IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2. NO. 3, SEPTEMBER 1990

283

A Knowledge-Based Environment for Modeling and
Simulating Software Engineering Processes

PEIWEI MI anp WALT SCACCHI, MEMBER, IEEE

Abstract—We describe the design and representation schemes used
in constructing a prototype computational envir t for modeling
and simulating multiagent software engineering processes. We refer to
this environment as the Articulator. We provide an overview of the
Articulator’s architecture which identifies five principal components.
Three of these components, the knowledge meta-model, the software
process behavior simulator, and a knowledge base querying mecha-
nism, are detailed and examples are included. The conclusion reiter-
ates what is novel to this approach in applying knowledge engineering
techniques to the problems of understanding the statics and dynamics
of complex software engineering processes.

Index Terms—Agents, artificial intelligence, deductive query, dis-
tributed probem solving, meta-model of software processes, modeling
of software processes, process programming, process simulation.

I. INTRODUCTION

ODELING the process of software engineering rep-

resents a promising approach toward understanding
and supporting the development of large-scale software
systems. The software process is the collection of related
activities, seen as a coherent process subject to reason-
ing, involved in the production of a software system [26].
A software process model is a prescriptive representation
of software development activities in terms of their order
of execution and resource management. A software pro-
cess meta-model is a representation formalism which pro-
vides necessary components to create various types of
software process models [26].

A meta-model of the software process should possess
the capability to include major properties of contemporary
software development practice. Recent evaluations on
software process models [4], [20] suggest that effective
software process models should address organizational
and technical dimensions including 1) detailed descrip-
tions of software processes, products and settings; 2) their
interactions; 3) management and exception handling dur-
ing the performance of software processes; and 4) prod-
uct-specific, organization-specific, and project-specific
processes. We present a meta-model which uses a knowl-
edge representation language to specify all these aspects

Manuscript received November 30, 1989. This work was supported in
part by contracts and grants from AT&T. Bellcore, Pacific Bell, and the
Office of Naval Technology through the Naval Ocean Systems Center. No
endorsement implied.

The authors are with the Computer Science Department, University of
Southern California, Los Angeles, CA 90089.

1EEE Log Number 9036986.

and further provides mechanisms to investigate the inter-
actions among these dimensions.

An automated modeling environment for software de-
velopment should be powerful enough to support model
validation and verification. By simulating a specified soft-
ware process, the environment and its users can collec-
tively detect faults, inconsistencies, or anomalous behav-
ior in a process prescription. Emerging conflicts in time
schedule and resource allocation, for example, are some
common anomalies in multiagent process plans [6]. Com-
plex faults, on the other hand, may concern the configu-
ration of task decomposition and organizational settings
as well. The environment should also assist in determin-
ing possible solutions for contingencies encountered in
task execution. These solutions are based on particular
resource and knowledge configurations, hence they should
be setting-specific, project-specific, agent-specific, and
time-specific. As such, by simulating task execution, this
enables a user to predict development progress on a more
realistic basis and compare different process models. We
describe the design of such an environment which utilizes
our software process meta-model.

In the next section, we provide some background to our
approach. In Section III, we present the system architec-
ture of the Articulator and discuss important issues cov-
ered in the design and use of the Articulator. Following
this, we will discuss some of the subsystems in turn: Sec-
tion IV discusses the knowledge base, which stores our
meta-model of software processes, Section V gives ac-
counts for the simulation of the Articulator meta-model,
and Section VI presents the query mechanism. We then
conclude with a summary of novel contributions of the
Articulator project.

II. BACKGROUND

As we noted earlier, there has been growing interest
focused on the problem of modeling, analyzing, and au-
tomating various aspects of software engineering pro-
cesses [22]. Wileden [26] suggested a modeling frame-
work based upon use of a software process meta-model.
Osterweil followed with a paradigmatic approach which
casts the software process meta-model into what he called
a process programming language—a language for pro-
gramming prescriptive process models into a software de-
velopment environment [19].

Since then, much research effort has been directed to
the design and implementation of languages for software

1041-4347/90/0900-0283$01.00 © 1990 IEEE

284

process automation, and to the construction of more re-
alistic models. For example, many researchers have in-
troduced process language constructs including rules and
pattern matching [16], behavioral patterns [27], graphic
finite-state machines [15], and agent-task-product rela-
tions [8]. But none provides a direct means for querying
the status or state of a modeled software process. Others
including [14] and [20] use knowledge representation lan-
guages and deductive planning mechanisms for software
process modeling. But overall, these efforts lead to closed,
single agent (i.e., globally controlled) systems. Further-
more, with the exception of [15] and [8], most efforts do
not explicitly reference or use empirical sources for their
software process models.

Modeling and simulating complex organizational pro-
cesses performed by people requires an empirically based,
multiagent open systems framework [11], [13]. For in-
stance, [5] and [2] are examples of recent empirical stud-
ies aimed at providing more realistic descriptions of mul-
tiagent software processes. But their modeling efforts have
not been cast in the form of a language or computational
environment.

We seek to resolve these shortcomings in modeling and
automating (i.e., simulating) software processes. This al-
lows us to identify what is new about our work presented
here. Our approach uses a software process meta-model
derived from an established approach for empirical stud-
ies of computing work in organizational settings. In ad-
dition, it allows us to model multiagent software pro-
cesses in an open systems manner, meaning that process
conflicts can arise that must be resolved locally (i.e.,
through agent-agent interactions), rather than through au-
tomated global control. The environment supports the
simulation of these multiagent process models. The meta-
model, individual process models, and process simulation
traces can each be queried both directly and deductively.
In the sections that follow, we will describe each.

III. THE ARCHITECTURE AND USERS OF THE
ARTICULATOR

The Articulator is a knowledge-based environment for
studying software processes. It provides a meta-model of
software processes, an object-based language to specify
models of software processes, and an automated simula-
tion mechanism. The system architecture of the Articu-
lator consists of five subsystems (Fig. 1): the knowledge
base, the behavioral simulator, the query mechanism, the
instantiation manager, and the knowledge acquisition
manager. The Articulator has been prototyped over a two-
year period using the KnowledgeCraft™ (KC) knowledge
engineering environment on a TI-Explorerll™ [3].

