
 52

OpenEC/B: Electronic Commerce and Free/Open Source
Software Development

Walt Scacchi
Institute for Software Research

Donald Bren School of Information and Computer Sciences
University of California, Irvine
Irvine, CA 92697-3425 USA

http://www.ics.uci.edu/~wscacchi
ABSTRACT
This report investigates Open Source E-Commerce or E-Business
capabilities. This entails a case study within one firm that has
undertaken an organizational initiative to develop, deploy, use,
and support free/open source software systems for Enterprise
Resource Planning (ERP), E-Commerce (EC) or E-Business (EB)
services. The objective is to identify and characterize the
resource-based software product development capabilities that lie
at the center of the initiative.

1. INTRODUCTION
This paper presents and analyzes a case study that examines how
a firm can support an E-Commerce or E-Business initiative that
builds from free/open source software (FOSS) product
development capabilities. Such capabilities may focus, for
example, on back office activities associated with corporate
financial operations, or on front office activities associated with
customer relationship management. Alternatively, the focus may
be directed as an organizational system where wireless, mobile, or
p2p capabilities are sought.

The study employs a resource-based view of the organizational
system involved in developing an open source EC/EB software
products or application systems. The analysis and results of the
case study focus attention to data that characterizes the
organization's resource-based product development capabilities.
This case study examines the GNUenterprise.org project. This
study serves as a point of departure to explicate the concept of
Open EC/B introduced in this paper. Open EC/B results from
combining OSSD concepts, techniques, and tools with those for
EC and EB.

2. Case Study: GNUenterprise.org and
the development of FOSS ERP software
GNUenterprise.org is an international virtual organization for
software development [Crowston and Scozzi 2002, Noll and
Scacchi 1999] based in the U.S. and Europe that is developing a
free, open source Enterprise Resource Planning (ERP) systems
and related E-Business capabilities.

As such, these conditions make this study unique in comparison
to previous case studies of EC or EB initiatives, which generally
assume the presence of a centralized administrative authority and
locus of resource control common in most large firms.
Nonetheless, we still need a better understanding of what
resource-based capabilities are brought to bear on the
development and deployment of EB and ERP software by
GNUenterprise.org. Subsequently, what follows is a description
of key resources being employed throughout GNUenterprise.org
to develop and support the evolution of the GNUe software
modules.

The following sections present an interpretive analysis of the case
study, as is appropriate for the kinds of data and descriptions that
have been presented and in related studies [cf. Scacchi 2001,
2002, Skok and Legge 2002]. One category of challenges to Open
EC/B that is apparent are those denoting resource-based
capabilities.

3. Resources and Capabilities for
Open EC/B
In this section, the two different contexts in which Plone has been
reused are described. Firstly, it has formed the basis for the
collaboration and communication infrastructure for the EU FP6
Coordination Action for Libre Software Engineering for Open
Development Platforms for Software and Services (“CALIBRE”1)
project. Secondly, based on this earlier use, it has been adapted
as the content management system for the newly-formed British
Computer Society Open Source Specialist Group. These two
contexts differ greatly in their requirements; however the
flexibility of Plone has allowed the same system to be adapted to
meet the requirements in both cases.
What kinds of resources or business capabilities are needed to
help make Open EC/B efforts more likely to succeed? Based on
what was observed in the GNUenterprise.org case study, the
following kinds of resources enable the development of both

1http://calibre.ie/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Open Source Application Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOSSE) May 17, 2005, St Louis, MO, USA.
Copyright 2005 ACM 1-59593-127-9 … $5.00.

 53

FOSS ERP/EB software and community that is sustaining its
evolution, application and refinement:

3.1 Personal software development tools
and networking support
FOSS developers, end-users, and other volunteers provide their
own personal computing resources in order to access or
participate in a FOSSD community project. They similarly
provide their own access to the Internet, and may even host
personal Web sites or information repositories. Furthermore,
FOSS developers bring their own choice of tools and
development methods to the community. The sustained
commitment of personal resources helps subsidize the emergence
and evolution of the community, and its shared (public)
information resources. It also helps create recognizable shares of
the commons that are linked (via hardware, software, and Web) to
community infrastructure.

3.2 Beliefs supporting FOSSD
Why do software developers and others contribute their skill,
time, and effort to the development of FOSS and related
information resources? Though there are probably many diverse
answers to such a question, it seems that one such answer must
account for the belief in the freedom to share, learn, modify, and
redistribute the evolving results from a FOSSD project. Without
such belief, it seems unlikely that there could be "free" and "open
source" software development projects [DiBona, Ockman and
Stone, 1999, Williams 2002]. However, one important
consideration that follows is what are the consequences from such
belief, and how are these consequences put into action.

