A Knowledge-based Software Process Library for Process-driven
Software Development

Peiwei Mit, Ming-June Leel and Walt Scacchit*

Computer Science Departmentt and Decision Systems Departmenti
University of Southern California
Los Angeles, CA 90089
{pmi,milee,scacchi}@pollux.usc.edu

Abstract

Process-driven software development represents a
new technique for software production, in which a con-
ceptual knowledge representation. called a software
process, 1s used to represent and guide development
activities. Management and reuse of software pro-
cesses therefore becomes a requirement for process-
driven software development. In this paper, we present
a knowledge-based process library (SPLib) that sup-
poris the organization, access and reuse of software
processes. SPLib consists of a knowledge base of soft-
ware process representations. It also provides a set
of process operations that support browsing, searching,
composition and abstraction. These operations rea-
son about the content of software processes as well as
maintain proper interdependency relationships among
the software processes. To demonstrate the use of
SPLib in process-driven software development, we pro-
vide a usage scenario where SPLib facilitates the ac-
cess and reuse of software processes.

1 Introduction

Process-driven software development represents a
new technique for software production in which a con-
ceptual knowledge representation, called a software
process, is used to represent and guide development
activities [MS92, Ost87). During process-driven soft-
ware development, process engineers first specify a
software process that is tailored for project goals and
other resource constraints, and then enact the pro-
cess as a guide for developers. Software developers

*This work has been supported in part by contracts and
grants from AT&T Bell Laboratories, Hewlett-Packard, and
Northrop B-2 Division. No endorsement implied.

0-8186-2880-4/92 $03.00 © 1992 IEEE

generally follow the process for the roles they play as
to what development activities to perform and when
to perform them. A process-driven CASE environ-
ment is also required to integrate process represen-
tation, data management, and tool invocation. Re-
cent progress in software process modeling and pro-
cess integration has made process-driven software de-
velopment a very promising, yet realistic engineer-
ing technique for the software engineering commu-
nity [HK89, Kai88, MS90, MS91].

When knowledge-based process representations are
utilized, management and reuse of the classes and in-
stances of the representations becomes a necessity. To
this end, a knowledge-based process library provides
a solution the problem of process management and
reuse. A knowledge-based process library is able to
maintain a large collection of software process descrip-
tions and interdependencies among them, just like the
use of knowledge-based component libraries to soft-
ware reuse. Based on a software process description,
the process library can support query and retrieval to
make access of software process easier and more con-
venient. More important and unique to process reuse,
the process representation forms a foundation for ad-
vanced operations that generate new software pro-
cesses out of existing ones. In sum, such a knowledge-
based process library enhances the accessibility and
reusability of existing process knowledge.

In this paper, we present a knowledge-based ap-
proach to organize, access and reuse software pro-
cesses. We describe the initial design and prototype
implementation for a knowledge-based software pro-
cess library called SPLib. SPLib supports an ex-
tended version of the Articulator meta-model of soft-
ware processes [MS90] and provides knowledge-based
operations to access and reuse of software processes.
As such, we first discuss two types of related work

that lead to the SPLib: one that relates a knowledge-
based approach to our study of software process reuse;
the other that describes how software process model-
ing provides formalisms to describe and reason about
software processes. Next, we provide a scenario for
the process library in process-driven software devel-
opment. Based on this scenario, we identify and spec-
ify requirements for SPLib. Then, we describe the
initial implementation of SPLib which consists of a
process representation and process operations respec-
tively. After this, we revisit the usage scenario to see
how SPLib could be used. Finally, we conclude with a
brief discussion of our ongoing work and future plans.

2 Related Work

Reuse of software components is an area where the
ideas for component libraries and knowledge-based
techniques are being investigated. One approach to
software reuse is to construct and use source code li-
braries for software. For example, a standard software
distribution package, such as X-windows, normally in-
cludes a large number of reusable functions and a li-
brary directory. This kind of function library con-
sists of a list of the functions, textual description of
their functionality, and a calling convention to invoke
them. In this case, locating and determining which
functions to use relies upon directory information and
keyword /string search which is often cumbersome and
problematic.

