, S. Sheppard,
and E. Soloway, editors, Empirical Studies of Program-
mers (Second Workshop), pages 47-64. Ablex Publish-
ing Corporation, 1987.

M. Mantei. The effect of programming team structures
on programming tasks. Comm. ACM, 24(3):106-113,
March 1981.

P. Marks. What is leonardo? Technical Report STP-
141-86, MCC Software Technology Program, April
1986.

H.D. Mills. Chief programmer teams: Principles and
procedures. IBM Report FSC 71-5108, IBM Fed. Syst.
Div., Gaithersburg, MD, 1971.

P. Naur, B. Randell, and J.N. Buxton, editors. Soft-
ware Engineering: Concepts and Techniques. Petro-
celli/Charter, New York, NY, 1976. Proceedings,
NATO Science Committee Conferences, Garmisch, W.
Germany, October 7-11, 1968 and Rome, Italy, Octo-
ber 27-31, 1969.

J.C. Naylor and T.L. Dickinson. Task structure, work
structure, and team performance. J. of Applied Psy-
chology, 53(3, Part 1):167-177, June 1969.

W. Scacchi. Gist: An operational knowledge specifi-
cation language. Research report, USC/Information
Sciences Institute, Marina Del Rey, CA, April 1986.
Draft.

W. Scacchi. The system factory approach to soft-
ware engineering education. In R. Fairley and P. Free-
man, editors, Issues in Software Engineering Educa-
tion, New-York, 1989. Springer-Verlag.

R.F. Scott and D.B. Simmons. Predicting program-
ming group productivity—a communications model. In
Proc. First National Conf. on Software Engineering,
pages 4446, Washington, DC, USA, September 11-12
1975.

R.W. Selby, V.R. Basili, and F.T. Baker. Cleanroom
software development: An empirical evaluation. IEEFE
Trans. Software Eng., SE-13(9):1027-1037, September
1987.

270

(38]

(39]

(40]

41]

(42]

[43]

[44]

M.E. Shaw. Group Dynamics: The Psychology of
Small Group Behavior (Third Edition). McGraw-Hill,
New York, NY, USA, 1981.

L.D. Steiner. Group Process and Productivity. Aca-
demic Press, New York, NY, USA, 1972.

A. Strauss. Work and the division of labor. The Soci-
ological Quarterly, 26(1):1-19, 1985.

R.C. Tausworthe. The work breakdown structure in
software project management. In L.H. Putnam, editor,
Tutorial on Software Cost Estimating and Life-Cycle
Control: Getting the Software Numbers, pages 210~
215. IEEE Computer Society Press, 1980.

G.M. Weinberg. The Psychology of Computer Pro-
gramming. Van Nostrand Reinhold, New York, 1971.

T. Winograd. A language/action perspective on
the design of cooperative work. In Proc. Conf. on
Computer-Supported Cooperative Work, pages 203—
220, Austin, TX, USA, 1986. December 3-5.

T. Winograd and F. Flores. Understanding Computers
and Cognition: A New Foundation for Design. Ablex
Publishing Corporation, Norwood, NJ, 1986.