In looking across the case study data, many kinds of actions or
choices emerge from the development of FOSS. Primary among
them is freedom of expression and choice. Neither of these
freedoms is explicitly declared, assured, or protected by free
software copyright or community intellectual property rights.
These additional freedoms are expressed in choices for what to
develop or work on (e.g., choice of work subject or personal
interest over work assignment), how to develop it (choice of
method to use instead of a corporate standard), and what tools to
employ (personal tool choice versus only using what is provided).
They also are expressed in choices for when to release work
products (choice of satisfaction of work quality over schedule),
determining what to review and when (modulated by community
ownership responsibility), and expressing what can be said to
whom with or without reservation (modulated by trust and
accountability). Shared belief and practice in freedom of
expression and choice are part of the organizational culture that
characterizes a community project like GNUenterprise.org [Elliott
and Scacchi 2004]. Subsequently, putting these beliefs and
cultural resources into action builds both community and FOSS.

3.3 Competently skilled and self-organizing
FOSS developers
Developing complex software modules for ERP applications
requires skill and expertise in the domain of EB and EC.
Developing these modules in a way that enables an open
architecture requires a base of prior experience in constructing
open systems. The skilled use of project management tools for
tracking and resolving open issues and bug reports also

contributes to the development of such a system architecture.
These are among the valuable professional skills that are
mobilized, brought to, or drawn to FOSSD community projects
like GNUenterprise.org [cf. Crowston and Scozzi 2002]. These
skills are resources that FOSS developers bring to their projects.

FOSS developers organize their work as a virtual organizational
form that seems to differ from what is common to in-house,
centrally managed software development projects. Within in-
house development projects, software application developers and
end-users often are juxtaposed in opposition to one another.
Danziger [1979] referred to this concentration of software
development skills, and the collective ability of an in-house
development organization to control or mitigate the terms and
conditions of system development as a "skill bureaucracy". Such a
software development skill bureaucracy would seem to be mostly
concerned with rule-following and rationalized decision-making,
perhaps as guided by a "software development methodology" and
its corresponding computer-aided software engineering tool suite.

In the decentralized virtual organization of a FOSSD community
like GNUenterprise.org, a "skill meritocracy" [cf. Fielding 1999]
appears as an alternative to the skill bureaucracy. In such a
meritocracy, there is no proprietary software development
methodology or tool suite in use. Similarly, there are few explicit
rules about what development tasks should be performed, who
should perform, when, why, or how. Instead, FOSSD participants
organize around the expertise, reputation, and accomplishments of
core developers, secondary contributors, and tertiary reviewers
and other volunteers.

Participants nearer the core have greater control and discretionary
decision-making authority, compared to those further from the
core. However, realizing such authority comes at the price of
higher commitment of personal resources described above. Being
able to make a decision stick or to convince other community
participants as to the viability of a decision, advocacy position,
issue or bug report, also requires time, effort, communication, and
creation of project content to substantiate such an action. This
authority also reflects developer experience as an interested end-
user of the software modules being developed. Thus, developers
possessing and exercising such skill may be intrinsically
motivated to sustain the evolutionary development of their free
open source ERP and EB software modules, so long as they are
active participants in their community project.

3.4 Discretionary time and effort of
developers
Are OSS developers working for "free" or for advancing their
career and professional development? Following the survey
results of Hars and Ou [2002] and others [Lerner and Tirole 2000,
Hann, et al. 2002], there are many personal and professional
career oriented reasons for why participants will contribute their
time and effort to the sometimes difficult and demanding tasks of
software development. What we have found in GNUenterprise.org
appears consistent with their observations. These include include
not only self-determination, peer recognition, community
identification, and self-promotion, but also belief in inherent
value of free software [cf. DiBona, Ockman, and Stone, 1999,
Williams 2002].

 54

In the practice of self-determination, no one has the
administrative authority to tell a project member what to do,
when, how, or why. OSS developers can choose to work on what
interests them personally. FOSS developers, in general, work on
what they want, when they want. However, they remain
somewhat accountable to the inquiries, reviews, and messages of
others in the community, particularly with regard to software
modules for which they have declared responsibility to maintain
or manage as a core developer.