Knowledge-based techniques are being investi-
gated for more sophisticated support mechanisms.
Bauhaus [AL89] is a knowledge-based software parts
composition system shell. It has a knowledge base
of reusable software component description, a cata-
log for browsing and editing the knowledge base, a
composition editor for component specification, and a
code generator for composed or tailored components.
LaSSIE [DBe90] is a knowledge-based software infor-
mation system. It has a frame-based knowledge rep-
resentation for software objects and relations, and it
provides functions to query and browse software ob-
jects. Software Components Catalogue [WS88] is an-
other knowledge-based system for software reuse. It
is an integrated component classification and retrieval
system. It utilizes a conceptual dependency database
describing software components and their relations,
then matches users requests for software components
with descriptions of components which satisfy these
requests. Finally, it provides a natural language in-
terface to specify user requests. In sum, the core of
these knowledge-based software reuse systems includes

123

a knowledge representation of software components,
and a reasoning mechanism to search and match user
requests for software components. The advantages of
using a knowledge-base approach include: aggregation
of information about individual components, seman-
tic retrieval, use of classification and inheritance to
support updates, and use of a knowledge base as an
index.

The success of the knowledge-based approach to
software reuse naturally leads to its use in software
process reuse. However, reuse of software processes
is different from reuse of software source code compo-
nents. Software processes are typically more complex
and related to more classes of development entities,
such as developers in different engineering roles, mul-
tiple tools, multiple tasks, schedules, organizational
policies and procedures, etc. Software processes are
therefore require a rich and formal knowledge repre-
sentation.

Modeling of software processes is a new research
area that has emerged in recent years. Software pro-
cess modeling originally started with informal and nar-
rative descriptions, such as natural language, which is
aimed at recording experiential knowledge about de-
velopment processes. Frailey and Bate [FBe91] de-
scribe Texas Instruments’ effort to define a corporate-
wide software process for the last three years, which is
documented by English following DOD or IEEE doc-
umentation standards. Ramesh and Dhar [RD91] de-
scribe an effort to record process knowledge through a
semi-formal representation. The weakness of an infor-
mal or semi-formal representation lies in its inability
to reason about process details, be symbolically exe-
cuted, or downloaded into process-driven software en-
gineering environments [MS92]. Therefore, informal
process descriptions are limited to serve primarily as
recording media, which often fall out of date.

A growing number of knowledge representations for
software processes are now being investigated. For ex-
ample, Grapple [HL88] uses a set of goal operators
and a planning mechanism to represent software pro-
cesses. These are used to demonstrated goal-directed
reasoning about software processes. Marvel [Kai88]
uses inference rules to model software processes. The
condition part of a process rule identifies precondi-
tions for a process to start and the action part of a
process rule then describes the effect of the process
and its outcome. The Articulator [MS90] describes
software processes in terms of object classes and re-
lations, such as task decomposition hierarchies. The
defined process classes and relations form formal mod-
els of software processes, organizations, and resources,

which are used to store process knowledge and simu-
late process enactment. The results of these efforts
provide formalisms that describe basic characteristics
of software process components, which in turn can be
used to specify a formal representation of process com-
ponents.

Subsequently, reuse of software processes requires
not only knowledge-based retrieval, but also more ad-
vanced operations that can compose and tailor soft-
ware processes to meet user requests. We now turn
to discuss a scenario for using a process library where
these operations are needed. ’

3 A Usage Scenario: A Customized

Software Process

To illustrate the use of SPLib in process-driven soft-
ware development, we provide a usage scenario based
on our experiences in modeling large-scale software
processes for our industrial sponsors.

A major aerospace contractor is awarded a contract
to build an aircraft and its flight control software. Be-
fore starting the software development, the contractor
decides to specify a formal process model which de-
scribes development of the flight control software.

Development of the flight control system is con-
strained by several factors: First, it has to follow sev-
eral national standards as indicated by the original
contract-awarding agency. Second, the company has
its own policies and procedures for how to do certain
types of development. Third, the development has
to address technological challenges that are unique to
this flight control software. For the first two types of
constraints, formal process descriptions at either the
national level or the organizational level can be cre-
ated that characterize the required development pro-
cesses. Unfortunately, no pre-existing process models
can meet the unique features. The task, therefore, is
to construct a process model with following character-
istics:

e it describes the production of the flight control

software;

e it complies with the necessary national and orga-
nizational development standards;

e it specifies innovative approaches to implement
the unique features.

