66

Extracting and
Restructuring the
Design of Large
Systems

This approach to
reverse engineering
first maps the
resource exchange
among modules, then
derives a hierarchical
design description
using a system-
restructuring
algorithm.

Song C. Choi and Walt Scacchi, University of Southern California

everse engineering involves first

generating a design description

from an implementation descrip-
tion and then a specification description
from the design description. It requires
that you abstract four properties of a sys-
tem:

e Structural: A system’s structural prop-
erties are described by the resources ex-
changed among modules and subsystems
through interconnected interfaces.

e Functional: A system'’s functional
properties are described by the semantics
of the exchanged resources. For example,
for operational resources (those that per-
form an operation), you abstract precon-
didon and postcondition assertions. For
nonoperational resources (those that
store a value), you abstract a type defini-
tion.

* Dynamic: A system’s dynamic proper-
ties are described by the procedural algo-
rithms that transform imported resources

0740-7459/90/0100/0066/$01.00 © 1990 IEEE

into exported resources. Dynamic prop-
erties are intramodular.

* Behavioral: A system’s behavioral
properties are described by the behavior
of its objects (modules) in terms of the
relations among objects, their attributes,
and the actions thatmanipulate them. Be-
havioral properties are mainly inter-
modular.

The focus of this article is on extracting
the structural and, to a lesser degree,
functional and dynamic properties of
large systems — systems composed of
modules and subsystems. This process is
equivalent to reverse-engineering a sys-
tem-level design description.

The medium for our design description
is a module interconnection language,
NuMIL, which is described briefly in the
box on p. 68. Once an initial design de-
scription is generated, our system-restruc-
turing algorithm constructs a hierarchy of
the system’s modules and subsystems.'

IEEE Software

Design description

In system design, you specify the archi-
tectural structure and the procedural al-
gorithms that manipulate exchanged ob-
jects (resources). A design specification is
a network of operational modules that
progressively transform required objects
into resources provided.

Module interconnection languages are

well-suited to describe such intercon- |

nected networks of module interfaces. An
MIL provides formal constructs for speci-
fying the various module interconnec-
tions necessary to assemble a complete
system. You can describe the procedural
algorithms in many ways, using either a
program-design language or a functional
specification language.

To generate a design description from
an implementation description, you must
analyze the source code written in an im-
plementation language and generate its
corresponding design description in an
MIL. In NuMIL, you must generate the
operational resources’ precondition and
postcondition assertions and restructure
the configuration of modules into a hier-
archy of subsystems and modules.

To do this, you must identify six character-
istics of the system: its modules, the re-
sources exchanged among modules, its
modules’ structural properties, its sub-
systems, its modules’ dynamic properties,
and its modules’ functional properties. This
article describes the first four steps, and
Choi describes the other steps elsewhere.?

Module identification. There are two
ways to recognize a module, which can be
a single function (a term we use inter-
changeably with “procedure”) or a collec-
tion of functions. One way is to consider
each source-code file as a module. An-
other way is to perform a one-to-one trans-
formation of a function in the source lan-
guage to a module in NuMIL.

In the first method, we assume that the

January 1990

functions in a file are semantically related
and form a cohesive logical module.? Be-
cause it is usually true that programmers
group related functions into a file, al-
though with varying degrees of functional
cohesion,? it is reasonable to consider
each file to be a module. Also, most com-
pilers use the file as the compilation unit,
and other tools such as editors, debug-
gers, and preprocessors and post
processors use the file as their [/O me-
dium. Finally, when you choose to
consider every source file as a module,

To generate a design
description from an
implementation
description, you must
analyze the source code
written in an
implementation language
and generate its
corresponding design
description in an MIL.

you can readily query for other informa-
tion, including its owner, latest author, lat-
est revision, access conditions, file-path di-
rectory, and network file server, all of
which can provide useful configuration-
management information.*> We chose to
use this method.

The second way to recognize a module
uses a one-to-one transformation. How-
ever, this results in modules that consist of
a single function, with fixed (high) cohe-
sion. This may result in an unnecessarily
complex and misleading system design
structure.

Resource exchange. Resources ex-
changed among modules include data

types, procedures, and variables.

It is easy to identify variables and data
types because they are declared either lo-
cally or globally. It is also easy to identify
functions and procedures because their
syntactic declarations are recognizable.