The knowledge base implements the Articulator meta-
model by an object-based approach. The meta-model con-
sists of the web of resources and situations, which is a
model of software development, the representation of

“agent’s task performance skills. The Software Process
Specification Language (SPSL) is a user interface en-
abling users to define customized software process models

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2, NO. 3, SEPTEMBER 1990

based on the meta-model. The knowledge base is defined
within an object-based knowledge cluster. Section 1V pro-
vides more details of the Articulator knowledge schema.

The instantiation manager manages the relationships
between the meta-model, the customized software process
models, and their instances. It maintains all these rela-
tionships according to creation time and lines of inherit-
ance, as well as retrieving the correct instance when re-
quested. In contrast to conventional database systems,
there is no explicit boundary among the meta-model, the
software process model, and their instances. All of them
can be manipulated and modified as an associated instance
to the old one whenever needed.

The behavioral simulator controls the simulation of a
given software process model and creates a process
trajectory' over a development period. In this regard, be-
havioral simulation is a symbolic execution of a software
process model described in SPSL notation. Mechanisms
to perform software process activities are implemented
within the behavioral simulator. In terms of the represen-
tation of software processes, there are three types existing
in the Articulator: the prescriptive process model before
execution, the simulated trajectory of the prescription, and
the descriptive recorded development history. Each of
them serves a different purpose in the Articulator, but
bears the same form of representation. Section V provides
a more detailed view of the behavioral simulator.

The query mechanism supports logical rules for various
types of deductive queries. It helps users access infor-
mation in the Articulator efficiently. The information
sources are the knowledge base, i.e., the meta-model, the
software process models, and their instances. Using ob-
ject inheritance techniques and backward-inference mech-
anisms, the query mechanism reasons about information
and knowledge to determine answers to several types of
questions. See Section VI for a description of the query
mechanism.

The knowledge acquisition manager is an interface for
the Articulator to get a software process model and as-
sociated data. The knowledge acquisition manager takes
a structured description of agents, tasks, and resources as
inputs, then translates it into a configured software pro-
cess model. It also assesses the information gathered from
software development projects controlled by the Articu-
lator and stores them for later use. An automated knowl-
edge acquisition manager for interactive capturing of
model refinements and real-time software process data has
not been implemented yet, but simple mechanisms for
model and data input are currently in use.

Users of the Articulator fall into three categories: pro-
cess researchers, project managers, and software devel-
opers. Software process researchers study software pro-
cess models in order to identify ones that are highly
efficient, satisfy different performance requirements, or
reveal subtle software process dynamics requiring further

'A process trajectory is a sequence of snapshots of software develop-
ment over a period of time.

MI AND SCACCHI: KNOWLEDGE-BASED ENVIRONMENT FOR SOFTWARE ENGINEERING PROCESSES

285

PROJECT MANAGERS, SOFTWARE PROCESS EXPERTS

/

T~

FBBAVI ORAL SIMULAT

QUERY MECEANISM

KNOWLEDGE ACQUISITION

™~

| INSTANIATION MANAGER l

[’THE ARTICULATOR META-MODEL

KNOWLEDGE BASE

1
L}
)
)
1
1
1
1
)
1
1
1
)
1
1
!
'
1
. S.P. MODEL 1 S.P. MODEL 2 S.P. MODEL M
1
1
| ¢ l l
1
! INSTANCE 1 INSTANCE 1 INSTANCE 1
1
: { ! I
|
i
: INSTANCE 2 INSTANCE 2 INSTANCE 2 }
! |
: : |
H : : : !
b Y Y V :
'
! |
: INSTANCE N INSTANCE N INSTANCE N 1
! |
! |
|

AN ADVANCED CASE ENVIRONMENT

SOFTWARE DEVELOPERS
Fig. 1. The system architecture of the Articulator.

study. These users define various types of software pro-
cess models, test them by simulation, compare the simu-
lation results to observed development histories, and re-
fine them according to certain criteria. This is an iterative,
incremental process; it continues until an acceptable
model of software processes is achieved which fits in a
particular infrastructure. These users may potentially
modify the meta-model as well when it is necessary to
incorporate new features into it.

Software project managers select or configure an exist-
ing software process model which suits their project needs
and essentially provides guidance (a plan) for how to carry
it out successfully. Managers use the Articulator to get
access to a software process model, instantiate it accord-
ing to their local project situations, simulate and refine it
in order to create a plan for development, and realize it
in their own organizational settings. When they encounter
unexpected problems during a planned development proj-
ect, they can consult the Articulator to find plausible so-
lutions and to evolve the model based on the solution.

This is similar to the suggested use of the Callisto system
used in computer manufacturing processes [20].
Software developers use the Articulator through a CASE
environment [22]. In this way, the Articulator helps to
coordinate their development activities according to a pre-
scriptive model, and serves as both an active agenda
mechanism and an information exchange center. At the
same time, all the development activities are recorded into
a history of development and can be fed back to managers
in order to monitor development progress. This history
will then be used by software process reseachers as an
empirical source of observation on the practical character
of the software process model in use. It can also be used
in validating the model or in making modifications to it.

IV. THE ARTICULATOR META-MODEL

This section presents the Articulator meta-model stored
in the knowledge base. It is an object-based representa-
tion of a software development infrastructure that consists

286

of the web of resources and situations and the agent’s task
performance skills.

A. The Web of Resources and Situations

The web of resources and situations describes an in-
frastructure of developers, organizations, tasks, and other
resources, through which software systems are engi-
neered. It is intended to provide an articulate view of the
many aspects of software engineering processes within a
single formalism. The theoretical scheme underlying the
Articulator meta-model is the web model of computing
introduced by Kling and Scacchi [17]. This web model
replies upon empirical studies to make explicit a variety
of connections between computing technologies, arti-
facts, activities, together with their embedding social sit-
uations and organizational infrastructure. It also focuses
equal attention to how people and their computing sys-
tems interact, cooperate, compete, and conflict with each
other in the course of their work.

