
 35

The Use of Open Source Software Platforms by
Independent Software Vendors: Issues and Opportunities

Herwig Mannaert and Kris Ven
University of Antwerp

Prinsstraat 13
B-2000 Antwerp, Belgium

{herwig.mannaert,kris.ven}@ua.ac.be

ABSTRACT
The Cast4All Content Conductor Platform is an integration and
provisioning suite to manage data broadcasting networks in
general and digital cinema networks in particular. The framework
makes extensive use of open source components and contains
several extensions and modifications to those components. It is a
typical case of an Independent Software Vendor (ISV) building
application software on top of open source platform software. In
the spirit of the open source movement, the extensions or
modifications to the open source components could be contributed
back to the community. However, in this paper we discuss several
issues that companies face in such a situation. They extend far
beyond the obvious decision whether to keep the developed code
proprietary, and should not be neglected. It is argued that a closer
collaboration between open source projects and independent
software vendors would be beneficial to all.

Categories and Subject Descriptors

K.6.3 [Management of Computing and Information Systems]:
Software Management – software development, software
maintenance.

General Terms
Design.

Keywords
Open Source Software, Independent Software Vendor, platforms.

1. INTRODUCTION
Open source software (OSS) has become a viable alternative for
many commercial software packages. This is supported by the
many success stories of the implementation of OSS which have
been reported in academic as well as professional literature (see
e.g. [4,11]). Relatively few studies have investigated the adoption
of open source software by companies. Most research on this
topic has primarily focused on platform software such as

operating systems and web servers (see e.g. [3,6,12,13]). This is a
logical choice since most OSS projects have firm roots in the
server-side environment (e.g. Apache, Sendmail and Linux). OSS
projects focussing on desktop applications have only appeared
more recently (e.g. Mozilla and OpenOffice.org). Not
surprisingly, most successful OSS projects are server-side
applications. Moreover, preliminary studies suggest a
relationship between the strategic importance of the IT
infrastructure and the tendency to implement OSS [5,6]. It is
hypothesized that new technologies such as OSS are more likely
to be used for those parts of the IT infrastructure that have a low
strategic value to the firm. This is consistent with the
commoditization of IT that has been argued by some authors [2].
The strategic value of IT degrades over time and applications
eventually become a commodity. When this happens, companies
want to cut costs as much as possible. Switching to OSS is one
way to realize this. Probably the most illustrative example of this
is the Sabre system, which was during the 1970s the typical
example of a system with high strategic value. When Sabre
needed to be redesigned to cope with new requirements, Linux
and MySQL were used as a platform [1,10]. One of the reasons
why many companies choose OSS is that it offers them cheap and
reliable software [3]. Additionally, large companies such as IBM
and Novell are now actively supporting OSS, which will increase
the customers’ confidence in OSS. We therefore expect that OSS
will continue to play an increasingly important role on the
platform market.
OSS also provides interesting opportunities for Independent
Software Vendors (ISV). An ISV can use proven OSS platform
software as a basis to develop his own applications. By using
OSS components, the cost for the final customer will be much
lower than when commercial software is used. Commercial firms
such as Microsoft and Hewlett-Packard encourage the use of their
proprietary platforms by ISVs and offer them special “business
partner” programs. However, currently there is no such
cooperation between ISVs and OSS projects. This introduces
several issues for the ISVs as well as the OSS projects that should
not be neglected.
We will present a case study in which OSS was extensively used
by an ISV in an advanced environment. In the project,
considerable effort was made to customize and extend various
OSS components. In such a case, the ISV has the possibility to
donate these extensions and/or modifications back to the OSS
community. In this paper, we argue that such a decision implies
far more issues than the obvious question whether to keep the
developed code proprietary. We will discuss several issues with
respect to the possible efforts, problems, and dangers in the

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO,
USA.

Copyright 2005 ACM 1-59593-127-9 … $5.00.

 36

process of donating these modifications back to the OSS
community.