However, in languages such as C you
must also analyze preprocessor exten-
sions (include files, definitions and re-
placements, and conditional-compilation
commands) and data-type conversions to
determine what resources can be ex-
changed between communicating mod-
ules.

Structural properties. To identify the
modules’ structural properties, you use
static analysis to divide the exchanged re-
sources into those that are provided and
those that are required. For example, if a
module uses a function call, it requires
the called function.

You can examine the syntax of ex-
changed parameters to determine if a
variable provides or requires a value. Also,
you can determine required and pro-
vided resources in used variables and de-
clared data types by examining their syn-
tax.

Subsystem identification. In NuMIL, a
system is composed of subsystems, and a
subsystem is composed of other sub-
systems or modules. Therefore, a system is
a hierarchy of subsystems and modules,
where subsystems correspond to interior
nodes and modules correspond to leaf
nodes in the hierarchy.

Because implementation descriptions
are flat (they give no explicit construction
of modules and subsystems), it is not obvi-
ous how to construct a system hierarchy.
As we describe later, we have developed
an algorithm to do this structuring.

Dynamic properties. To identify the
modules’ dynamic properties, you con-

67

Specifying design with NuMIL

Recently, module interconnection languages have been used to
support configuration management,1 reusable-component composi-
tion,2 and incremental system construction and veriﬁcaﬁon,3 in ways
independent of the source-code language.

Amodule interconnection language describes a system as a collec-
tion of families of several quasi-autonomous modules and sub-
systems, where each subsystem is an aggregation of one or more
modules or subsystems. In turn, families represent the set of module
or subsystem versions that conform to a specified interface.

Each module provides a set of resources — entities such as data
types, functions, procedures, and variables — that can be declared in
the hostlanguage. Therefore, each module has a set of resources that
other modules may use, and in tum it may require a set of resources
that is provided by other modules.

The exchange of these resources leads to interdependencies
among the modules. It is common practice to isolate resource ex-
change to a well-defined interface: an imaginary port through which
the resources are exchanged.

NuMIL' views the dependencies between modules as having a
functional and structural character that can be verified through static
analysis. In NuMIL, the resources’ functional properties are divided
into two classes: operational and nonoperational. Operational re-
sources perform an operation, such as a procedure, function, or sub-
routine, and their functional properties are specified with preconditions
and postcondition assertions. Nonoperational resources, such as data
types or variables, do not perform a particular operation but instead
store values, and their functional properties are defined with type defi-
nitions.

You can specify functional properties many ways, such as with log-
ical predicates or some other formal specification technique.

Figure A shows an example NuMIL module template with its
structural properties (operational properties are not shown) and its
corresponding C source code. This example uses the logical predi-
cates to specify the functional properties.1

A subsystem family is similar to a module family. Each subsystem
family has a specification to be satisfied by all of its members, and each
member of the subsystem family is essentially a composition of mod-
ules or other subsystems.

References

1 K. Narayanaswamy and W. Scacchi, “Maintaining Configurations of
Evolving Software Systems,” IEEE Trans. Software Eng., March 1987,
pp. 324-334.

2. G.E. Kaiser and D. Garlan, “Melding Software Systems from Reusable
Building Blocks,” IEEE Software, July 1987, pp. 17-24.

3. D.E. Perry, “Software Interconnection Models,” Proc. Ninth Int! Conf.
Software Eng., CS Press, Los Alamitos, Calif., 1987, pp. 61-69.

subsystem parser is
provides parse_tree, ...;
configurations
parser1 = {lexer, ...}
end parser

module lex is
provide lexer, token, token_str, flag;
require input_char, state;
implementation version { ldeg :

realization
“fusr/castor3/Song/Files/imp.lex.c”,
owner
"sfmaster (System Factory Project)”,
system
"pollux.usc.edu (128.125.1.16)",
revision date
" 12/08/1988 16:35:26 PST"
}
end
(a)
#include "Ideg.var"
lexer(ch, token, token_str, found)
int ch;
char *token, *token_str;

int *found;

{ int space,letter,digit;
int long_op = (0);
char literal="";
int number;
char *charp;
extern int lex_state;
int index;

{ ¥found = false;
switch (lex_state) {

}
(b)

Figure A. (a) Template specification for a NuMIL module and
(b) its source code.

vert the procedural algorithm written in
an implementation language into a lan-
guage that specifies procedural algo-
rithms — a program-design language, for
example. This translation from one lan-
guage into a more abstract language
should be straightforward, since many
program-design languages use general-

68

ized constructs found in common lan-
guages.