In computational form, the web consists of clusters of
attributed objects and relations linking them, together with
various processing mechanisms. Each of the objects is de-
fined as a model of a type of the components in the soft-
ware process and represented as a schematic class. These
objects are further divided into several subclasses. A sub-
class is divided repeatedly until an empirically observable
level of detail is reached. Furthermore, every schematic
class has a set of attributes specifying its own properties,
a set of relations linking to other classes, and may have
many instances to inherit its defined properties and rela-
tions with their defined values. Several high level classes
in the web of resources and situations are shown in Fig.
2. We briefly discuss its main components and their re-
lationships here.’

The top level abstraction of the Articulator meta-model
consists of three major objects: resources, agents, and
tasks. They are linked together through two relations:
agents perform tasks and tasks use resources. This ab-
straction captures our fundamental understanding of soft-
ware development processes, and in a larger sense, com-
plex organizational activities.

A resource, as a model of general objects and products,
portrays the general properties of organizational objects
and is the root of the Articulator meta-model in terms of
the IS-A relation. Accordingly, resources are objects used
in tasks by agents. In the Articulator meta-model, tasks
consume and produce resources, which alter the values of
resource attributes. These attributes include, among oth-
ers, name, current status, functional description, loca-
tion, ownership, and usage in tasks and by agents.

An agent represents a collection of behaviors and as-
sociated attributes. An agent’s behavior emerges during
the performance of tasks (including communications, ac-

*The current implementation of the web represents more than 500 object
classes and nearly 2000 relations. Most object classes include ten or so
attributes. In addition, there are over 200 rules and procedures which sup-
port behavioral simulation and query processing.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2, NO. 3. SEPTEMBER 1990

commodation, and negotiation) given the agent’s set of
skills, available resources, affiliated agents, and organi-
zational constraints or incentives—that is, given the
agent’s circumstantial situation. We use agents as a gen-
eral model of developers, development teams, and orga-
nizations.

An agent’s ability to perform tasks is defined by its
working load, its agenda, its selected work style, and its
working tasks together with its behavior controller (its
‘‘self”’). An agent may also have skill, experience, and
knowledge of task performance. In order to perform a
task, an agent must possess the necessary resources and
rights of information access. Living in an organizational
infrastructure, an agent may have affiliations with other
organizations and play different roles in different organi-
zational situations [8], [17]. Besides these, agents have a
knowledge representation which specifies their potential
behaviors, and this behavior can also be dynamically sim-
ulated. These aspects will be discussed later.

There are several types of agents in the Articulator
meta-model. Individual agents are single entities, such as
a single developer or a single machine. Collective agents,
such as reams and organizations, have infrastructures de-
fined for a group of agents to work together, thereby en-
larging their efforts. In a collective agent, individual
agents work cooperatively or competitively to achieve
their collective and individual goals. However, collective
agents can also be in conflict over how to achieve their
goals, as well as over which goals are worth achieving in
what order.

A task models organizational work and development
processes. Tasks represent situations for work and pro-
cesses in terms of a network of actions (i.e., operators)
that agents perform which manipulate the web of re-
sources and situations. A task, defined as a structural hi-
erarchy, is used to represent both a semi-formal plan of
the actual task before it is carried out (a prescription) and
the actual execution trajectory of the task after it has been
done (a description). Both of these include a hierarchy of
task decomposition and a nonlinear performance se-
quence. Wg model two types of organizational work: pri-
mary tasks and articulation tasks [1], which distinguish
development-oriented tasks from coordination-oriented
tasks. The hierarchy of task decomposition may inciude
multilevel nested decomposition, iteration, and multiple
selection. Levels of specification depend on user require-
ments and can be modified as requested. At the bottom
level of this hierarchy are actions. Actions are basic pro-
cessing units within the processing mechanism. Further-
more, an action links to a procedural specification, such
as a LISP function or a forward-chaining mechanism,
which propagates updates through the current state (or in-
stance) of the web of resources and situations.

Interesting properties of a task include: assigned and
authorized performers; task hierarchy and execution or-
dering; schedule; duration, deadline, start time and finish
time; and resources planned to be consumed or produced
by the task.

MI AND SCACCHI: KNOWLEDGE-BASED ENVIRONMENT FOR SOFTWARE ENGINEERING PROCESSES

287

INDIVIDUAL AGENT —— PEOPLE
— AGENT
ORGANIZATION
|~ BUDGET COLLECTIVE AGENT TEAM
— SETTING L. WORK GROUP
RESOURCE —
INDIVIDUAL PRIMARY TASK
— ROLE
— PRIMARY TASK
- DocuMENT| COLLECTIVE PRIMARY TASK
— TASK —
.
|— SOFTWARE
ACCOMMODATION (INDIVIDUAL)
'— HARDWARE| _ ,pyiCULATION TASK

NEGOTIATION (COLLECTIVE)

Fig. 2. Part of the web of resegrces and situations along the IS-A relation.

The Articulator meta-model is an open system [13]. It
has the following special characteristics.

e The boundary of the meta-model and its interface
with the outside world is determinable, though not nec-
essarily static. The meta-model, besides manipulating its
own resources, communicates with the outside world.
Such communication of the Articulator meta-model with
the outside world is made possible through acquiring or
providing resources.

o All the resources in the web have their own life cycle.
Every instance of a resource is either created by some
task, or introduced by the outside world, persists for a
period of time, and then is consumed by other tasks or
exported to the outside.

® An agent’s power to manipulate the web of resources
and situations is limited and configurable. This manipu-
lation power includes possession or control of resources,
rights of information access, and rights of task perfor-
mance. This power can be restricted to some constraint
over a period of time. On the other hand, this power may
be reconfigured at any time by authorized agents. In this
way, centralized control, distributed control, or some-
thing in between, can be modeled in the Articulator meta-
model. Also, differences in relative power among inter-
acting agents can give rise to conflicts in task perfor-
mance. These conflicts can thus alter the task situation
from focus on performance to resolution of conflict.

