
 43

Investigating Quality in Large-Scale Open Source Software
 Uzma Raja, Evelyn Barry

Texas A&M University
College Station, TX

1-979-845-6995

{uraja,ebarry}@mays.tamu.edu

ABSTRACT
Open Source Software (OSS) development and use has increased
significantly over recent years. Therefore, there is a need to
analyze and understand these projects. Software quality is an
important characteristic effecting overall system lifecycle cost,
performance and useful life. The existing models for software
quality are based on empirical analysis of propriety source
software (PSS), and need to be verified in OSS. Research on PSS
has revealed that software quality declines, as it ages. Part of this
decline is associated with the lifecycle maintenance activities that
introduce change in the size and complexity of the system, while
introducing software errors into modified system. Lifecycle
maintenance activities in OSS systems are processed under a very
different paradigm. We are interested in investigating the effects
of maintenance activities on OSS project outcomes. Linux is one
of the most popular and complex OSS project available. In our
research, we investigate the characteristics of Linux source code.
In this position paper we present some preliminary results of the
effects of various types of maintenance activities on quality of
Linux software.

Keywords
Software Quality, Software Maintenance, Open Source, Linux
Operating System

1. INTRODUCTION
Over 30 years ago Fred Brooks wrote about the need for a silver
bullet to help software engineers and IS professionals speed the
process of creating and maintaining software systems. Now, even
in the 21st century, software systems continue to be expensive to
build and challenging to maintain. In recent years there has been a
growth in the re-use of source code, and the use of off-the-shelf
software. In many of these cases the source code is unavailable
for the user to analyze. If the software does not perform as
expected the IS manager and project leaders are at the mercy of
the owner of the source code as to whether or not any changes can,
or will, be made.

The OSS movement is changing the way software is developed,
maintained and updated [1-3]. OSS systems are commonly
developed as free ware and are available at little or no cost.
Recently, OSS have been used in more and more software
systems. For example, Apache, an OSS project, has 66.04 % of the
web server market share (Netcraft 2004). The number of people
using Linux Operating system is estimated at 150,000 based on
registered Linux users. The reason for the increase in OSS use is
not only the low cost and easy access to the code, but also
consistently high software quality [2]
Current research on software quality is based on empirical data
from software systems developed through traditional methods.
The most frequently cited software quality measures are counts of
system failure, i.e. counts of abnormal terminations (abends), and
counts of nonconformance to user-defined requirements [4]. With
OSS, we need to re-examine the metrics used to assess software
system quality.
Linux is one of the most successful OSS projects and is being used
with many commercial applications [3, 9]. In this research we
explore some important software characteristics that contribute to
consistent software quality in Linux. In the following sections, we
present some important quality characteristics and maintenance
activities in OSS. We then develop a model for quality in OSS and
empirically test it, using historical data for the Linux
modifications and the corresponding lifecycle maintenance change
logs.

2. QUALITY CHARACTERISTICS IN OSS
Software quality is one of the most important metrics for the
success of a software project. Barry Boehm defines software
quality as “ achieving high levels of user satisfaction, portability,
maintainability, robustness and fitness for use” [10]. Jones refers
to quality as “ the absence of defects that would make software
either stop completely or produce unacceptable results” [11].
These definitions of software quality cannot be applied directly to
OSS. Unlike CSS, user requirements are not formally available in
OSS. Existing quality models provide a list of quality carrying
characteristics that are responsible for high quality (or otherwise)
of software. We can divide OSS into two major categories: Type-
1: Projects that are developed to replicate and replace existing CSS
software; and Type-2: Projects initiated to create new software
that has no existing equivalent CSS software. Linux is an example
of Type-1 software, which was originally developed as a
replacement for UNIX. Protégé, ontology development software is
an example of Type-2 software. We identify some important
quality carrying characteristics in OSS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO, USA.

Copyright 2005 ACM 1-59593-127-9 … $5.00.

 44

2.1 Reliability
Reliability refers to the persistence of the output provided by the
system. The reliability factor is concerned with the behavior of the
software. It is the extent to which it performs its intended
functions with required precision. The software should behave as
expected in all possible states of the environment. Although OSS
is available free of cost, yet such software needs to have a
minimum operational reliability to make it useful for any
application. Reliability has a significant effect on software
quality, since the user acceptability of a product depends upon its
ability to function correctly and reliably [12].

