
 39

OSS tools in a heterogeneous environment for embedded
systems modelling: an analysis of adoptions of XMI

Anna Persson1, Henrik Gustavsson1, Brian Lings1, Björn Lundell1, Anders Mattsson2, Ulf Ärlig2

1University of Skövde

P.O. Box 408, SE-541 28 SKÖVDE
Sweden

+46(0)500448000

{ anna.persson | henrik.gustavsson |
brian.lings | bjorn.lundell }@his.se

2Combitech Systems AB

P.O. Box 1017, SE-551 11 JÖNKÖPING
Sweden

+46(0)36194750

{ anders.mattsson | ulf.arlig }
@combitechsystems.com

ABSTRACT
The development and maintenance of UML models is an
inherently distributed activity, where distribution may be
geographical, temporal or both. It is therefore increasingly
important to be able to interchange model information between
tools – whether in a tool chain, for legacy reasons or because of
the natural heterogeneity resulting from distributed development
contexts. In this study we consider the current utility of XMI
interchange for supporting OSS tool adoption to complement
other tools in an embedded systems development context. We find
that the current state of play is disappointing, and speculate that
the problem lies both with the open standards and the way in
which they are being supported and interpreted. There is a
challenge here for the OSS community to take a lead as tool
vendors gear up for XMI 2.0.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer-aided software engineering (CASE), Object-oriented
design methods.

General Terms
Design, Standardization, Management.

Keywords
Embedded Systems Modelling, XMI, Open Standards,
Heterogeneous Tool Environment, Model Interchange.

1. INTRODUCTION
In this paper we explore adoptions of the XMI standard
interchange format [1] in UML modelling tools with a view to
investigating the current practicality of supporting heterogeneous
tool environments. Model interchange is important for two
reasons. Firstly, it is widely acknowledged that systems outlive
tools (see, for example, [2] [3]). Secondly, companies often use
more than one tool in their development environments, as tools
have different strength and weaknesses, perhaps at different
stages in the tool chain. Here, we report on a study to identify
combinations of modelling tools able to utilise XMI-based
interchange of UML class diagrams in the context of embedded
systems models. Our specific interest is in analysing OSS tools in
this context, so we have conducted a study which incorporates all
of the OSS UML modelling tools supporting XMI which are
known to us.

In principle, XMI allows for the interchange of models between
modelling tools in distributed and heterogeneous environments,
and eases the problem of tool interoperability [1]. Most major
UML modelling tools currently offer model interchange using
XMI [4] [5]. XMI is an open standard and adherence to open
standards has always been viewed as central to the open source
movement, and a key to achieving interoperability [6, p. 83]. It is
therefore expected that open source tools will display good
characteristics in this respect.

The study consisted of interchanging a simple UML model
between a set of OSS and proprietary UML modelling tools. The
model describes part of an embedded system and is simplified
from a class diagram developed by the company Combitech
Systems AB. First we created the model in each of the tools, and
then we exported it in XMI. All XMI documents exported were
then imported into each of the tools.

2. BACKGROUND
The study explored three open source modelling tools: ArgoUML
(Argo), Fujaba Developer (Fujaba) and Umbrello UML Modeller
(Umbrello). These tools were selected since they support UML
modelling and interchange of UML models using XMI. A
systematic review of available open source modelling tools
revealed no other tools with these properties. We also used four

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO, USA.

Copyright 2005 ACM 1-59593-127-9 … $5.00.

 40

commercial (non OSS) UML tools that support XMI and are
specifically targeted at modelling embedded systems: Artisan
Real-Time Studio (Artisan), Poseidon Embedded Enterprise
(Poseidon, a tool which originated from the ArgoUML project),
Rhapsody C++ Developer (Rhapsody) and TAU G2 (TAU). In
addition, we included two common commercial (non OSS) tools
for general UML modelling: Rational Rose Enterprise (Rose) and
Microsoft Visio Professional (Visio). Table 1 gives an overview
of all tools included in the study, describing the versions of UML
and XMI supported in each tool.

Table 1. UML modelling tools explored in the study

XMI
version
export

XMI
version
import

UML
version

ArgoUML
Version 0.16.1
(argouml.tigris.org)

1.0 1.0 1.3

Fujaba Developer
Version 4.2.0
(www.fujaba.de)

1.2 1.2 1.3

Umbrello UML Modeller
Version 1.3.2
(www.artisansw.com)

1.2 1.2 1.3

Artisan Real-Time Studio
Version 5.0.22
(www.artisansw.com)

1.1 1.1 2.0

Poseidon Emb. Enterprise
Version 3.0.1
(www.gentleware.com)

1.2 1.0,
1.1, 1.2 2.0

Rhapsody C++ Developer
Version 5.2
(www.ilogix.com)

1.0 1.0 1.3

Rose Enterprise
Version 2003.06.13
(www.rational.com)

1.0, 1.1 1.0, 1.1 1.3

TAU G2
Version 2.4
(www.telelogic.com)

No
export 1.0, 1.1 2.0

Microsoft Office Visio
Version Prof. 2003
(www.microsoft.com)

1.0 No
import 1.3

The model interchanged between these tools is shown in figure 1.
Versions of XMI earlier than 2.0 do not cater for the exchange of
presentation information, so layout aspects are therefore lost at
interchange. In practice, this is a significant problem where there
is subsequent human interaction with the model, but of less
significance for functions such as code generation.