¢ The web of resources and situations is a densely in-
terrelated infrastructure. By definition, any entity in the
web is associated with many other objects through rela-
tions. With this kind of infrastructure, execution of a task
can cause many implicit side effects besides its intended
behavior. For example, in a development task, a manager
agent may assign a task to a developer agent without al-
locating the necessary resources for task completion. This
will not cause any problem in task assignment, but will

surely delay the task execution since the developer agent
will have to spend time to find the resources required for
task execution. The consequence and implication of side
effects are of interest because they resemble real situa-
tions in many ways.

Establishing a model of a software development pro-
cess is made possible by using the Articulator meta-model.
Different types of software process models can be de-
fined. For example, a software production-process model,
such as the Waterfall model [8], [15], [19], [27] or the
Automation model [8] can be specified by the Articulator
as a hierarchy of software development activities and their
suggested prescriptive execution sequence. A software
production-setting model can be viewed as a mixed task
representation of primary tasks and articulation tasks. As
an example to be used later, we define a simple working
team here. A development team, called Team-A, belongs
to company F and has three members: Mary, Joe, and
Peter. The team is responsible for the task of designing
the FOO system, which consists of two component tasks:
architecture design and detail design. This small example
essentially shows a setting, a development team, and a
task assigned to the team. Fig. 3 gives a specification of
the example in SPSL, while other details, such as re-
source specification, detailed process prescription will be
provided later.

B. Model of Agent’s Task Performance Skill

An agent’s behavior during the software process is the
way it performs tasks, given its plans and emerging cir-
cumstances. In other words, it is the trajectory of task
execution that constitutes the agent’s behavior. The be-
havioral specification is a knowledge representation of
task performance skill [24]. An agent’s task performance
skill is represented according to a three-level paradigm,
where each level is a space specifying a particular type of

288

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2. NO. 3. SEPTEMBER 1990

;i Company-F is an organization in the model.
(define-object Company-F
(is-a ORGANIZATION))

;; Team-A is a team in Company-F and has two members, Mary and Joe.
(define-object Team-A
(is-a TEAM)
(t belong-to-org

n

ion Company-F))

(define-object Mary
(is-a PEOPLE) LEGEND:
(individual-in-collective-agent Team-A) Lower-case words: Reserved key terms.
(task-exccution-strategy Finish-one-FIFS) UPPER-CASE words: Reserved object types.
(accommodation-strategy Switching)) Upper-case starting word: Defined objects.

(define-object Joe
(is-a PEOPLE)
(individual-in-collective-agent Team-A)
(task-execution-strategy Finish-one-FIFS)
(accommodation-strategy Waiting))

;; Task Design-FOO has two subtasks and is assigned to Mary and Joe.
(define-object Design-FOO
(is-a TASK-CHAIN)
(task-force-assigned-to-agent Joe Mary)
(production-task-has-component Architecture-design Detail-design))

;i Subtask Architecture-design is assigned to Mary
(define-object Architecture-design
(is-a TASK-CHAIN)
(task-force-assigned-to-agent Mary))

;; Subtask Detail-design is assigned to Mary and Joe
(define-object Detail-design
(is-a TASK-CHAIN)
(task-force-assigned-to-agent Mary Joe)
(task-force-has-predecessors Architecture-design))

Fig. 3. An SPSL specification of Team-A. Five classes of objects are de-
fined in terms of their associated attributes. Other details are omitted for

simplicity. The task specification performed by this team is given in Fig.
7.

knowledge and operators to manipulate it. This three-level
paradigm is similar in concept with other multilevel prob-
lem-solving architectures, such as those in [10] and [25].

The domain space stores information and knowledge of
an application domain. This is an agent’s personalized
domain knowledge and is generally a subset image of the
web. It is limited by the agent’s manipulation power, i.e.,
its possession of resources, its information access, and its
rights of task performance. Operators in the domain space
are actions that a designated agent can perform within the
application domain.

The task space stores operational knowledge of the ma-
nipulation and reasoning of domain information and
knowledge, i.e., the specification of tasks. In other words,
operators in the domain space are also objects in the task
space. They are associated and configured to create mean-
ingful tasks. Other objects in the task space are entities
used for the evolution of these tasks. Operators in the task
space are meta-actions that manipulate tasks in the do-
main space. Also, meta-tasks (e.g., how to organize, staff,
and plan primary tasks) in the task space are combinations
of meta-actions.

The strategy space stores strategic knowledge which
directs tasks of organizational work and task perfor-
mance, such as control structures. Objects in the strategy
space, just as in the tasks space, are meta-tasks defined in
the task space and other associated entities. Operators in

the strategy space are super-meta-actions,’ which manip-
ulate meta-tasks in order to determine their control struc-
tures.

In this representation, when an operator is applied to a
state* of its space, it creates a new state. The application
of an operator is a step in the application of a task which
consists of a set of ordered operators. In terms of the three
spaces, task execution is a reasoning process for how to
apply an operational specification (an object in the task
space), which is a task in the domain space, on (the state
of) the domain space to infer to a new state through con-
tinuous application of operators according to specified
plans. Meta-reasoning is a process of applying a strategic
specification (an object in the strategy space) on a state of
the task space to infer to a new state through continuous
application of operators according to the strategic speci-
fication. Two types of task performance skill are mod-
eled: individual task performance and collective task per-
formance.

Individual task performance models the agent’s ability
to perform tasks individually. It is conceptualized as a
combination of reasoning and meta-reasoning processes

3Super as in superclass, class, subclass hierarchies.

4A state refers to a snapshot of interrelated object-attribute values in the
web. Thus, a new state represents updates of object-attribute values or
relations in the current state.

MI AND SCACCHI: KNOWLEDGE-BASED ENVIRONMENT FOR SOFTWARE ENGINEERING PROCESSES 289

in all three spaces. When a problem is presented, the agent
first chooses a strategy to deal with it. Meta-reasoning is
then performed to create a meta-task for the problem,
which in turn can be used to produce a copying action on
a problem-solving method, i.e., a task in the task space.
Next, the task is performed in the domain space to pro-
duce a resolution. When a solution or a task for a problem
is known and available, reasoning is the only process is-
sued to create the solution.