SPLib should help the construction of the process
model as follows: First, SPLib can represent and
store development standards, methodologies, and the

124

contractor’s organizational policies in form of process
descriptions. Second, knowledge-based search func-
tions can be used to retrieve needed process descrip-
tion upon user requests. Third and more important,
knowledge-based operations can be used to compose
and tailor the involved processes to construct a desired
process model.

This usage scenario suggests the ways SPLib en-
hances the organization, accessibility and reusability
of software processes. This can lead to high quality
software processes for process-driven software develop-
ment. Later, we will revisit the scenario to investigate
how SPLib supports its construction tasks in terms of
software processes and process operations. As such,
we now use the scenario to identify requirements that
the SPLib should satisfy.

4 Requirements for SPLib

As seen in the previous section, a knowledge-based
process library should enhance the accessibility and
reusability of software processes. Such knowledge is
otherwise difficult to collect and organize for easy ac-
cess and reuse. Based our analysis, the requirements
for SPLib must specify access and reuse requirements.

SPLib should provide readily available software pro-
cesses to a broad community of users while pro-
tecting proprietary information. SPLib should man-
age and store prescriptive development plans and de-
scriptive development histories. Physically, SPLib
could be distributed across a wide-area network that
may span multiple organizational units and industrial
firms, yet be accessible to specific projects or individ-
uals where appropriate. To access software processes,
SPLib should provide access operations such as up-
load, download, retrieval, and query.

SPLib should also facilitate construction of formally
represented software processes, from either informal
process descriptions or tailorable formal process de-
scriptions. It should support a single formal process
representation. All software processes in SPLib will be
either described in or translated into the single process
representation. Such a process representation should
at the same time form an object-oriented hierarchy of
software processes with multiple levels of details. For
the moment, three levels of details are defined: na-
tional, organizational and project. More levels can be
added when necessary. To reuse software processes,
SPLib should provide operations, such as specializa-
tion, composition, abstraction, and tailoring.

Overall, SPLib can be structured as an object-
oriented hierarchical collection of different types of for-

mal process descriptions with a set of process opera-
tions to facilitate the use of software processes. While
the access requirements provide similar capabilities to
those required for software source code reuse, the reuse
requirements for SPLib must facilitate more advanced
forms of reuse, such as abstraction and composition.
However, support for accessibility and reusability can
be implemented separately. In other words, the access
requirements can be implemented first, while the reuse
requirements implemented later. Accordingly, we now
turn to discuss the SPLib process representation and
operations respectively.

5 The SPLib Process Representation

The SPLib software process representation is an ex-
tended version of the Articulator meta-model we pre-
viously developed [MS90]. It consists of two parts: the
library model is the extended part that describes inter-
actions and interdependencies of software processes,
the process model is the original Articulator meta-
model that describes software processes themselves.
These two parts represent two levels of descriptions.
One represents interdependencies among software pro-
cesses, the other represents the contents of software
processes. SPLib has been prototyped using the Ar-
ticulator process modeling environment [MS90] and
Knowledge-Craft [Car86), which specifies objects and
relations as schemata with attributes. In this section,
we first present the reasons to have these two parts
separate. Then we discuss the SPLib process repre-
sentation, i.e. the library and the process model in
detail. Process operations that manipulate both mod-
els appear in the next section.

5.1 A Two-Level Process Representation
of SPLib

As we said before, the SPLib process representation
has two parts: the library model describes interactions
and interdependencies of software processes and the
process model describes a formalism of software pro-
cesses. Such a structure is determined by issues of
software process modeling and accessing.

On the one hand, SPLib is a library of software
processes. Users of SPLib are interested in know-
ing about and accessing different classes and levels of
software processes through their relationships. This
requires that software processes be queried, accessed
and referenced as a whole without necessarily speci-
fying their contents. To this end, the library model
describes classes and instances of software processes,

125

and their interdependencies to support this kind of
usage.

On the other hand, searching and reasoning about
software processes are not limited to the class level.
Sometimes, search for processes and related resources
is based on the content of software processes, such as
their input and output resources. To this end, the
process model provides a language specifying the at-
tributes, values, and methods of software processes.
The process model is also an abstract, fine-grained,
and editable view of the underlying software processes,
which operations, such as search and composition, can
manipulate. Additionally, separation of the library
model and the process model gives SPLib the flexibil-
ity to support different forms of process representation
at the same time.