In the practice of peer recognition, a developer becomes
recognized as an increasingly valued community contributor as a
growing number of their contributions make their way into the
core software modules [Bergquist and Ljundberg 2001]. In
addition, nearly two-thirds of OSS developers work on 1-10
additional OSSD projects [Hars and Ou 2002], which also reflects
a growing social network of alliances across multiple free, OSSD
projects [cf. Monge, et al. 1998]. The project contributors who
span multiple project communities can serve as "social gateways"
that increase the community's mass [Marwell and Oliver 1993]
and opportunity for inter-project software composition and
bricolage. It also enables and empowers their recognition across
multiple communities of FOSSD peers.

In building community identification, project participants build
shared domain expertise, and identify who is expert in knowing
how to do what [cf. Ackerman and Halverson 2000]. Interlinked
contents and persistent communicated messages help point to who
the experts and core contributors are.

In self-promotion, project participants communicate and share
their experiences, perhaps from other application domains or
work situations, about how to accomplish some task, or how to
develop and advance through one's career. Being able to move
towards the center or core of the development effort requires not
only the time and effort of a contributor, but also the ability to
convince others as to the significance of the contributions. This is
necessary when a participant's contribution is being questioned in
open project communications, not incorporated (or "committed")
within a new build version, or rejected by vote of those already
recognized as core developers [cf. Fielding 1999].

The last source of discretionary time and effort observed in
GNUenterprise.org is found in the freedoms and beliefs in
FOSSD that are shared, reiterated and put into observable
interactions. If a community participant fails to sustain or reiterate
the freedoms and beliefs institutionalized in the GPL, then it is
likely the person will leave the project and community. But
understanding how these freedoms and beliefs are put into action
points to another class of (sentimental) resources that must be
mobilized and brought to bear in order to both develop FOSS
systems and the global communities that surround and empower
them.

3.5 Trust and social accountability
mechanisms
Developing complex software modules for ERP, EB, or EC
applications requires trust and accountability among project

participants. Though trust and accountability in a FOSSD project
may be invisible resources, ongoing software and community
development work occur only when these intangible resources
and mechanisms for social control are present [cf. Hertzum 2002].

The intangible resources arise in many forms. They include
assuming ownership or responsibility of a community software
module, voting on the approval of individual action or
contribution to community software [Fielding 1999], shared peer
reviewing [DiBona, Ockman and Stone 1999], and by
contributing gifts [Bergquist and Ljundberg 2001] that are
reusable and modifiable public goods [Olson 1971]. They also
exist through the community's recognition of a core developer's
status, reputation, and geek fame [Pavlicek 2000]. Without these
attributions, developers may lack the credibility they need to
bring conflicts over how best to proceed to some accommodating
resolution. Finally, as a FOSSD project grows in terms of the
number of contributing developers, end-users, and external
sponsors, then community's mass becomes sufficient to insure that
individual trust and accountability to the project community are
sustained and evolving [Marwell and Oliver 1993].

Thus, FOSSD efforts rely on mechanisms and conditions for
gentle but sufficient social control that helps constrain the overall
complexity of the project. These constraints act in lieu of an
explicit administrative authority or project management regime
that would schedule, budget, staff, and control the project's
development trajectory with varying degrees of administrative
authority and technical competence.

3.6 FOSSD informalisms
Software informalisms [Scacchi 2002] are the information
resources and artifacts that participants use to describe, proscribe,
or prescribe what's happening in a FOSSD project. They are
informal resources that are comparatively easy to use, and
immediately familiar to those who want to join the community
project. However, the contents they embody require extensive
review and comprehension by a developer before core
contributions can be made. The most common informalisms
include community communications and messages within Email,
threaded Email discussion forum, news postings, community
digests, and instant messaging chat. They also include scenarios
of usage as linked Web pages, how-to guides, to-do lists, FAQs,
and other itemized lists, as well as traditional system
documentation and external publications. FOSS community
property licenses also help to define what software or related
project content are protected resources that can subsequently be
shared, examined, modified, and redistributed. Finally, open
software architectural designs, scripting languages like Perl and
PhP, and the ability to either plug-in or integrate software
modules from other OSSD efforts, are all resources that are used
informally, where or when needed according to the interests or
actions of project participants.

All of the software informalisms are found or accessed from
project related Web sites or portals. These Web environments are
also software informalisms [Scacchi 2002]. A project’s Web
presence helps make visible the community's information
infrastructure and the array of information resources that populate
it. These include OSSD community project Web sites (e.g.,
SourgeForge.net, Savanah.org, and Freshment.org), community

 55

software Web sites (PhP-Nuke.org), and project Web site
(www.GNUenterprise.org), as well as embedded project source
code Webs (directories), project repositories, and software bug
reports and issue tracking data base.