Functional properites. To identify the
modules’ functional properties, you must
find the assertions that characterize the
resources. For operational resources, you
must identify the precondition and

postcondition assertions; for nonopera-
tional resources, you must identify the
static assertion of a type, for example.

It is easier to identify the nonopera-
tional resources’ assertions because they
involve only static semantics. It is much
harder to find preconditions and post-
condition assertions because this involves

IEEE Software

abstracting the dynamic semantics of an
operational resource. To do this, you must
analyze and understand how the imple-
mentation description of the operational
resource is manipulating input. There is
no easy solution to this problem for large
systems.”

Subsystems’ structural
properties

Because an implementation descrip-
tion typically does not give an explicit
structure for modules and subsystems, we
need an algorithm that can construct a hi-
erarchical structure from an implementa-
tion description. Deriving such an algo-
rithm first requires an understanding of
how to map resource exchange among
modules.

Mapping. A resource-flow diagram
shows the relationships among modules
in terms of the resources they exchange.
Given source code, you can derive the re-
source flow automatically by analyzing the
functions, procedure calls, and data items
that are input to a module. Alex Wolfand
colleagues have designed an RFD using
directed graphs: If module A provides one
or more resources to module B, there isan
arc from Ato BS

Our representation of an RFD is an un-
directed graph because in our scheme it is
sufficient to know that resources are ex-
changed; you need not know the direc-
tion of the exchange. For example, in the
RFD in Figure 1a, module 5 exchanges re-
sources with modules 2, 4, and 6.

A resource-structure diagram shows the
control relationship between modules
and a control module, commonly called a
subsystem: You configure a set of modules
so they are controlled by a subsystem. A
system consists of subsystems and mod-
ules, and a subsystem consists of other sub-
systems or modules. An RSD represents a
system’s architectural design.’ Figure 1b
shows an example RSD for the modules in
Figure la.

To generate a design description, you
use our algorithm to map from an RFD to
an RSD, a process we call system restructur-
ing.

The term “restructuring” has been used
to refer to the imposition of a clear con-
trol structure within source-code mod-

January 1990

(b)

Figure 1. (a) An example resource-flow diagram and (b) resource-structure diagram.

“M” stands for module; “S” for subsystem.

ules. For example, you restructure old,
unreadable code to bring it into compli-
ance with structured-programming con-
cepts. Or you restructure a specific con-
struct, such as aloop, soitis more efficient
and better understood. To us, the current
understanding of restructuring is as an in-
tramodule process: restructuring-in-the-
small.

But our use of the term is quite differ-
ent. Our restructuring process changes
the relationship between modules from a
resource-exchange relationship to a hier-
archical relationship. Because it occurs at
the module and system level, our restruc-
turing is an intermodule process: restruc-
turing-in-the-large.

Definitions. There are many ways to
map an RFD to an RSD. A simple RSD is
flat, with all system modules belonging to
one subsystem. But any number of mod-
ules can be controlled by a subsystem, so
there are an arbitrary number of choices
of RSDs. We need some criteria to assign
modules to subsystem. We based our re-
structuring criteria on minimizing mod-
ule coupling® and minimizing alteration
distance.

To explain these concepts, we must first
define some terms:

® A subsystem’s control visibility is all the
modules attached to it (which are con-
trolled by it). The control visibility of sub-
system Sis the set of modules attached to
S.

® A subsystem’s alteration visibility is all
the modules attached to it that are af-
fected by an alteration to a module. The
alteration visibility of subsystem Sis the set
of modules affected by an alteration to a
module attached to S.

* Amodule and a subsystem are coupled.
Coupling is a measure of the strength of
association established by a connection
between modules.’ Strong coupling com-
plicates the system because a module is
harder to understand and modify when it
is strongly related to other modules. Sys-
tems designed with weak coupling are less
complex because they minimize the paths
along which changes and errors can be
propagated into other parts of the system.
W.P. Stevens and colleagues have identi-
fied seven types of coupling,® the most de-
sirable being no direct coupling between
modules. We define module coupling as
the number of modules under the same
control visibility. Furthermore, we define
the coupling of a system or subsystem as
the sum of all the couplings in the system
or subsystem.