Collective task performance skill refers to an agent’s
ability to work with other agents through interactions to
get things done jointly. This collective intelligence, based
on individual task performance, supports three basic kinds
of interaction: communication, synchronization, and ar-
ticulation. Communication among agents is a way to ex-
change information. In communication, agents exchange
their knowledge about the web of resources and situations
by sending and receiving messages. Through message ex-
change, they can transfer their manipulation power. They
can also integrate individual efforts by combining ex-
changed individual products together. Synchronization
among agents arranges schedules for a group of agents to
come together in order to perform collective tasks. For a
collective task, all its performers have to be present for
them to be executed. On the other hand, these agents are
normally executing their own individual tasks while some
of them may initialize collective tasks at any moment.
Synchronization arranges schedules for collective tasks
and is responsible for the followup actions when this fails.
Articulation, at last, handles unexpected events which stop
normal task performance. Articulation is the way to am-
plify individual skill and intelligence in a workplace [1],
[111, [13], [18], [24] and is discussed in [18].

V. BEHAVIORAL SIMULATION

With the specification of a software development pro-
cess model and a set of agents, behavioral simulation is
defined as the agent’s symbolic execution of task speci-
fication using available resources over a period of time.
The trajectory of this symbolic execution is recorded as
the predicted development history of the process and the
behavior of the agents is exhibited through their simulated
task performance.

The behavioral simulation generally begins with a set
of agents with their behavioral specification defined ac-
cording to their current task performance knowledge and
skill. These agents are given a set of tasks as their assign-
ment. A set of resources is also provided along with the
tasks. Some of these resources will be consumed during
the task performance. Others will only be used and re-
turned (i.e., reusable resources). All these objects are
specified within a single state as the initial instance of a
process model as the starting position. A state is used to
model the trajectory at a different instance in time. Each
state is created by actions, and actions are linked as tasks.
Fig. 4 suggests a description of this behavior simulation.
In the picture, TimeN and-TimeN~+ 1 are states and lines
represent actions. Actions use some resources which are

represented as circles. Overlapped circles indicate re-
source requirement conflicts, which can be resolved either
through synchronization or articulation [18].

There are several requirements to be observed during
the behavioral simulation.

1) The task assignments are stable, if not otherwise ex-
plicitly changed. This is to say that all agents must finish
their assigned tasks before the simulation is done, unless
situations emerge which prevent or delay their comple-
tion.

2) At any time instance, an agent cannot perform two
actions simultaneously. But, an agent may perform sev-
eral tasks concurrently during a period.

3) At any time instance, an agent cannot work on more
tasks than its available supply of resources allow.

4) The preconditions associated with an action must be
satisfied before it can be executed. These preconditions
include resource requirements, partial ordering of execu-
tion, and execution authorization.

The behavioral simulation starts from the initial state
and simulates the agents’ activities performing their as-
signed tasks. Simulation of task performance is accom-
plished by execution of the task specification in top-down
fashion. The higher levels of a task hierarchy provide in-
formation about work assignment and resource allocation.
The lower levels of the task hierarchy provide links to
procedural definitions which are executable in order to
create new states. At each simulation step, symbolic ex-
ecution is done by first propagating necessary information
from high levels to lower ones, checking preconditions of
an action, and then invoking the associated procedural def-
inition to propagate changes. All the changes from differ-
ent agents are then combined to form a new state of the
software process model. Two things condition the new
state and the task execution. First, each agent selects the
executing action out of its own choice. The selected ac-
tion is among its current work assignments. The choice
can be influenced but not determined by outsiders. Sec-
ond, there are probably conflicts in resource requirements
and the changes which need to be solved through articu-
lation [18]. Part of the symbolic execution of an action is
shown in Fig. 5 where the rule gets an agent and its
agenda, finds its current action, and starts to execute the
action symbolically.

The final result of the behavioral simulation is a trajec-
tory over a period of time, in which every action of the
tasks is performed once by a subset of the agents ata time
instant. These trajectories can be made persistent and
evolvable. Such trajectories can be subsequently studied
according to different criteria in order to analyze infor-
mation about task performance, such as the agents’ be-
havior during execution, their productivity, resource uti-
lization, alternative ‘‘what-if”’ scenarios, and other
interesting properties. However, the task execution is not
guaranteed to finish successfully. Problems may rise due
to unexpected events that need to be articulated. Articu-
lation of task performance also affects the above criteria
and their consequences can be tracked as well [18].

Based on the Articulator meta-model, many types of

290

Action Al

Time N

Time N+1

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2, NO. 3, SEPTEMBER 1990

Action Al+M

Time N+2 Time N+M

Fig. 4. The behavioral simulation of agents.

;; run the current action. The rule selects the agent, its agenda, and
;; its current action as the conditions. It then starts ezecution

(p Run-action :context t
(INDIVIDUAL-AGENT
“instance <> ()

“schema-name <agent>

“controller-goal Controller-action-checked

“agent-has-agenda <agenda>
)
(AGENDA
“instance <> ()
“schema-name <agenda>
“current-glot <c-slot>
“time-slot-allocation <slots>
)
(ACTION
“instance <> ()
“schema-name <action>

“schema-name (select-current-action <> <slots> <c-slot>)

)

-->

(format t ‘‘Start to execute action "A"&’’ $<action>)
(new-value $<agent> ’controller-parameteri (current-p-1 $<slots> $<c-slot>))
(new-value $<agent> ’controller-goal ’run-action))

Fig. 5. An SPSL rule for an individual-agent action.

of Agents | # of Tasks | # of Actions | Agent-Task | Agent-Action | Communication
One One Many 1-1 1-1 None
One Many Many 1-N 1-1 Inter-task Scheduling for One Agent
Many Many Many 1-N 1-1 No Communication among the Agents
Many One Many M-1 1-1 Synchronous Combination of Results
Many One Many M-1 M-1 Synchronization of Performance
Many Many Many M-N M-1 All the Above

Fig. 6. Types of task performance by agents.

agents and tasks can be assigned to a software develop-
ment process. This means that behavioral simulation can
be divided into several types according to the number of
involved agents, tasks, and the communication patterns
between the agents shown in Fig. 6.