2. CASE STUDY: DIGITAL CINEMA
DISTRIBUTION

As part of a joint and ongoing R & D activity, Cast4All and the
University of Antwerp have developed a software framework for
the distribution of rich multimedia content in general, and digital
movies in particular [9]. This content distribution management
software provides the following features.

• Distributed asset management for the movie files,
including auto-detection and indexing of all files in the
central NOC (Network Operating Centre), monitoring
and reporting of the available files on all servers in
remote theatres, and the possibility to centrally enter
deletion orders for file replicas on remote servers.

• Integrated network management of all network nodes,
including reporting of disk space and network
connectivity, auto-configuration of receiver threads
listening to multicast channels and the possibility to
centrally enter start and stop commands for all processes
on remote servers.

• Preparation and control of the actual data broadcasting,
including forward error correction, automatic splitting of
extremely large files (a standard MPEG-2 digital movie is
60 GByte) to improve the scalability of the error
correction, multicast security at the transport layer,
possible partial retransmission based on
acknowledgements, and precise bandwidth control for
multicast transmissions.

The application framework has been designed and developed as a
set of components in the J2EE (Java 2 Enterprise Edition)
component model, and is accessible through a web-based user
interface. Internally, the software uses a number of open source
software components, both at the application and the platform
level.

• Linux: the preferred operating system for the servers.

• JOnAS: the ObjectWeb J2EE application server.

• Tomcat: the Apache web server or servlet container.

• Cocoon: the Apache XML publishing framework.

• Axis: the Apache web services framework.
• Ant: the Apache build environment.

• Swarmcast: the forward error correcting code from
Onion Networks for reliable multicasting.

• Pftp: an application for real-time multicast transmissions
with precise bandwidth control.

• OpenSSL: the underlying for a dedicated solution for
multicast security at the transport level [8].

• IPTables: the preferred firewall on the servers.
Though the price has been the main and decisive argument in the
decision to adopt these open source components, several other
features have played a major role. Note that none of these are
directly related to the availability of the source code.

• Functionality: several components are cutting edge
technology. We mention here the Ant build environment
and the Cocoon servlet, generally accepted to be the first
fully-fledged XML publishing framework.

• Flexibility: the functional requirements could only be
met through the ability to tailor the software. Examples
are the forward error correction that needed to be adapted
for the transfer of huge digital cinema files, and the
dedicated solution for multicast security based on a
generic and open library.

• Quality: some components offer a nearly unmatched
quality. We mention here the very accurate bandwidth
control of Pftp and the fact that Linux is one of the few
operating systems that allows the correct configuration of
the TTL (Time To Live) for multicast transmissions.

This usage of OSS is in line with traditional studies, showing the
adoption of OSS for platform software such as operating systems
and infrastructure servers. It also shows that several OSS platform
software components can be combined with several application-
level OSS components, to produce an integrated application
framework in a complex environment.

3. THE ISSUE: HOW TO DEAL WITH
EXTENSIONS

Though the findings of the previous section are quite traditional,
we want to discuss some issues that are rather crucial from the
viewpoint of the ISV (Independent Software Vendor). As is
generally known, the success and acceptance of platform software
is highly dependent on the adoption by, and the success of, ISVs.
What makes the use of OSS platform software typical, is that
developers are allowed, inclined, and often obliged to extend
and/or even modify the open source components. Within the
scope of the described development for example, the following
extensions and/or modifications have been performed to open
source software components.

• The Cocoon servlet for XML publishing has been
integrated into the deployment and operational context of
the Tomcat and JOnAS application servers.

• The Swarmcast library has been adapted to allow the
automatic splitting of files into parts (and concatenation
after transmission), in order to deal with extremely large
files.

• The Cocoon framework has been extended to allow the
flexible definition of multi-language user interfaces, and
to enable graphical representations of functions and
hierarchical trees.