As a result, process operations navigate between
the library model and the process model to maximize
their functionality. For instance, when a search re-
quest is specified, it can be implemented as a combi-
nation of library search to identify candidate software
processes, and model search to infer properties of the
candidate software processes. We will later illustrate
the power of this two-level process representation in
terms of process operations.

5.2 The SPLib Library Model

The SPLib library model describes classes of soft-
ware processes and their relationships in terms of ac-
cess and usage. It is different from the SPLib process
model in that it deals only with software processes as
classes and instances, while the process model iden-
tifies objects and relations that constitute a software
process. In the SPLib library model, SPLib consists
of an object-oriented hierarchy of interrelated process
descriptions. There are classes of different software
process descriptions at different levels that are linked
through relations (Figure 1). In the figure, circles
represent software process descriptions and lines are
relations between software processes.

There are different classes of software processes in
SPLib:

o A process modelis a class of software development
processes. It represents a type of software devel-
opment approach or methodology, which can be
instantiated for development, or specialized for
different situations.

o A planned instance is a particular development
plan created before software development. It
represents a particular binding of actual agents,

'
|
|
'
'
1
'
|
1
!
|

1

Other Levels

The Instance Level

The National Level

LEGEND:

O process model
- planned instance

historical instance

l: knowledge of operations

The Organizational Level

1 -~ has-history/history-of
2 -- has~derivation/derivation-of
3 -- has-detailed-process/has-abstracted-process

4 -- has-instantiation/instantiation-of

The Individual Level

Figure 1: SPLib Architecture

tools, and resources to the project plan, and
serves as a developer role-specific guide during
process-driven software development.

e A history instance is a particular process record
that describes the trajectory of process-driven
software development. It represents historical
events that led to the completion or failure of the
development activities and serves as a record of
the process’ enactment.

Processes in SPLib are stored at different levels.
These levels of processes indicate level of details and
form a hierarchy that identifies access to process de-
scriptions. At present, three levels are supported,
but other customized levels can be added: The na-
tional level is the highest of representation in SPLib
where processes are available to an open community
of users. It is a broad and generic level of process
description. The organizational level is for different
organizations. It contains organization-specific infor-
mation. The project level is for a particular project
within an organization.

Relations among processes in SPLib describe con-
ceptual causal relationships between processes and are
defined as a pair of invertible relations from opposite
directions:

o has-detailed-process / has-abstracted-process de-
scribes a relationship of specialization and gen-

126

eralization. A pair of processes related through
the relations is sald that one process is a special-
1zation (generalization) of the other.

o has-derivation / derivation-of describes a deriva-
tion relationship among processes. A pair of pro-
cesses related through them is said that one pro-
cess derives, or i1s derived from the other.

o has-instantiation / instantiation-of links a pro-
cess model to its planned instances, which are
ready for execution in process-driven software de-
velopment.

o has-history / history-of links a process model to
its histories that have been enacted or simulated
during process-driven software development.

5.3 The SPLib Process Model

The SPLib process model describes a formalism
for software processes. It actually reuses the Artic-
ulator meta-model of software processes explained in
[MS90]. Here we only give a brief discussion about the
Articulator meta-model in order to help understand
the process operations. In the Articulator, a software
process 1s specified as an interrelated collection of ob-
jects which represent development activities, artifacts,
tools, and developers. Each object describes a kind of

information that is involved in software development.
Further, these objects are linked through many kinds
of relations. Altogether, software process models serve
as a repository of information on the status of devel-
opment processes and activities that get manipulated
throughout a software development project [MS90].

A software process model includes an activity hier-
archy that describes a decomposition of development
activities and resource requirements including soft-
ware artifacts, tools, developer roles, and other critical
resources. Figure 2 shows the partial schematic activ-
ity hierarchy and resource specification of a sample
process fragment.

An activity hierarchy represents the decomposition
of a software process into a hierarchy of smaller ac-
tivities called subtasks. Levels of decomposition can
be arbitrary depending on the complexity of the pro-
cess. The top-level description is a task, which is recur-
sively decomposed into a set of interrelated subtasks
and actions. Actions, at the bottom of this hierarchy,
represent single tool/function invocations and simple
resource transformation. Within a level of decomposi-
tion, a partial order for subtask execution is specified
by several types of precedence relationships among the
subtasks, such as sequential, parallel, iterative, and
conditional.