Let us consider our earlier example of Team-A (Fig. 3)
again. The example is input into the Articulator and then
simulated by the behavior simulator. In the example, there
are two agents performing task ‘‘Design FOO.’’ The task
specification and work assignment are shown in Fig. 7.
The resource requirements of Design-FOO are also given,

but we can only show a single requirement here as in Fig.
8. In addition, Mary has another task, and thus sends a
message to Peter, another member in company F, for as-
sistance.

Due to space limits, we only present a summary report
in Fig. 9 of the simulation here, which is obtained from
the trajectory history and provides condensed information
about the simulation. Then we discuss the types of be-
havior demonstrated in this example.

This behavioral simulation involves multiple agents
performing a single task that requires the combination of

MI AND SCACCHI: KNOWLEDGE-BASED ENVIRONMENT FOR SOFTWARE ENGINEERING PROCESSES

291

DESIGN SOFTWARE

LEGEND

————— TASK HAS FOLLOWER

--------- > TASK HAS COMPONENT

ACTIONS:

A1: Establish system structure A2:
A3: Establish subsystem interface A4:
A5: Document architecture design A6:
A7: Design module structure A8:
A9: Detail subsystem interface A10:

A11: Define algorithm

Decompose system

Inform Joe about the task
Validate architecture design
Develop data representation
Design system interface

A12: Validate detail design

Fig. 7. Task decomposition of design-FOO. The unshaded actions (indi-

cated by circles) are assigned to Mary and the shaded actions are as-

signed to Joe.

;; System-data-structure-spec is a resource manipulated in Design-FOO.
;3 It is created by Developing-data-representation, and used in
;; Detining-algorithm and Desisning—lyltem—intorface.
(define-object System-data-structure-spec
(is-a DOCUMENT)
(:esource—requi:ed-by-tuk-cha.in
Defining-algorithm Designing-system-interface)
(xesource-provided-by-task-chain
Developing-data-representation)
(resource-being-used-in-task-chain
Defining-algorithm Designing-system-interface))

Fig. 8. A resource specification by SPSL.

each agent’s task results. Initially, it has three agents and
two tasks. However, our example focuses on one which
is performed by two agents in combination. During the
performance, a task-action ordering emerges. When either
of two actions can be executed at the same time, an agent
selects one randomly.

The agents communicate twice in the simulation. At
time 3, Mary sends a work assignment to Joe, who reads
the message at time 5 and begins to perform the task at
time 7. Mary sends a file to Peter at time 9, who reads it
at time 12.

Lack of resources occurs twice, and both are resolved
through accommodation. At time 7, when Joe tries to start

his task execution, the Valid-document-spec, 2
document created by action Validating-arc hi-
tecture-design, does not exist at the moment. Since
Joe chooses a waiting strategy to accommodate (Fig. 3),
he simply waits for the resource. Fortunately, the re-
source becomes available at time 8, so he continues. At
time 8, Mary encounters the same problem. She prefers
to switch to another task as her accommodation strategy,
so she selects to perform another task: Send- file-to-
peter and resume the original task at time 10, when the
resource is available.

The task execution completes in 11 time steps by two
agents. In total, there are 22 time steps from two agents
of which 12 are used to perform the task, 1 for Send-
file-to-peter, 1 for waiting, and 1 for switching.
The other time steps (‘‘slack time’’) could be utilized for
other task performance if needed.

VI. THE QUERY MECHANISM
The query mechanism accepts user queries to retrieve
information from the Articulator meta-model, the soft-
ware process models, and their instances.
The query functions are built in bottom-up fashion. A

292 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 2, NO. 3. SEPTEMBER 1990
TIME | MARY JOE PETER
1 |1DLE IDLE IDLE
2 | ESTABLISH-SYSTEM-STRUCTURE IDLE IDLE
3 | INFORM-JOE IDLE IDLE
4 | ESTABLISE-SUBSYSTEM-INTERFACE | IDLE IDLE
5 | DECOMPOSE-SYSTEM READ-MAIL IDLE
6 | DOCUMENT-ARCHITECTURE-DESIGN | IDLE IDLE
7 | VALIDATE-ARCHITECTURE-DESIGN | ACCOMMODATE (WAIT) IDLE
8 | ACCOMMODATE (SWITCH) DESIGN-MODULE-STRUCTURE | IDLE
9 | SEND-FILE-TO-PETER DEVELOP-DATA-STRUCTURE IDLE
10 | DESIGN-SYSTEM-INTERFACE DETAIL-SUBSYSTEM-INTERFACE | IDLE
11 |DLE DEFINE-ALGORITHM IDLE
12 |IDLE VALIDATE-DETAIL-DESIGN READ-MAIL
13 |IDLE IDLE IDLE

Fig. 9. Summary of simulation result.

;i Definition of meta-knowledge schema in SPSL
(define-object Meta-knowledge

(is-a SCHEMA)

(definition)

(methods-and-procedures)

(reason-or-explanation)

(unit)

(literature-available))

;; Definition of meta knowledge for RESOURCE
(define-object Meta-resource
(is-a META-KNOWLEDGE)

with definitions for ezplanation.

(definition “RESOURCE is the basic entity in KB. It provides basic
descriptions about entities in the meta-model. Every object
must be a class of RESOURCE or an instance of RESOURCE.”)

(methods-and-procedures “A resource can be
(reason-or-explanation NA)

(unit NA)

(literature-available “mi”))

created, used, and consumed”)

(attach-meta-schema 'RESOURCE 'Meta-resource)

;s Meta-knowledge query - WHAT question:
((a-WHAT ?ENTITY ?DEFINITION) ;
(:-RELATED ?ENTITY IS-A RESOURCE)

(BIND ?DEFINITION (GET-VALUE (GET-

((q-WHAT ?ENTITY ?DEFINITION) ;

META-SCHEMA 7ENTITY) 'DEFINITION)) 1)

(= ?DEFINITION "There is no such an entity in KB") ! fail)

i; Ezample of use of WHAT question: what is Company-F?