2.2 Functionality
Functionality refers to providing minimum functions as required
by the user. For Type-1 OSS there are no formal functionality
requirements, yet there will be a certain level of expectations in
terms of its functionality compared to an existing CSS. New users
will adopt Type-1 software, if it provides the basic functionality of
its CSS equivalent. In case of Type-2 OSS, there is no existing
software to derive functional requirements from, thus new users
will be defining such requirements according to their own needs.
A Type-1 OSS will be considered of a high quality if it provides
basic functionality of its CSS equivalent. On the other hand Type-
2 OSS will be considered of a high quality if it provides the
functional requirements of its active users at a steady pace.

2.3 Availability
Availability means that the software should be available to the
user at minimum required time. This attribute is becoming very
critical especially in the area of e-services. Depending upon the
context, availability will have a different meaning, for example in
mission critical space software, availability will be in terms of
processing power availability for computation of complex
algorithms, while in the field of e-services, it will be the
availability of software system to support hardware for 24/7
service (hacker attacks will reduce availability of system). In open
source, free availability of code may create a conflicting situation.
The software source code is available globally. This means that
users can identify potential vulnerabilities, but it also implies that
hackers can also exploit these vulnerabilities easily. Hence the
quality will depend upon how vigilant the active users are in
detecting vulnerabilities and protecting the software from
malicious hacking activities. Projects that fail to provide secure
software will experience decline in quality and users.

2.4 Maintainability
Maintainability in general refers to the ability to maintain the
system over a period of time. This will include ease of detecting,
isolating and removing defects. Additionally, factors such as ease
of addition of new functionality, interface to new components,
programmers ability to understand existing code and test team’s
ability to test the system (because of option like test instructions
and test points) will enhance the maintainability of a system.
Maintenance is a huge cost driver in software projects. OSS is
downloaded and used by a global community of users. There are
no face-to-face interactions among the maintainers of the software.
They have to rely upon the documentation with in the source code
and on communication through message boards. Therefore OSS is
required to be highly maintainable. Lack of proper interface
definition, structural complexity and insufficient documentation in

an existing version of OSS can discourage new contributions.
Since participation is voluntary, low maintainability will generate
minimum participation of active users and hence will have a
negative effect on quality.

2.5 Reusability
In CSS there is use of existing modules for multiple projects.
Development costs are a major factor affecting this quality
characteristic in CSS domain. In OSS, there is no development or
maintenance cost. OSS communities encourage development and
use of reusable modules that can be shared and implemented
easily. OSS that employs reusable modules will attract more
contributions and maintain a high quality.

3. SOFTWARE MAINTENANCE IN OSS
Software maintenance is the modification of a software product
after completion of development, to correct faults, improve
performance, or to adapt to a changed environment (ANSI/IEEE,
1983). According to Lehman et al. “e-type programs1 will be
perceived as of declining quality unless rigorously maintained and
adapted to a changing operational environment;” hence system
quality is at constant decay [14-16]. One of the major contributors
to this decline is lifecycle maintenance activity [16]. In software
developed and maintained through conventional methodologies,
the effort spent on maintenance represents a majority of the costs
incurred during the useful life of a system. Researchers studying
lifecycle software costs have shown that software maintenance
activities account for as much as 90% of the lifecycle cost of a
software system [17]. Extensive research has been done on how
maintenance effort increases as a system ages [14]. As more and
more organizations are adapting OSS at various levels, it is critical
to investigate the factors that affect the maintenance activities in
OSS domain. Unlike PSS, there are no contractual obligations for
maintenance; hence maintenance costs could be significant in the
form of lost business and non-availability of functions, if the
project fails to grow. Maintenance activities can be divided into
the following four categories.

3.1 Corrective maintenance
Corrective Maintenance is performed to remove a defect. It is
performed once a defect has occurred. It is performed at
unpredictable time, since there is no prior knowledge of the
presence of defect.

3.2 Adaptive maintenance
Adaptive maintenance is the change in the software to
accommodate changes to the environment in which it operates
(e.g. new hardware platforms or new business rules).

3.3 Perfective Maintenance
Perfective maintenance is the addition of new functionality It
involves making changes to improve some aspect of the system,
even when the changes are not suggested by faults.