3.1 Inhibitors to Contributing
According to the spirit of the open source movement, patches and
even extensions could be donated back to the community.
However, we have found that several factors may prevent this
from happening. None of them stem from a possible reluctance of
the ISV to share its intellectual property.
It is not that obvious for an ISV to find its way into the
community and get extensions or modifications accepted. It takes
for example some effort to get familiar with the practices and
guidelines of the different OSS projects. Contrary to popular

 37

belief, large OSS projects are governed in a structured way,
placing high standards on, for example, code quality [14 This
means that any patch submitted to the project must pass the peer-
review process in which coding style, general quality and the
interoperability with other parts of the application are assessed.
The issues mentioned until now are in fact applicable for every
potential contributor to an OSS project — even commercial
entities (see e.g. [7) — and are not unsurmountable, given enough
time is invested. ISVs however are faced with some additional
problems. Some of the modifications to the OSS application will
be too specific to include for the general public. Therefore, many
OSS project leaders that want to keep a tight control over their
code base will prefer not to include these changes. This was one
of the reasons why the Firefox browser was designed to be kept to
a strict minimum, and implement additional features by means of
plugins which are kept separate from the Firefox code base.
The impact of the ISV’s modifications on the OSS project will be
even greater if it concerns the integration of two OSS projects. In
this case study for example, Cocoon was integrated into Tomcat
and Jonas. In such a situation, the implementation of the change
must be coordinated and approved by two OSS projects. In
practice, it is very well possible that these projects prefer to keep
independent from each other, or seek cooperation with other,
alternative OSS projects instead.
Even if the patch or extension does get accepted, it may require
significant effort to maintain and further develop it in subsequent
versions. In most cases, the modification must first be made more
generic, so that is usable for a larger audience and that it fits
better in the OSS project. This task is not always beneficial to the
ISV. Furthermore, by merging the patches into the main
repository, the ISV is likely to become the maintainer of this part
of the application, given the often specialized nature of these
patches. Consequently, subsequent changes made in other parts
of the application may require the ISV to adapt his modules as
well in order to keep the application working as a whole. When
the patches wouldn’t have been submitted, the ISV would be free
to keep using a previous version of the application until he
decides to upgrade to a newer version.
As mentioned before, the nature of the modifications made by the
ISV may be quite specific. Hence, the number of external
contributors that the ISV could attract will be small or even non-
existent. Not having enough contributors or interested users has a
negative impact on the motivation of OSS volunteers to keep
maintaining the project. In the case of the ISV, the tendency to
contribute the patches will be even more tempered.
The same issues make it unattractive to start a new OSS project
providing patches to the existing OSS project (such as RTAI1
which provides a real-time extension to the Linux kernel), or by
starting a fork of the existing project (apart from the social barrier
that exists against forking). In these latter cases, the effort
required by the ISV will be even greater, since he will have to
provide the necessary infrastructure to support the development
(e.g. version control, bug tracker and mailing lists) and coordinate
the efforts of possible contributors.

1 http://www.rtai.org

3.2 Risks of not Contributing
From the viewpoint of the ISV however, having patches or
extensions not being integrated into the open source project may
also imply significant business risks. The OSS project may
sooner or later tackle the issue, and may take an entirely different
approach towards the problem. In this case, the ISV would end
up with a parallel development track that competes with the OSS
project. In case the ISV is a rather small company, as for instance
in our case study, this would be highly undesirable. On the other
hand, porting the existing application code to the newly
developed extension framework, could lead to the rewriting of a
significant part of the ISV application software.
But even if the OSS project does not tackle the envisaged
extensions and simply ignores them, the ISV is still running a
risk. The possibility exists in this case that several functions and
application programming interfaces that are used by the
extensions, will gradually become unimportant. This could lead
to the modification or even disappearance of these programming
interfaces, cutting off the ISV from future versions and upgrades
of the OSS component. In the long run, this could even prevent
the ISV from porting its application code to a new version of an
operating system.
We can say that the ISV takes significant business risks in not
contributing to and participating in the OSS project(s) it is using.
This means that the ISV will often have a business interest in
donating back extensions and/or modifications to the community
of the OSS project.