(a-WHAT Company-F ?DEFINITION)

“Company-F is a software vendor. It develops software on SUN systems.
Currently it has three members: Mary, Joe and Peter.”

Fig. 10. Meta-knowledge in SPSL and its queries.

set of atomic functions, implemented as forward-chaining
rules, are used to get very basic information about attri-
butes and relations. They are atomic because they only
retrieve attributes, relations, and their values. Higher level
functions involve the knowledge representation and pro-
vide information about the representation. Users are en-
couraged to develop their own queries using the facilities
we provide. The main concern in the query mechanism is
to provide a set of functionally-complete basic facilities.

There are four types of queries supported in the query
mechanism: meta-knowledge queries, information quer-
ies, history queries, and what-if queries.

A meta-knowledge query provides the definition of an

entity and its related terminology in the Articulator. It is
based on the information given when an object is defined,
which is stored as meta-knowledge. An example defini-
tion of meta-knowledge appears in Fig. 10. This function
is intended to help new users to understand the Articulator
meta-model. Users can also provide their own meta-
knowledge for models they defined, in order to help guide
other users’ interactions with a given model. A meta-
knowledge query is in form of q-WHAT. For example,
Fig. 10 also lists a meta-knowledge query about company
F and the question is shown in the figure.

An information query provides information about either
a state of a software process model or the model itself. It

MI AND SCACCHI: KNOWLEDGE-BASED ENVIRONMENT FOR SOFTWARE ENGINEERING PROCESSES

;i IS question: Is Mary in the meta-model?
(q-is Mary)
true

293

;; RELATION question: How are Mary and Joe related?

(¢-RELATION Mary Joe)

Mary individual-in-collective-agent Comp

h 4

F 1 t
y-F collective-ag

;; It means Mary and Joe are both in Company-F

;; FOLLOWER question: What are the followers of Develop-data-representation?
(q-follower Develop-data-representation ?what)
?what = (Design-system-interface Define-algorithm Validating-detail-design)

Fig. 11. Examples of information query.

is generally concerned with resource values and configu-
rations. Typical questions answered include ‘‘Is Peter a
member of Team-A at time 17,”’ *“What are the relations
linking Peter and Mary now?,”” etc. An information query
has several basic functions for this kind of deductive re-
trieval. For example, q-is checks the existence of an
entity in the status, and q-re Lation finds the relations
which link two given entities. Through the use of an in-
formation query, every value and every relation within a
state can be retrieved without difficulty.

More complicated queries have been implemented as
examples of query building using these basic functions.
For example, q-fol lower and q-predecessor are
used to find follower actions and predecessor actions of a
given action along relation task-force-has-fol-
Lower . These two queries are useful for users to check
the configuration of the tasks they perform. They are im-
plemented by the g-relation query using task-
force-has~fol Lower as the given relation. Another
example is to get all component modules of a given soft-
ware project, implemented as q-soft-configura-
t i on. Many such queries with specific requirements can
be built in the same manner. In Fig. 11, we provide some
information queries about our simple model of company
F.

A history query traverses a trajectory of states created
in a simulation, collects a record of changes on specified
entities, then summarizes them to give clear and con-
densed information about these changes. Typical infor-
mation provided in history queries includes the activities
performed by the agents in the simulation period and the
resources consumed or produced by agents. Other specific
queries may ask about the consequence of a particular ac-
tion, a value change, or an inserted relation.

Implementation of the history query is based on infor-
mation queries and the instantiation manager. The former
provides facilities to retrieve information within a state,
while the latter gives the capability to traverse within the
state trajectory. Also a history query has a facility to sum
up gathered information. The simulation result presented
in Fig. 9 comes from a history query.

A what-if query includes a combination of simulation

and history queries. It starts from a given state, or a mod-
ification of a state in the middle of a sequence trajectory,
and calls the behavior simulator to simulate the given up-
dated scenario. When the simulation is done, a history

query is activated to gather required information. What-if
queries are designed to facilitate testing of the hypothesis
scenario and handling of unexpected events.

VII. CONCLUSION

Within the Articulator project, we propose some novel
contributions to the study of software engineering pro-
cesses using a knowledge engineering environment. We
create a tractable open-system model of software pro-
cesses and resource infrastructures that are articulated by
agents working in development settings. We explore re-
lationships among the components, such as software pro-
cesses, development resources, and developers, within the
model and their impact on the software development
products, processes, and workplace settings under study.
We also provide formalisms to represent task performance
skill. We present a meta-model of software processes
which is suitable for describing software process models.
All these contributions are further enhanced through the
simulation of the dynamics of software process models as
a basis for querying the state of values in the represented
model, the simulated trajectory, and the recorded process
history. As the Articulator becomes more complete, we
hope to provide a framework to further assist the inter-
active empirical study of large scale software develop-
ment projects.

REFERENCES

[1] S. Bendifallah and W. Scacchi, ‘‘Understanding software mainte-
nance work,”’ IEEE Trans. Software Eng., vol. 13, no. 3, pp. 311-
323, Mar. 1987.

[2] —, ““Work structures and shifts: An empirical analysis of cooper-
ative work in software specification,’” in Proc. 11th Int. Conf. Soft-
ware Eng., Pittsburgh, PA, May 1989, pp. 260-270.

[3] Carnegie Group Inc., KnowledgeCraft™ User’s Guide, Vol. 1, Vol.
2, and Vol. 3, 1986.

[4] B. Curtis, H. Krasner, V. Shen, and N. Iscoe, ““On building software
process models under the lamppost,”” in Proc. 9th Int. Conf. Software
Eng., 1987, pp. 96-103.

[5] B. Curtis, H. Krasner, and N. Iscoe, ‘‘A field study of the software

design process for large systems,”” Commun. ACM, vol. 31, no. 11,

pp. 1268-1287, 1988.