Four types of resource requirements specify de-
scriptions of resources needed for a subtask and the
expected products that result. First, a binding of
users to the various developer and organizational roles
taken during subtask performance. Second, soft-
ware artifacts that are needed, created or enhanced
during a subtask, called required and provided re-
sources. Third, tools that are used. Last, informa-
tion about subtask scheduling and their expected du-
ration. These resources are represented as indepen-
dent object classes and have relations that link them
to process models. For example, a product model of
a software system could be defined to have a module
decomposition structure, whose modules are linked to
their producer and consumer subtasks [CS89].

In sum, the object classes used in software processes
include:

o A task and an action is a representation of devel-
opment work. Tasks are decomposable, actions
are not.

e Agents are developers that perform role-specific
development activities during software develop-
ment. Agents are divided into individuals, teams,
or organizations.

e A resource or product is an entity consumed and

127

produced by development tasks and actions.

o A tool is a resource utilized during development
actions that can affect a product transformation.

In the Articulator, all object classes have a structural
definition that describes their organization or config-
uration.

Relations among the object classes in software pro-
cesses describe their conceptual relationships and form
two structures called activity hierarchy and resource
requirements. These are also defined as a pair of in-
vertible relations from opposite directions:

o has-component / component-of describes a rela-
tionship of task decomposition. A pair of sub-
tasks related through the relations is said that
one subtask is a component of the other. Multi-
ple levels of decomposition are allowed.

e has-predecessor / has-successor describes a prece-
dence relationship among subtasks. A pair of
subtasks so related means one subtask precedes
the other during development. There can be lin-
ear, parallel, iterative, or conditional precedences
among subtasks.

o has-agent-spec / agent-spec-of links a subtask to
the necessary roles of the agent who performs it.
It specifies both classes of agents, their availabil-
ity status, and the needed quantity.

o has-required-resource-spec
/ required-resource-spec-of links a subtask to the
input resources to be consumed. It specifies both
classes of required resources, the needed quantity,
and their status.

o has-provided-resource-spec / provided-resource-
spec-of links a subtask to its intended output
product specifications. It specifies both classes of
products, the produced quantity, and their status.

o has-tool-spec / tool-spec-of links a subtask to the
development tools to be used in it. It specifies
both classes of tools, the needed quantity, and
their status.

6 SPLib Process Operations

Process operations perform two types of manipula-
tion: one is to maintain the proper relations for a pro-
cess within the library model, such as has-derivation
and derivation-of relations. The other is to reason

has-component

has-component
has-agent-spec
has-required-resourcq-spec
has-provided-resourcd-spec
has-tool-spec

has-agent -spec
has-required-resource-spec
has-provided-resource-spec
has-tool-spec

has-component

& has-agent-spec
% has-required-resource-spec
% has-provided-resource-spec
DR » has-tool-spec

©*® has-agent-spec
“-> has-required-resource-spec
> has-provided-resource-spec
L » has-tool-spec

Figure 2: A Sample Software Process Fragment

about the content of a process description within the
process model. For instance, composition takes some
process models as its input, modifies their specifica-
tion, creates a new process model that meets an input
requirement, then inherits certain properties from all
of its input process models.

There are several kinds of process operations in
SPLib. Some simple operations provide basic ser-
vices to access SPLib and maintain proper relations
among the processes. Additionally, other process op-
erations provide basic reasoning capability in order to
access software processes upon user request. Finally,
advanced operations directly modify the contents of
process descriptions.

Some of the advanced operations are sufficiently
complicated that each is really a research topic of
its own. In recent years, we have studied some
of these operations in great detail. Here with-
out reiterating these details, we simply list these
process operations and their references when avail-
able. The simple process operations include up-
load, download, create-process-views, create-process-
measurements, get-historical-process, and process
search-and-query. The advanced process operations
include process definition, process composition, pro-
cess specialization, process abstraction, process in-
stantiation, process simulation [MS90], process enaci-
ment [MS92], and process articulation [MS91]. Due to
space limitations, we discuss two of these process op-
erations in detail next: process search-and-query and
process composition.

