
 5

The Need for Effort Estimation Models for Open Source
Software Projects

Jai Asundi
Information Systems and Operations Management

School of Management, University of Texas at Dallas

asundi@utdallas.edu

ABSTRACT
Open source software(OSS), be it products or tools, are being
adopted at a fairly rapid pace in commercial organizations. In fact
many firms such as IBM and Sun are even ‘opening’ up their once
proprietary software products and making the source code
available. This phenomenon may have a profound effect on the
various software engineering methodologies and practices as well
as project management activities. Given the difficulty in
managing resources in closed source projects, planning and
delivery for OSS projects will be an even bigger challenge. In this
position paper, we describe the need for new effort estimation
models for the development of OSS projects and how this will be
required for future project management activities. We outline
some of the guidelines to build these cost estimation models and
some issues that arise in the verification and validation of these
cost models.

Keywords
Open Source Software, Maintenance, Effort Estimation, project
management

1. INTRODUCTION
Open source software(OSS) products or tools are being

adopted at a fairly rapid pace in commercial organizations.
Software products like the Linux operating system, the Apache
Web-server, and MySQL database server are considered to be on
par or even better than other functionally comparable commercial
software product offerings. Industry experts, Open Source
developers and Researchers have been examining the
phenomenon of OSS and the new methods of software
development[4]. A significant area of research has been in
examining the motivations of the open source developers to
contribute freely[3]. OSS projects also lend themselves to mining
of source-code repositories and mailing lists to examine issues
such as design, leadership and conflict resolution[9,10, 11].

Software firms (like IBM, Sun and Apple, BEA) are making
significant investments and contributions to OSS products. This is
being executed in a number of ways. A few of them are:

1. By opening up their closed source software products
(IBM- Cloudscape database, Jikes compiler, Sun- Star
Office, SunOS, Apple – Darwin 7.0 etc.)[6][7][8]

2. By providing development resources (IBM developers
on Apache Webserver)

3. Or by providing monetary resources to support OSS
project related activities.[5]

While these contributions are interesting and welcome,
acceptance of the OSS form of development into traditional
software development organizations may have a profound effect
on the various existing software engineering methodologies and
practices as well as project management activities. Given the
difficulty in managing resources in closed source projects,
planning and delivering projects that are based on an open source
community can be a bigger challenge. Resource allocation and
budgeting will be harder and without a rigorous basis.

For this reason, in this position paper, we argue that we need
to develop effort estimation models for the development of OSS
products. For the purpose of this paper, we assume that cost and
effort are synonymous and use these terms interchangeably. The
paper is organized as follows. Section 2 outlines the some issues
with effort estimation and existing software effort estimation
models and techniques. Section 3 describes some of the issues
with OSS that need to be considered when building cost models
and Section 4 concludes by providing some generic guidelines
and plans for future work.

2. EFFORT ESTIMATION MODELS
In this section we outline some of the general cost/effort

estimation models, some software effort estimation models and
the issues in using these models for OSS projects.

Effort(or cost) estimation in software engineering projects
can be categorized into three levels of detail and accuracy: Order
of Magnitude, Semi-detailed/ Conceptual estimates and Detailed.
The effort required in getting an estimate itself increases with the
accuracy of estimate required. In most engineering projects, most
cost/effort estimates are conservative and usually lower than
actual[12]. In the design and building of large complex systems,
effort/cost estimation models can be a difficult task due to the
following reasons:

1. System of that size/type has never been built before

2. New/Unproven technologies are being put to use

3. Productivity of personnel has high variance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO, USA.

Copyright 2005 ACM 1-59593-127-9 … $5.00.

 6

Measurement difficulties and the high variability with the
associated measures are peculiar to software based systems.
Measurement of outputs and effort are very subjective and there is
considerable debate regarding the same. According to Jalote [13]
a software product is an entirely conceptual entity and thus there
are no physical or electrical laws that govern software
engineering. Boehm[1] adds that software development requires
creativity and cooperation of human beings whose individual and
group behavior is generally hard to predict.