Interchange of a model between two tools is said to be successful
if all model information other than presentation information is
preserved during the transfer. An interchange resulting in
incomplete model information is clearly unacceptable:
commercial models that often consist of several thousands model
entities [7], and manual repair is infeasible.

Figure 1. UML model used for interchange

3. RESULTS
Table 2 presents the results from our analysis of transfer between
each pair of tools explored in the study. Non-coloured cells in the
table are expected to work since the versions of XMI supported in
both tools are the same. Grey cells (italic) are not expected to
work since the XMI versions used in the two tools differ.

For combinations of tools resulting in incomplete model
interchange figure 2 shows what remains of the model after
transfer. Four types of unsuccessful transfer were identified: three
cardinalities lost (a); all inheritance relations lost (b); all
associations lost (c); and all relations lost (d). For other
combinations of tools resulting in unsuccessful model interchange
(i.e. for cells only containing “N” in figure 2) no model
information was transferred.

Our results show unsuccessful interchange for the majority of tool
combinations. We were unable to find any combination of tools
that supported a two-way interchange; not even indirectly via a
third tool. However, we found some combinations of tools where
successful one-way interchange is possible, even though most
successful interchanges in table 2 refer to interchange within the
same tool (which we analysed as a basic functionality test of
exporting and importing XMI files in a tool).

For interchange between tools using the same XMI version we
found both successful (e.g. when exporting from Argo and
importing to TAU) and unsuccessful transfer (e.g. when exporting
from Fujaba and importing to Umbrello). For some of the
successful combinations, the exporting and importing tools
support the same version of UML (e.g. when exporting from
Rhapsody and importing to Argo), whereas other successful
combinations support different versions of UML (e.g. when
exporting from Fujaba (1.3) and importing to TAU (2.0)). Further,
when interchanging between tools using different XMI versions
we found both successful (e.g. when exporting from Fujaba and
importing to TAU) and unsuccessful transfer (e.g. when exporting
from Artisan and importing to Umbrello).

 41

4. ANALYSIS
The results presented in section 3 show that XMI-based model
interchange between UML modelling tools is weakly supported in
practice. A contributing factor is that tools supporting different
XMI versions cannot interchange their XMI documents. This has
earlier been reported in the literature as causing incompatibility
between tools [8] [9]. All three open source tools analyzed in this
study support only one version each of XMI. We view this as a
weakness that will limit the inclusion of these tools in
heterogeneous tool environments.

Another aspect that further complicates model interchange is that
different versions of UML are supported by different tools. A tool
supporting an earlier version of UML may have problems
importing XMI documents exported from a tool supporting a later
version of UML. The different versions of both UML and XMI
lead to a large number of possible combinations, some of which
may be incompatible.

Compatibility between XMI and UML versions are, however, no
guarantee for successful interchange between tools, as shown by
the results in section 3. We note that XMI export has been
implemented in a variety of different ways amongst the tools
analyzed. For example, a comparison between Argo and Visio
(two tools supporting the same versions of UML and XMI) shows
that Visio exports an XMI document with more than seven times

as many rows as the XMI document exported from Argo (4967
rows vs. 651 rows).

For each tool supporting XMI 1.0 we analysed the exported
document using an independent XML validation tool
(www.altova.com) utilising OMG’s normative DTD. The
documents from Argo, Rhapsody and Rose were found to be
valid, that from Visio was not. For later versions of XMI there is
some uncertainty concerning which DTD should be used and we
were unable to successfully use the DTD presented in the XMI
specification.

5. SUMMARY
Adoption of new tools into existing systems development contexts
will depend heavily on their ability to interchange models. For a
company wishing to base its tool strategy on open standards, our
findings are rather discouraging. None of the tools analysed has
adopted the latest version of XMI (2.0), and we were unable to
find any combination of tools which successfully interchanged
model information between them. Our findings suggest that a
strategy for a company working in the context of embedded
systems design cannot currently rely on standardised model
interchange between different UML modelling tools.

1 Function ”value()” in class Sensor was renamed to

”Operation1()”.

Table 2: All combinations of successful interchange between tools (Y=Yes, N=No).

Import
Export

Argo Fujaba Umbrello Artisan Poseidon Rhapsody Rose TAU Visio

Argo Y N N N Y N,c N,a Y ---
Fujaba N Y N N,d1 N N N Y ---
Umbrello N N Y N N N N N ---
Artisan N N N,d N,b N N N,c N,b ---
Poseidon N N N,d N,b1 Y N N,c Y ---
Rhapsody Y N N N N Y N Y ---
Rose 1.0/1.1 Y N N N N N N N,b1 Y N,c N,c N Y Y Y ---
TAU --- --- --- --- --- --- --- --- ---
Visio Y N N N N N N Y ---

a: Three cardinalities lost b: Inheritance relations lost c: Associations lost d: All relations lost

Figure 2 a, b, c, d: Model information transferred.