128

6.1 A Process Search-and-Query Opera-

tion

Process search-and-query based on a user request
I1s a very important operation in SPLib. The main
benefit of this kind of knowledge-based or semantic
search is that it allows users who can not specify their
requests exactly to traverse through SPLib in an ’in-
telligent’ manner, an to help them navigate through a
large collection of software processes. Since processes
in the SPLib are organized through a number of rela-
tions at the library level and specified by a group of
characteristics at the process level, users are able to
move around along the relations and characteristics
i order to identify and browse potentially interest-
ing software processes. A very good approach to do
this search is by a classification algorithm described
in [DBe90). In SPLib. we extend this algorithm to in-
corporate the additional process relations as defined
earlier.

The search-and-query operation first allows users
to specify a level of detail to search, but it also al-
lows them to switch levels as needed during search.
Users then are asked to specify relations to traverse
in SPLib. These relations can be has-detailed-process
/ has-abstracted-process, has-derivation / derivation-
of. has-instantiation / instantiation-of, has-history /
history-of, or some combination of these. Finally, the
operation provides a template for users to specify their
desired properties for the process. They include object
about agents. required-resources, provided-resources,

and tools.

When a search starts, it first limits the scope ac-
cording to the specified process level. Then it iden-
tifies a possible set of candidates through the speci-
fied search relations. For each of the candidates, the
operation browses its definitions of the activity hi-
erarchy ‘and resource requirements to find a possible
match. This may entail examining the process mod-
els’ functional description, agents, required-resources,
provided-resources, and tools. When it identifies a
match, the operation will stop and prompt the user
with the match. Otherwise, it iterates the preceding
steps, provides the user with existing choices among
different relations and process properties, then asks
the user to provide more information in order to con-
tinue the search.

6.2 A Process Composition Operation

Process composition realizes high-level construction
goals specified by a user, and creates a new derived
process model from a set of existing composible pro-
cess models in SPLib. During this operation, the
search-and-query operation is frequently invoked to
find the appropriate process model components for
composition.

A simple form of composition is refinement, where
a simple subtask or an action is replaced by a multi-
level process model. Before replacement, the process
model to be inserted is retrieved when it matches the
resource requirements, i.e. inputs and outputs, of the
subtask or action. When we revisit the usage sce-
nario later, we will show an example of refinement
where formulate-design in preliminary-design is
replaced by the 00-design process. 00-design pro-
duces an upward-compatible set of provided-resources
to those of formulate~design, and it also specifies a
particular design methodology, e.g. Booch’s object-
oriented design method [Boo91].

In more complicated cases, the composition op-
eration must identify both the candidate process
models and their precedence order. This is accom-
plished as follows: First, a user specifies construc-
tion goals for the derived process model in terms of
its provided-resources, required-resources, agents, and
tools. Among these goals, provided-resources, (i.e.
products) are most important since they determine
which processes are possible candidates for compo-
sition. After that, the composition operation helps
a user to expand these goals into complete semantic
models of products, inputs, agents, and tools in terms
of their decomposition and state information. For in-
stance, a semantic product model can include product

129

decomposition, development status, and assembly se-
quence relations among product components.

The next step is to search-and-query SPLib to find
process models that match the specified model of
provided-resource, required-resource, agent, and tool.
This is done incrementally as more and more com-
ponent process models are identified and merged. A
difficulty in this step is determining the precedence
relation among the component process models. Possi-
ble solutions can come from either the given product
model, or from additional user input.

Finally, the complete process model will be evalu-
ated by the user to determine whether the composi-
tion is successful. Partial re-work is possible given the
fact that user-specified goals are often ambiguous or
non-deterministic.

Sometimes there is more than one way that process
components can be put together without violating the
goals. Therefore, the input from users and other out-
side knowledge is required. For example, when we
build a software development process, we know from
prior knowledge that design tasks usually precede im-
plementation tasks. Common knowledge such as this
can be summarized as rules to guide process composi-
tion.

7 The Usage Scenario Revisited

Given the SPLib architecture and its operations,
let us revisit the previous usage scenario to see how
SPLib is able to accomplish the intended tasks.