In most engineering systems, historical data is used as a basis
for cost/effort estimation for future projects. Unfortunately, in
most cases, especially for software products, reliable data are
difficult if not impossible to find. Most of the time the
development and construction technologies underlying the
software product undergo significant changes from one generation
to the next. This means that in engineering software, we are
frequently building and maintaining systems of unprecedented
size and complexity and with rapidly changing tools. This wide
variability in system type and nature results in inaccurate
estimates.

Existing software effort estimation models could be
categorized into the following (not exhaustive) types:

1. Analogy costing: The resource estimates are developed
based upon past experience with similar systems. A pair
wise comparison with a similar project on a component-
wise basis is used to obtain an overall estimate

2. Delphi costing: Resource estimates are developed using
a team of experts. The team of experts estimate
resources under similar assumptions and then agree
upon a consensus estimate

3. Parametric model costing: Resource estimates are
developed using prediction models which
mathematically relate effort and duration to the
parameters that influence them. These models are built
up using regression analysis on available data

Parametric models are amongst the most popular.
Simplistically, effort is estimated as:

Effort = a (Size)p

Where a represents the impact parameters, Size is the
measure of output (SLOC or function points) and p is exponent
relating size to effort. The parameters a and p are estimated from
historical data. Well known models of this type are COCOMO,
SLIM and PRICE-S.

One of the popular and most elaborate effort estimation
models for new software development is the
COCOMO[Boehm81]. The COCOMO model (which consists of
three submodels: Basic, Intermediate and Advanced) can be
written as:

E = K Sα ∏Ci

Where K and α are parameters on the mode the software
system is developed and the fifteen Ci’s are the cost drivers [14].

If necessary, OSS projects one can only use Delphi costing –
i.e. the use of experts to determine the resource requirements in a

project. Analogies are hard to find and there are no currently
calibrated parametric models.

There are many drawbacks to using existing effort estimation
models for OSS projects. For one, the existing models are based
on data collected from commercial “closed” source projects. The
platforms and tools that are used to develop the software differ
from those used in OSS projects. Most of the data collected for
existing software products have been for long term new
development projects rather than maintenance projects. In OSS
projects a code-base already exists, developers will be fixing
existing bugs and adding functionality in a piecemeal fashion. We
can thus argue that most OSS projects are in a maintenance-
enhancement phase of development. Models such as the
COCOMO assume proportionality of effort when it comes to the
maintenance phase of a software project. This assumption we feel
is inadequate for the treatment of OSS projects, due to the nature
and complexity of the maintenance task in an open source
context.

3. OSS EFFORT ISSUES
In this section we will outline some of the issues relating to

OSS projects that need to be kept in mind while building an effort
estimation model.

Like any software development project, effort is not evenly
distributed across all participants. An analysis of the modification
requests in the Apache server project (by participants) shows that
more than 91% of the modification requests are being made by
10% of all contributors.

This skewed nature may seem a little extreme for any closed
source project and thus will have a profound effect on resource
allocation in an OSS project.

An issue that we will face in developing effort estimation
models for OSS projects is the validation of the model itself.
Unlike commercial organizations, few OSS developers keep track
of the effort they spent in fixing bugs or developing new
functionality. All we may have are time-stamps for when the bug
was identified to the time it was considered ‘closed’. Correlating
this time interval with the effort may lead to wildly fluctuating
estimates and thus an unreliable model.

0
15
30
45
60
75
90

1 10 100 1000

Number of Contributors (log scale)

Pe
rc

en
til

e(
%

)

51

Fig 1: Cumulative distribution of
modification requests

 7

Another factor that may influence our effort estimation
model is the possibility of collaboration amongst individuals that
are far flung across the world. While this imposes restrictions in
communication it could lead to shorter cycle-times for fixing
certain bugs (almost akin to the 24X7) maintenance model
adopted by software service organizations in India[15]. This is
almost dependent on the culture within the project we are
considering rather than any OSS project.

In OSS projects, majority of the effort seems to be expended
in routine maintenance of the existing system or rather fixing
bugs. Models such as the COCOMO use SLOC as a measure of
size (or rather output). In a maintenance context, effort estimates
are a function of the code that was changed. The question that
arises is: Is SLOC a good measure of output in a maintenance
context? While the size of the code-base is correlated to the
complexity of the code, the modification of a small number of
lines does not by any means indicate that less effort was spent
thinking about and formulating a solution to a problem that a
modification that required modification of a relatively larger
number of lines of code.