1 E-type programs are programs that continually change, updated

and evolved [13]

 45

3.4 Preventive Maintenance
Preventive Maintenance involves changing some aspect of the
system to prevent failures. Preventive maintenance usually results
when a programmer finds an actual or potential fault that has not
yet become a failure and takes action to correct the fault before
damage is done. This type of activities will reduce he complexity
of the software and improve quality.

4. RESEARCH MODEL
OSS projects exhibit high quality despite absence of defined user,
requirements, costs or schedules. OSS is characterized by frequent
voluntary contributions from active users all across the globe. The
development and maintenance methods in OSS and PSS are
inherently different; hence we need new models that can explain
the factors affecting various software characteristics in OSS
systems. The usual metrics for software quality cannot be
collected for OSS systems due to the difference between the
software processes for OSS and PSS systems.
We believe that during different life cycle phases, importance of
the quality characteristics for active user will change. Initially,
users will start using the system, if it meets their functional
requirements. Hence functionality will be a critical characteristic.
Since the software is free, the users may be relaxed on reliability
expectations of the software. Most of the OSS maintains
production and experimental versions in parallel, so users have the
option for using a more stable version if they are concerned with
reliability or a more functional version that might not be very
reliable and stable at moment.
As the usage of OSS progresses and users start reporting errors,
other factors will also become important. From the point of view
of contributors to the maintainability will be important as
correction of errors or enhancement of the existing code is a
significant task and the more maintainable the code is, the easier it
will be for the maintainers to make changes. If the software lacks
in maintainability, the maintenance team might loose interest and
hence result in decline in quality.
For the original code contributors, reusability will become
important as the software grows in size and functionality. If the
users find the components developed in a project reusable, they
will be more likely to continue using the software.
The characteristic of Availability becomes significant when the
user has established the use of the software and is running
applications that are supported by the software e.g. an OSS
operating system. In such a case availability of the system and
security aspects will also add towards the overall user perception
of quality.

For any software, most of the lifecycle cost and effort is expended
in the detection and elimination of errors or for functionality
enhancements during maintenance [16, 18]. Addition of new
functionality can make the maintenance task more difficult. The
addition of new modules is usually accompanied by new errors
thus making the maintenance task more complex [19].

We model the effects of corrective, adaptive and preventive
maintenance on software quality. We combined perfective and
adaptive because changes made to accommodate environmental

requirements and user requirements will originate through the
same process in OSS.

Figure 1: Research Model for OSS Quality

In OSS communities, user of the software detects defects and
reports them (user can be a maintainer, author or an end user).
Individual projects have their own structure to remove defects.
Addition of new code to remove the defect will increase the
complexity of the software. The more complex the software is, the
harder it will be to make additions to it in future. If the code is not
well documented, maintainers will be reluctant to remove existing
lines of code. Corrective maintenance will reduce the reliability
and maintainability of the software. We expect a negative
relationship between corrective maintenance and quality.

Adaptive maintenance can present a complex scenario in case of
corporate use of OSS. If OSS is used in organizations which have
existing PSS applications, adaptive maintenance will be required
to accommodate interfaces to PSS. Perfective maintenance in OSS
will be very similar to Adaptive maintenance; therefore we group
the two together in our model. The effect of this category of
maintenance will be domain dependent. If the operational
environment of OSS is very dynamic then there will be a frequent
need for such maintenance. If on the other hand the operational
environment is stable and the users are not demanding frequent
addition of new functionality, there will less need for such
maintenance.

Preventative maintenance is proactive approach to maintenance.
We believe that OSS projects sustain a high level of quality
through significant preventative maintenance. We expect a
positive effect of such maintenance on software quality.

5. DATA ANALYSIS AND RESULTS
We are examining the research model using empirical data from
our analysis of the Linux source code, as it evolved through
version 2.4.0 to 2.4.20, a total of 21 releases. The period of release
was 2001 to 2003. We measure the size of individual modules in
each release and then use an aggregate measure for the entire
release. The total number of modules analyzed increase from 5571
in version 2.4.0 to 11340 in version 2.4.20. Software size is
measured in Source Lines of code (SLOC). We measure the raw
size from the tar ball of the kernel and the SLOC using Linux
commands for each module and for the complete system. We also
measure size in terms of number of C modules. All results are
validated and verified against test files. Changes to a Linux
version are provided in the form of a new patch. The user can

 46

simply download the new patch and the older version is updated to
the current version. We analyze the patch files to obtain the same
detailed metrics on each patch. We developed a tool to count the
number and type of modules being added, deleted or updated in a
newer version. We validated our tool against files of known
modules and changes. We also developed a tool to count the
number of corrective, adaptive or perfective maintenance from the
change logs. So far a total of 29580 patches has been analyzed in
the 21 releases.