First, all necessary processes have been represented
and stored in SPLib. At each level, we assume there
is only one process to be composed. With the sup-
port of SPLib operations, process construction can be
accomplish through following steps:

o Step 1: Search for necessary process models based
on the contract-awarding agency’s requirements
at the national level. For instance, a formal pro-
cess model based on DOD-STD-2167A can be re-
trived and downloaded to the organizational level,
as shown in its activity hierarchy displayed in Fig-
ure 3.

e Step 2: Search for necessary process models
based on the contractor’s own policies at the
organizational level. For instance, a process
model based on Booch’s object-oriented design
method [Boo91] can be retrieved as a method for
software design.

R ke g TN

@ =] @ =] =] | =)

Sewport

[

BRNOWI EDGE C R

~UNIT-TEST

NN

~CODE~CSC

SDESIGN
MIL=STD=PM
“CODE~RND-UNITTEST

#PRELIMINARY -DESIGN

- ePLAN-VEST -CSC
*DETAILED-DESIGH SWRITE-REQS-IN-PDL
“IALKT HROUCH -DETATLED-DESIGN
<DECOMPOSE -Sv'S
«IDENTIFY-CSCI-TESTS

“BASELINE~DOC
“PASELINE-EXECUTARLE
~EVALURTE-EXECUTABLE
«CONFIR-CODTNG-STD
~DETAIL-TEST -PROC
SDETAIL-MAKUAL
SWALKTHROUGH-UNLT -TEST - PROC

SEVALUATE-CSC -TESTABILTT
‘Q ~COMPILE -CSC
N\ 2WRLKTHEDUGH- CSC
*PHYSICAL~CONFIC-AUDIT
/-"UNCTIONGL—C ONFIG-AUDIT

SPRELININARY -DESIGN-REVIEW
RTTE~maRUAL

<IDENTIFY-MODULES

«CHECK -REQS-F OR-CONST - COMP - REUSE
~IDENTLIFY-SYS-TEST

*ALLOCATE-COMPONENTS
~F ORMUL ATE~DESIGN
~ «CRITICAL-DESIGN-REVIEL
DENT IFY~REUSE -CAND

letion Kews:
€1) TASK-FORCE ~COMPONENT —OF

Figure 3: The Activity Hierarchy of DOD-STD-2167A Process Model

L]

Step 3: Compose these two process models into a
tailored development plan for the project. Figure
4 shows one part of composition, in which the
design stage in DOD-STD-2167A process model is
expanded to incorporate Booch’s object-oriented
design.

e Step 4: Create needed processes for the unique
features at the project level. For instance, a pro-
cess model describing the project-specific docu-
ment review process can be specified.

e Step 5: Compose the above process models into
a final software development plan for the project.

o Later Steps include: Instantiate the final process
model to a planned instance (i.e., bind specific re-
source values to the resource classes included in
the plan); Simulate the planned instance in order
to analyze and adjust resource allocations; En-
act the planned instance within a process-driven
software engineering environment [MS92].

Conclusion

In this paper, we presented the design and initial
implementation of a knowledge-based process library
(SPLib) that supports process-driven software devel-
opment and process reuse. SPLib stores and organizes
a collection of well-defined software processes in form
of a multi-level knowledge base. It also provides a set

130

of process operations that make meaningful access and
reuse possible and more convenient.

By utilizing such a knowledge-based process library,
software process descriptions can be readily managed,
reasoned about, accessed, and reused. Through the
operations, users can readily query and retrieve a col-
lection of software processes that can be shared across
a diverse user community. Users are also able to per-
form operations to compose, abstract and manipulate
the process descriptions.

Development is underway to host the SPLib on
top of a distributed hypertext repository -called
DHT [NS91] to accommodate heterogeneous storage
servers and remote access. SPLib is also being ex-
panded to support different forms of process descrip-
tions, such as textual [FBe91] and process program-
ming [Ost87]. We therefore believe that the future
use and reliance upon process-driven software devel-
opment environments [MS92] will require and bene-
fit from a knowledge-based process library such as we
have presented here.

References

[AL89] B.P. Allen and S.D. Lee. A Knowledge-based En-
vironment for the Development of Software Parts
Composition Systems. In Proc. of the 11th In-
ternational Conference on Software Engineering,

pages 104-112, Pittsburgh, PA, May 1989.