4. DISCUSSION AND FUTURE WORK
We believe that effort estimation models for OSS projects

will be important in the future as more commercial organizations
adopt the processes and open their development to the community
to modify and improve. Organization will need means by which
they can estimate the amount of resources they must invest in the
project in order to obtain the necessary deliverables (be it in
improved functionality, lower defects or improved security)

The existing effort estimation models are inadequate for the
purpose and thus we need to develop new models for OSS
projects. In the previous section we outlined some of the issues
that need to be taken into consideration whilst developing an OSS
effort estimation model.

We plan to work on developing an OSS effort estimation
model that will take into consideration some of the issues raised
here. While parametric models are not completely ruled out, we
see that in the case of OSS projects, we may have to develop
“Activity Based Costing” type estimation models. In this kind of
model one breaks down the task at hand into unit activities for
which one can easily estimate the effort required.

In future work, we also plan to use the available time-stamp
data for bug fixes and run controlled experiments in fixing bugs to
correlate these time intervals with possible effort estimates. This
may help us in validating some parts of our model.

We see this as a first step towards a new form of software
development and look forward to interesting ideas from other
researchers and practitioners.

5. ACKNOWLEDGMENTS
Thanks to faculty at the University of Texas at Dallas for useful
discussions on this topic.

6. REFERENCES
[1] Boehm, B. Software Engineering Economics, Prentice Hall,

New Jersey, 1981.
[2] Feller, J. Fitzgerald, B. 2002. Understanding Open Source

Software Development Addison Wesley, London, England.
[3] Lerner, J., Tirole, J. (2002). “Some Simple Economics of

Open Source,” Journal of Industrial Economics, 52, 197-234
[4] Raymond, E. 1999. The Cathedral and the Bazaar, O'Reilly,

Sebastopol, CA.
[5] “IBM puts cash behind Linux push”,

http://news.bbc.co.uk/1/hi/technology/4276287.stm
downloaded on 2/19/2005.

[6] “Star Office released in Largest Open Source Project”,
http://linuxtoday.com/news_story.php3?ltsn=2000-10-13-
002-21-NW-DT-SW D downloaded on 2/19/2005

[7] “Apple releases source code for Darwin 7.0”
http://www.newsforge.com/os/03/10/28/2247203.shtml?tid=
6&tid=82&tid=94 downloaded on 2/19/2005

[8] “IBM to release Java Database to Open-Source Group”
http://www.eweek.com/article2/0,1759,1630856,00.asp,
downloaded on 2/19/2005

[9] Jensen, C and Scacchi, W. “Collaboration, Leadership,
Control, and Conflict Negotiation in the NetBeans.org
Software Development Community,” Proc.of the 38th.
Hawaii International Conference on Systems Sciences, Kona,
HI, January 2005

[10] Jensen, C and Scacchi, W. “Data Mining for Software
Process Discovery in Open Source Software Development
Communities,” Proc. Workshop on Mining Software
Repositories, 96-100, Edinburgh, Scotland, May 2004

[11] Gasser, L. Scacchi, W., G. Ripoche, and B. Penne
“Understanding Continuous Design in F/OSS Projects,”
16th. Intern. Conf. Software & Systems Engineering and their
Applications, Paris, December 2003.

[12] W. R. Park and D. E. Jackson, Cost Engineering Analysis: A
Guide to Economic Evaluation of Engineering Projects, John
Wiley, New York, 1984.

[13] Pankaj Jalote, An Integrated Approach to Software
Engineering, Springer-Verlag, New York, 1991.

[14] Hu, Qing , R. Plant and David Hertz, “Software Cost
Estimation Using Economic Production Models,” Journal of
Management Information Systems, Vol.15, No.1, pp. 143-
163, Summer 1998

[15] Arora, A., Arunachalam, V.S., Asundi, J.M., and Fernandes,
R., "The Indian Software Services Industry," Research
Policy (30) 8, 2001, pp.1267-1287