4. CONCLUSIONS
In this paper we have have presented a case study of an
Independent Software Vendor (ISV) using OSS as a platform.
We have identified several issues that prevent the modifications
made by the ISV to be contributed back to the OSS project.
These issues include the effort required to get patches included in
the project and the problems in attracting enough contributors.
Note that none of these reasons are due to the reluctance of the
ISV to share its intellectual property.
On the other hand, not sharing these modifications with the OSS
project may face the ISV with considerable risks. Parallel
development tracks or changes in programming interfaces, may
force the ISV to rewrite application code or to foresake on future
versions of the OSS component. This calls for additional efforts
to lower the barriers for ISVs to submit and maintain their
extensions or modifications in collaboration with the open source
projects.
More research on this topic might provide useful insights on how
other ISVs cope with the issues addressed in this paper. It may
offer more information on the rate of participation in OSS projects
by ISVs, and which factors currently hinder the further
contribution of patches.
We argue that these results might also be useful for OSS projects,
as it would show how OSS projects interact with ISVs. At the
moment, we believe most OSS projects have poor relations with
ISVs using their platform. Because of this poor relationship, OSS
projects might loose out on some important know-how. By
improving the relation with ISVs, it is likely that more ISVs will
adopt OSS. Evidently, this would also be beneficial to the OSS

 38

projects who will become more widely accepted and more
successful.

5. REFERENCES
[1] G. H. Anthes. Sabre flies to open systems. Computerworld,

May 31, 2004.
http://www.computerworld.com/managementto
pics/management/project/story/0,10801,934
55,00.html.

[2] N. G. Carr. It doesn’t matter. Harvard Business Review, 81,
5 (May 2003), 41–49.

[3] J. Dedrick and J. West. Why firms adopt open source
platforms: a grounded theory of innovation and standards
adoption. In J. L. King and K. Lyytinen, editors,
Proceedings of the Workshop on Standard Making: A
Critical Research Frontier for Information Systems (Seattle,
Washington, December 2003). 236–257.

[4] B. Fitzgerald and T. Kenny. Open source software in the
trenches: Lessons from a large scale implementation. In
Proceedings of 24th International Conference on
Information Systems (ICIS) (Seattle, Washington, Dec. 14–
17, 2003).

[5] S. K. Kwan and J. West. Heterogeneity of it importance:
Implications for enterprise it portfolio management. In
Academy of Management conference, Organizational
Communication and Information Systems division (New
Orleans, La., August 2004).

[6] S. K. Kwan and J. West. A conceptual model for enterprise
adoption of open source software. In S. Bolin, editor, The

Standards Edge: Open Season. Sheridan Books, Ann Arbor,
Michigan, 2005 (forthcoming).

[7] S. Lussier. New tricks: How open source changed the way
my team works. IEEE Software, 21, 1, 68–72, 2004.

[8] H. Mannaert, P. Adriaenssens, and B. D. Gruyter. Multicast
security for rich content distribution. In P. Dini and
P. Lorenz, editors, Proceedings of the Third International
Conference on Networking (Guadeloupe, French Carribean,
Mar. 1–4, 2004), 561–565.

[9] H. Mannaert, B. D. Gruyter, and P. Adriaenssens. Web
portal for multicast delivery management. Emerald Journal
for Internet Research, 13, 2, 94–99, 2003.

[10] Mysql contributes to up to 80% reduction in total cost of
ownership for sabre holdings.
http://www.mysql.com/it-resources/case-
studies/mysql-sabre-casestudy.pdf.

[11] J. S. Norris and P.-H. Kamp. Mission-critical development
with open source software: Lessons learned. IEEE Software,
21, 1, 42–49, 2004.

[12] J. West. How open is open enough? melding proprietary and
open source platform strategies. Research Policy, 32, 7 (July
2003), 1259–1285.

[13] J. West and J. Dedrick. Open source standardization: The
rise of linux in the network era. Knowledge, Technology &
Policy, 14, 2, 88–112, 2001.

[14] L. Zhao and S. Elbaum. Quality assurance under the open
source development model. Journal of Systems and
Software, 66, 1 (Apr. 2003), 65–75.