It is desirable to minimize coupling in a
system. You can do this by reducing the
fan-out factor of a subsystem by requiring
the number of modules attached to a sub-
system (its control visibility) be kept low.

® The alteration distance between mod-
ules is a measure of the distance between
an altered module and the affected mod-
ule. The alteration distance is zero if one
subsystem controls both the altered and
affected module. Otherwise, the distance
is the length of the path between the al-
tered and affected module. The alter-
ation distance of a system or subsystem is
the sum of the alteration distances of all
the modules of a system or subsystem.

In an RSD, it is desirable that the control
visibility and the alteration visibility be the
same — the alteration distance should be
zero. This means that we want module al-
terations to be as local as possible. It fol-
lows from this that the higher the control

69

Endif

Endfor

if V' isnot empty then

endif
Endfor
Endfor

Endif

/* Agraph G, which consists of nodes and edges, will be divided into
/* subgraphs. The mechanism for breaking the graph into subgraphs is
/* finding the biconnected components of the graph. The articulation points
/* are the connecting nodes between the components. If there are no
/* articulation points, the graph cannot be divided into subgraphs.
step 1: Find the articulation points A(j) of the Graph G.
If there is no articulation point then
itis done and make each node of the graph
a component of the subsystem.

step 2: Find the biconnected components of the Graph G.
step 3: Divide the Graph G into subgraphs G(i) with
1 <= i <= number of biconnected components.

/* Each articulation point is member of at least 2 different
/* subgraphs. Remove all articulation points from the subgraphs.
step 4: For all articulation points A(j) do
remove A(j) from from G(i) thereby building G’ (i) = V,E),
an induced graph of G(i).

/* Build a subsystem S for each articulation pointand

/* the articulation point becomes a component of the subsystem S.

/* We also create as many subsystems as there are subgraphs with that

/* articulation point and these subsystems are attached to S.

step 5: For all articulation points A(j) do
create a subsystem S and make A(j) acomponent of the subsystem S.
For each G(i) that contains A(j) do

create a subsystem S’ and attach it to the subsystem S.
attach vertices in V' that are adjacent to A(j) to S’
build an induced graph G” (i) by removing

the adjacent vertices of A(j) from G’(i).
assign G” (i) to Gand goto step 1.

/* Make sure that there is no subsystem with a single node.
step 6: If a subsystem consists of one node then
Merge the node with a higher level subsystem.

Figure 2. System-restructuring algorithm.

wvisibility, the better the alteration’s local-
ization.

An extreme case iswhen all modules are
controlled by one subsystem. The two
visibilities are then clearly the same. How-
ever, this structure contradicts the mini-
mum-coupling objective. Therefore, if we
want to accomodate both objectives, we
cannot set the control visibility equal to
the alteration visibility. In other words, we
want to minimize the alteration distance by
keeping all the affected modules that are
not part of the control visibility of the al-
tered module as close as possible.

Algorithm. Our restructuring algorithm
accommodates both the minimum-cou-
pling and minimum-alteration-distance
objectives.

Figure 2 shows our algorithm. We begin

70

with a graph in which each module is a
node and each path for resource ex-
change between modules is an edge. The
initial system is an undirected graph,
which we assume is connected. In other
words, if some modules are not exchang-
ing resources then they are neither part of
nor useful to the systemn.

The first two steps of the algorithm
apply a biconnectivity algorithm, which
divides the into subgraphs connected only
by articulation points, the nodes, which
are found in the second step. These two
steps are detailed elsewhere;’ the remain-
ing steps are unique to our approach.

Steps 3 through 6 illustrate the analysis
done on one edge of an RFD to map it to
an RSD. Figure 3 shows an RFD (a line
indicates a resource exchange between
modules). Figure 4 shows three

Figure 3. A resource-flow diagram of
modules.

structured diagrams: Figure 4a shows re-
structuring based on maximum control
visibility (minimum alteration distance);
Figure 4b illustrates minimum coupling;
Figure 4c shows the structure diagram
after we applied the restructuring algo-
rithm.