 42

Although OSS tools offer support for XMI-based model
interchange equal to that in commercial tools, better could be
expected. Commercial tools offer proprietary bridges to other
tools, particularly market leaders, and may even make efforts to
improve XMI interchange by catering for product-specific
interpretations of XMI. However, the OSS community can be
expected to offer high conformance with any open standard, and
not to resort to tool-specific bridging software. Further, it could be
argued that a goal for OSS tools should be to offer reliable import
and export of documents conforming to any of the XMI versions,
in this way offering both openness and an important role in the
construction of interchange adapters – especially useful for legacy
situations. As a special case, one hopes that OSS tools will lead
the way in conformance with XMI 2.0. With the advent of UML 2
and XMI 2.0, there is a real possibility of standard interchange
both horizontally and vertically within the tool chain.

As long as successful model interchange can be provided between
tools supporting XMI 1.x the fact that layout aspects are lost
during interchange does not necessarily hinder their use in a tool
chain. For example, in a scenario in which developers design their
models in one tool and use a different tool for code generation,
the loss of layout information may not be critical. However, in
such one-way exchange the company must consider increased
complexity in model management, and there may be an increased
risk associated with such a solution from a maintenance
perspective (together with practical problems related to upgrade
of a tool in the chain without breaking the chain). Of course, as
different designers have different preferences, a tool chain may
even involve yet further tools, for example for use in debugging
activities.

The issue of conformance is so central to effective interchange
that much greater support needs to be given to conformance
checking, to aid manufacturers aiming for tool openness. For
example, it needs to be clear what is the official DTD for each
version of XMI and UML and what is guaranteed by any claim to
conformance for each version. It would also be useful for the
community to develop benchmark interchange models – rather
richer than the class model used in this study.

We do not put this study forward as a definitive review of the
tools involved. For example, later versions of (or plug-ins for)
some tools are now available in which improved XMI support is
evident; and the use of industrial strength diagrams will lead to
more realistic scenarios.

However, we have contacted all the manufacturers involved in the
study and received many detailed responses concerning our
findings. It is clear that the results do not come as a surprise, and
many reasons for this have been put forward. These range from
ambiguities in the standard to problems in supporting the parsing
of the many legal formats still allowed by a DTD. Many
manufacturers are now working towards XMI 2.0, and placing

increasing emphasis on compliance – in at least one case thus
reducing conformity with one of the market leaders. It is our hope
that the OSS community will take a lead in this important next
stage.

6. ACKNOWLEDGMENTS
This research has been financially supported by the European
Commission via FP6 Co-ordinated Action Project 004337 in
priority IST-2002-2.3.2.3 ‘Calibre’ (http://www.calibre.ie).

7. REFERENCES
[1] OMG-XML Metadata Interchange (XMI) Specification,

version 1.0-2.0 http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#XMI.

[2] Lundell, B. and Lings, B. Changing perceptions of CASE-
technology, Journal of Systems and Software, 72, 2 (2004),
271-280.

[3] Lundell, B. and Lings, B. Method in Action and Method in
Tool: a Stakeholder Perspective, Journal of Information
Technology, 19, 3 (2004), 215-223.

[4] Jeckle, M. OMG’s XML Metadata Interchange Format XMI.
In Proceeding of XML Interchange Formats for Business
Process Management (XML4BPM 2004): 1st Workshop of
German Informatics Society e.V. (GI) (in conjunction with
the 7th GI Conference “Modellierung 2004”), Marburg,
Germany, 25 March 2004.

[5] Stevens, P. Small-scale XMI programming: a revolution in
UML tool use? Automated Software Engineering, 10, 1
(2003), 7-21.

[6] Fuggetta, A. Open Source Software: An Evaluation, Journal
of Systems and Software, 66, 1 (2003), 77-90.

[7] Berenbach, B. The Evaluation of Large, Complex UML
Analysis and Design Models. In Proceedings of 26th
International Conference on Software Engineering
(ICSE’04), IEEE Computer Society, Los Alamitos, 2004,
232-241.

[8] Damm, C.E., Hansen, K.M., Thomsen, M. and Tyrsted, M.
Tool Integration: Experiences and Issues in Using XMI and
Component Technology. In Proceedings 33rd International
Conference on Technology of Object-Oriented Languages
and Systems TOOLS 33, IEEE Computer Society, Los
Alamitos, 2000, 94-107.

[9] Jiang, J. and Systä, T. (2003) Exploring Differences in
Exchange Formats – Tool Support and Case Studies. In
Proceedings of Seventh European Conference on Software
Maintenance and Reengineering (CSMR’03), Benevento,
Italy, March 26-28, 389-398.