0
20
40
60
80

100

120
140
160
180
200

1 3 5 7 9 11 13 15 17

Maintainers
Size

Figure 2: Growth of size and maintainers in Linux
Prior research has shown that Linux exhibits super linear growth
[5]. Our analysis indicated that the increase in size is accompanied
by a proportional increase in the number of maintainers, as shown
in figure 1. Thus the quality is maintained because an increase in
size of the software is accompanied by an increase in the effort
expended in maintenance.
As explained earlier, we believe that he importance of the quality
carrying characteristics will be dynamic in OSS. Since there is no
means to capture conformance to user requirements or user
satisfaction, for Linux we operationalize software quality in terms
of Software Maturity Index (SMI), as defined by IEEE std.982.1-
1988. SMI provides an indication of the stability of s software
product. As SMI begins to approach 1.0, software product begins
to stabilize. Preliminary results on testing of our model will be
ready for presentation at the workshop.

6. REFERNCES
[1] M.-W. Wu and Y.-D. Ling, "Open source software development :

An overview," IEEE Computing Practices, June 2001.
[2] E. S. Raymond, http://www.tuxedo.org/~esr/writings/cathedral-

bazaar/cathedral-bazaar/," 2003.
[3] T. O'Reilly, "Lessons from Open-source software development,"

Communications of the ACM, vol. 42, 1999.
[4] N. E. Fenton and S. Pfleeger, Software Metrics: A Rigorous

Approach. New York: Chapman & Hall, 1991.
[5] M. Godfrey and Q. Tu, "Growth, Evolution and Structural Change

in Open Source Software," presented at IWPSE, Vienna Austria,
2001.

[6] D. A. Wheeler, "More than a Gigabuck: Estimating GNU/Linux's
size," 2003.

[7] J. Paulson, G. Succi, and A. Eberlein, "An Empirical Study of
Open Source and Closed-Source Software Products," IEEE
Transactions of Software Engineering, vol. 30, April 2004.

[8] T. O'Reilly, "Lessons from open source software developmet,"
Communications of the ACM, vol. 42, pp. 32-37, 1999.

[9] A. Maccormack, "Red Hat and the Linux Revolution," in Harvard
Business School Case: 9-600-009, 2002.

[10] B. Boehm, "Software Engineering Economics," IEEE Transactions
on Software Engineering, vol. 10, pp. 4-21, 1984.

[11] C. L. Jones, "A Process-Integrated Approach to Defect
Prevention," IBM Systems Journal, vol. 24, pp. 150-167, 1985.

[12] L. J. Arthur, Measuring Programmer Productivity and Software
Quality. New York: Wiley, 1984.

[13] M. M. Lehman and J. F. Ramil, "Rules and Tools for Software
Evolution Planning and Management," Annals of Software
Engineering, vol. 11, pp. 15-44, 2001.

[14] S. G. Eick, T. L. Graves, A. K. Karr, J. S. Marron, and A. Mockus,
"Does Code Decay? Assessing he Evidence from Change
Management Data," IEEE Transactions on Software Engineering,
vol. 27, pp. 1-12, 2001.

[15] C. F. Kemerer, "Software Complexity and Software Maintenance,"
Annals of Software Engineering, vol. 1, pp. 1-22, 1995.

[16] M. M. Lehman and J. F. Ramil, "Software Evolution and Software
Processes," Annals of Software Engineering, vol. 14, pp. 275-309,
2002.

[17] K. H. Bennett, C. Knight, M. Munro, and J. Xu, "Centres of
Excellence: Research Institute in Software Evolution, University
of Durham," Computing and Control Engineering Journal, pp.
179-186, 2000.

[18] E. B. Swanson and E. Dans, "System Life Expectency and the
maintanance Effort: Exploring their Equilibrium," MIS Quarterly,
vol. 24, pp. 277-297, 2000.

[19] F. P. Brooks, The Mythical Man-Month: Addison Wesley, 1995.