Performance

The performance of our algorithm
makes it clearly practical. It requires linear
time in the number of edges in the RFD
graph to find the biconnected compo-
nentsand articulation points.” Because the
maximum number of articulation pointsis
O(n), steps 4 and 5 require a similar num-
ber of operations. Step 5 is iterated by the
number of articulation points times the
number of biconnected components. Be-
cause both numbers are O(n) in worst
cases, the iteration is an O(n?) algorithm.
Finally, because the number of edges is al-
ways less than 7, the performance is pro-
portional to O(7?) in each iteration.

Previously, we identified modules by
considering each source-code file to be a
module. However, you may prefer to con-
struct an RFD with individual functons.
In this case, youwould cluster a collection
of functions as a module. To determine
what should be in this cluster, you apply
the algorithm to the RFD associated with
individual source-code functions rather
than modules: functions in each sub-
system in step 5 subtracted by all the func-
tions in the induced graphs G*(é). Such a
restructuring of functions into logical
modules and subsystems might then sug-
gest a basis for modifying the source-code
files to be consistent with the implicit sys-
tem design.

IEEE Software

nce you have extracted a system’s

structural properties into NuMIL,

you can visualize its configura-
tion.® You can also use the NuMIL pro-
cessing enviroment3 to manage the con-
figuration of multiversion systems. You
can also perform incremental analysis of
modifications represented as generated
NuMIL descriptions to minimize recom-
pilation and retesting.! Other tools in our
software-engineering environment let
you apply integrity checks to determine
inconsistencies, incompleteness, or in-
traceability,]> thus supporting the evolu-
tion of large software systems in both for-
ward and reverse directions.

By using our approach to extractand re-
structure system designs, you can apply
advanced software-engineering tools and
techniques to large systems that pre-
viously were difficult to understand and
modify. R4

References

1. S.C. Choi and W. Scacchi, “Assuring Cor-
rectness of Configured Software Descrip-
tions,” ACM Software-Eng. Notes, Nov. 1989,
pp. 65-75.

2. S.C. Choi, Softman: An Environment
Supporting the Engineering and Reverse Engi-
neering of Large Software Systems, PhD disser-
tation, Univ. of Southern California, Los
Angeles, 1989.

3. W.P. Stevens, G.J. Myers, and L.L. Constan-
tine, “Structured Design,” IBM Systems J.,
Jan. 1974, pp. 115-139.

4, K. Narayanaswamy and W. Scacchi, “A
Database Foundation to Support Software
System Evolution,” J. Systems and Software,
Jan. 1987, pp. 3748.

5. P. Garg and W. Scacchi, “A Software
Hypertext Environment for Configured
Software Descriptions,” Proc. Int1 Workshop
Software Version and Configuration Control,
Tuebner, Stuttgart, West Germany, 1988,
pp. 326-343.

. A. Wolf, L. Clarke, and J. Wileden, “A
Model of Visibility Control,” IEEE Trans.
Software Eng., April 1988, pp. 512-520.

7. A. Aho,]. Hopcraft, and J. Ullman, The De-
sign and Analysis of Computer Algorithms, Ad-
dison-Wesley, Reading, Mass., 1974, pp.
179-187.

(=)

January 1990

(b)

Figure 4. A resource-structure diagram based on (a) maximum control; (b) minimum
coupling; and (€) using our restructuring algorithm.

Song C. Choi is a research associate in com-
puter science at the University of Southern Cal-
ifornia. His research interests are forward and
reverse software engineering and language-di-
rected editing environments.

Choi received a Diplom Physiken from the
University of Karlsruhe and an MS and PhD in
computer science from the University of South-
ern California.

Walt Scacchi is a research associate in com-
puter science at the University of Southern Cal-
ifornia. His research interests are large-scale
software engineering, software factories, and
social analysis of computing.

Scacchi received a PhD in computer science
from the University of California at Irvine. He
is a member of the IEEE Computer Society,
ACM, AAAI, CPSR, and the Society for the His-
tory of Technology.

Address questions about this article to the authors at Computer Science Dept., University of
Southern California, Los Angeles, CA 90089-7424; Internet scacchi@pollux.usc.edu

71