FoNonp pnG RN

i

*PREL IMINARY -DESIGH
"S!m<
*DETAILED-DESIGN

~CRITICAL -DESIGN-REVIEW
*1DENTIFY -REUSE -CAND

~PLAN-TEST-CSC

*WRITE-REDS -1N-PDL
ALK THROUGH-DETAIL ED-DE$1 GN

*DECOMPOSE-SYS

*IDENTIFY-CSCI-TESTS

“IDENTIFY-RELATIO

=]
#llg

*IMPLEMENT ~CLASS

-v1vCRATE-END
~1DENTIFY-SERNANTIC
“ITERATE-BEGIN

3|2
Hi
H

F
i

*I0ENTIFY~CLASS -0

T
gs

i
H

i

“BASELINE-DOC
=BASELINE-EXECUTABLE
~EVALUATE -EXECUTABLE
2CONF TRM~CODYNG - STD.
“DETAIL -TEST-PROC
“DETATL -MANURL

CODE-ArD-UNITTEET AL KTHROUGH-UNI T-TEST ~PROC

—uNIT-TEST
“EVALUATE-CSC-TESTABILITY
“COMPILE-CSC
AL KTHROUGH-CSC
*CODE-CHC

) I

3

1 'r-ﬂ(FORCE -COMPONENT -OF

Figure 4: The Activity Hierarchy of the Tailored Development Plan

[Boo91] G. Booch. Object Oriented Design with Appli-
cations. The Benjamin/Cummings Publishing
Company, Inc., 1991.

[Car86]) Carnegie Group Inc. Knowledge Craft User’s

Guide (Vol.1, Vol.2, and Vol.3), 1986.

S.C. Choi and W. Scacchi. Assuring the Correct-
ness of Configured Software Descriptions. ACM
Software Engineering Notes, 17(7):67-76, 1989.
P. Devanbu, R.J. Brachman, and etc. LaSSIE:
A Knowledge-based Software Information Sys-
tem. In Proc. of the 12th International Con-
ference on Software Engineering, pages 249-261,
Nice, France, March 1990.

D. Frailey, R. Bate, and etc. Modeling Informa-
tion in a Software Process. In Proc. of the 1st In-
ternational Conference on the Software Process.
pages 60—67, Redondo Beach, CA, Oct 1991.

W.S. Humphrey and M.I. Kellner. Software Pro-
cess Modeling: Principles of Entity Process Mod-
els. In Proc. of the 11th International Conference
on Software Engineering, pages 331-342, Pitts-
burgh, PA, May 1989.

K.E. Huff and V.R. Lesser. A Plan-Based In-
telligent Assistant That Supports the Process of
Programming. ACM SIGSOFT Software Engi-
neering Notes, 13:97-106, Nov 1988.

G.E. Kaiser. Rule-Based Modeling of the Soft-
ware Development Process. In Proc. of the 4th
International Software Process Workshop, pages
84-86, New York, NY, 1988.

P. Mi and W. Scacchi. A Knowledge-based En-
vironment for Modeling and Simulating Software

[Cs89)

[DBe90]

[FBe91]

[HK89]

[HL8S)

[Kaiss)

[MS90]

131

[MS91)

[MS92]

[NS91]

[Ost87]

[RD91]

[WSss]

Engineering Processes. IEEE Trans. on Knowl-
edge and Data Engineering, 2(3):283-294, Sept
1990.

P. Mi and W. Scacchi. Modeling Articulation
Work in Software Engineering Processes. Proc. of
the 13t International Conference on the Software
Process, pages 188-201, Oct 1991.

P. Mi and W. Scacchi.
CASE Environments.
53, March 1992.

J. Noll and W. Scacchi. Integrating Diverse In-
formation Repositories: A Distributed Hypertext
Approach. Computer, 24(12):38-45, Dec. 1991.

L. Osterweil. Software Processes are Software
Too. In Proc. of the 9th International Conference
on Software Engineering, pages 2-13, Monterey,
CA, Apr 1987.

B. Ramesh and V. Dhar. Representation and
Maintenance of Process Knowledge for Large
Scale Systems Development. In Proc. of 6th
Knowledge-based Software Engineering Confer-
ence, pages 223-231, Sept 1991.

Process Integration in
IEEE Software, 9(2):45-

M. Wood and I. Sommerville. A Knowledge-
based Software Components Catalogue. In P. Br-
ereton, editor, Software Engineering Environ-
ments, pages 116-133. Ellis Horwood Limited,
1988.