E. H. Durfee, V. R. Lesser, and D. D. Corkill, **Cooperation through

communication in a distributed problem solving network,”’ in Dis-

tributed Artificial Intelligence, M. N. Huhns, Ed. Los Altos, CA:

Morgan Kaufmann, 1987, pp. 29-58.

J.1. Elam, D. B. Walz, H. Krasner, and B. Curtis, ‘*A methodology

for studying software design teams: An investigation of conflict be-

havior in the requirements definition phase,”” in Empirical Studies of

Programmers (Second Workshop), G. M. Olson, S. Sheppard, and E.

Soloway, Eds. Ablex, 1987, pp. 83-99.

16}

[7

—

294

[8] P. K. Garg and W. Scacchi, “‘ISHYS: Designing an intelligent soft-
ware hypertext system,’’ IEEE Expert, vol. 4, no. 3, pp. 52-63, 1989.

[9] L. Gasser, *‘The integration of computing and routine work,”” ACM
Trans. Office Inform. Syst., vol. 4, no. 3, pp. 205-225, July 1986.

{10] M. Genesereth, ‘‘An overview of meta-level architecture,”’ in Proc.
AAAI-83, Washington, DC, 1983.

[11] E. M. Gerson and S. L. Star, ‘‘Analyzing due process in the work-
place,”” ACM Trans. Office Inform. Syst., vol. 4, no. 3, pp. 257-270,
July 1986.

[12] R. Guindon, H. Krasner, and B. Curtis, ‘‘Breakdowns and processes
during the early activities of software design by professionals,’” in
Empirical Studies of Programmers (Second Workshop), G. M. Olson,
S. Sheppard, and E. Soloway, Eds. New Haven, CT: Ablex, 1987,
pp. 65-82.

[13] C. Hewitt, ‘‘Offices are open systems,”” ACM Trans. Office Inform.
Syst., vol. 4, no. 3, pp. 271-287, July 1986.

[14] K. E. Huff and V. R. Lesser, ‘‘A plan-based intelligent assistant that
supports the software development process,”” ACM Software Eng.
Notes, vol. 13, no. 5, pp. 97-106, Nov. 1988.

[15] W. S. Humphrey and M. I. Kellner, ‘‘Software process modeling:
Principles of entity process models,”” in Proc. 11th Int. Conf. Sofi-
ware Eng., Pittsburgh, PA, May 1989, pp. 331-342.

[16] G. Kaiser, P. Feiler, and S. Popovich, ‘‘Intelligent assistance for
software development and maintenance,’” IEEE Software, vol. 5, no.
3, 1988.

[17] R. Kling and W. Scacchi, ‘‘The web of computing: Computer tech-
nology as social organization,”” Advances Comput., vol. 21, pp. 3-91,
1982.

[18] P. Mi and W. Scacchi, ‘‘Negotiation: A collective problem-solving
approach,’” Working Paper, SF-89-03, Comput. Sci. Dep., U.S.C.,
Los Angeles, CA, June 1989.

[19] L. Osterweil, ‘‘Software processes are software too,"” in Proc. 9th
Int. Conf. Software Eng., 1987, pp. 2-13.

[20] A. Sathi, M. S. Fox, and M. Greenberg, ‘‘Representation of activity
knowledge for project management,’’ IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. PAMI-7, pp. 531-552, 1985.

[21] W. Scacchi, ‘‘Managing software engineering projects: A social anal-
ysis,”” IEEE Trans. Software Eng., vol. 10, no. 1, pp. 49-59, Jan.
1984.

[22] —, **The USC System Factory Project,” in Proc. Software Symp.
'88, (Keynote Address), Software Engineers Association, Tokyo, Ja-
pan, June 1988, pp. 9-41.

[23] —, ““Models of software evolution: Life cycle and process,”” Tech.
Rep. CM-10-87, Software Engineering Institute, Carnegie-Mellon
Univ., Pittsburgh, PA, 1987.

[24] A. Strauss, ‘‘The articulation of project work: An organizational pro-
cess,”” Sociological Quarterly, vol. 29, no. 2, pp. 163-178, 1988.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 2, NO. 3, SEPTEMBER 1990

[25] M. Stefik, ‘‘Planning and meta-planning (MOLGEN: Part 2),"” Ar-
tificial Intell., vol. 16, no. 2, pp. 141-169, May 1981.

[26] J. C. Wileden, ‘‘This is IT: A meta-model of the software process,’’
ACM SIGSOFT Software Eng. Notes, vol. 11, no. 4, pp. 9-11, Aug.
1986.

[27] L. G. Williams, Software process modeling: A behavioral ap-
proach,”’ in Proc. 10th Int. Conf. Software Eng., 1988, pp. 174-200.

Peiwei Mi received the B.S. and M.S. degrees in
computer science from the University of Science
and Technology of China, in 1982 and 1984, re-
spectively.

He is a Ph.D. student in the Computer Science
Department, University of Southern California,
Los Angeles. His research interests include
knowledge-based systems supporting the software
process, organization analysis of system devel-
opment projects, and distributed problem solving.

Mr. Mi is a student member of the IEEE Com-
puter Society.

Walt Scacchi (S’77-M’80) received the B.A. de-
gree in mathematics, the B.S. degree in computer
science in 1974 from California State University,
Fullerton, and the Ph.D. degree in information and
computer science from the University of Califor-
nia, Irvine, in 1981.

Since then, he has been on the faculty in the
Computer Science Department, University of
Southern California, Los Angeles. Since 1981, he
created and directs the System Factory Project at
USC, the only software factory research project
in a U.S. university. His research interests include very large scale soft-
ware engineering, knowledge-based systems supporting the software pro-
cess, and organizational analysis of system development projects. He is an
active researcher with more than 70 research publications, and numerous
consulting and visiting scientist positions with firms including AT&T Bell
Laboratories, Microelectronics and Computer Technology Corporation
(MCC), the Software Engineering Institute at Carnegie Mellon University,
and SUN Microsystems.

Dr. Scacchi is a member of the Association for Computing Machinery,
AAALI, and the Society for the History of Technology (SHOT).