Together, these software informalisms constitute a substantial
collection of information resources and artifacts that are
produced, used, consumed, or reused within and across FOSSD
projects.

3.7 FOSSD capability enabling free, open
ERP and EB systems
The array of social, technological, and informational resources
that enable a FOSSD project is substantial. However, they differ
in kind and form from the traditional enterprise resources that are
provided to support proprietary, closed source software systems.
These traditional resources are money (budget), time (schedule),
skilled development staff, project managers (administrative
authority), quality assurance (QA) and testing groups,
documentation writers, computer hardware and network
maintainers, and others. FOSSD projects seem to get by with
comparatively small amounts of money, though subsidies of
various kinds and sources are present and necessary. They also
get by without explicit schedules, though larger projects may
announce target release dates, as well as (partially) order which
system functions or features will be included in some upcoming
versions, for some target release. Further, they get by without the
rule-making and decision-making authority of project managers,
who may or may not be adept at empowering, coaching, or
rewarding development staff to achieve corporate software
development goals. The remaining resources are provided within
a FOSSD effort via subsidies, sponsorship, or volunteer effort.

Thus, the resources for FOSSD efforts are different: they are not
mobilized, allocated, or otherwise brought to bear in the manner
traditional to the development of proprietary, closed source
software systems. Hopefully, it should be clear that the
differences being highlighted are not based simply on a
comparison of functionality or features visible in the development
or use of open vs. close source software products. As such, the
resource-based capability for developing FOSS components or
modules for ERP, EB and EC applications is different.

4. CONCLUSIONS
Two main conclusions can be drawn from the study, data, and
analysis presented in this report.
First, this study identified and introduced a new concept called
OpenEC/B. OpenEC/B denotes the integration of FOSSD
resources, products, and processes, with the existing or emerging
capabilities for Electronic Commerce/Business. This concept and
its consequences are explained in the case study and analysis. No
prior case studies of EC/EB have identified or addressed whether
or how OSS methods might be applied or integrated with EC/EB,
at least beyond the use of OSS Web servers or Web-site content
management systems. Thus, there is an opportunity for firms to
begin considering whether these results merit timely consideration
or exploratory investments. For example, companies offering
consumer products or high value, information technology based
products and services may begin to consider whether OpenEC/B
capabilities that offer lower purchase prices, lower total cost of
ownership, and higher quality represent new market entry or new

product differentiation opportunities. Similarly, companies may
find FOSSD represents a highly innovative approach to software
product development that marries the best capabilities from both
private investment and collective action [Marwell and Oliver
1993, Olson 1971, von Hippel and von Krogh 2003]

Last, this study identifies resources and resource-based capability
for OpenEC/B that may explain or predict (a) what’s involved, (b)
how it works, or (c) what conditions may shape the longer-term
success or failure of such efforts. In simple terms, these resources
include time, skill, effort, belief, personal and corporate subsidies,
and community building on the part of those contributing as
developers and users of OpenEC/B systems and techniques. Of
these, belief in the freedoms that open source system development
allows appears central. Developers and users who believe in the
promise and potential of OpenEC/B systems are willing to
allocate (or volunteer) their time and apply their skills to make the
effort of developing or using open source systems a viable and
successful course of action. Thus companies seeking to invest in
or exploit OpenEC/B techniques or systems must account for how
it can most effectively cultivate an OpenEC/B culture, belief
system, and community of practice, as part of their strategic
choice.

Acknowledgements: The research described in this report is
supported by grants from the NSF Industry/University Research
Cooperative CRITO Consortium, National Science Foundation #
0083075, #0205679, #0205724, and #0350754 and from the
Defense Acquisition University by contract N487650-27803. No
endorsement implied..

References
[1] M. Ackerman and C. Halverson, Reexamining
Organizational Memory, Communications ACM, 43(1), 59-64,
January 2000.
[2] M. Bergquist and J. Ljungberg, The Power of Gifts:
Organizing Social Relationships in Open Source Communities,
Info. Systems J., 11(4), 305-320, 2001.
[3] K. Crowston and B. Scozzi, Open Source Software Projects
as Virtual Organizations: Competency Rallying for Software
Development, IEE Proceedings--Software, 149(2), 3-17, 2002.
[4] J. Danziger, The Skill Bureaucracy and Intraorganizational
Control: The Case of the Data-Processing Unit, Sociology of Work
and Occupations, 21(3), 206-218, 1979.
[5] C. DiBona, S. Ockman and M. Stone, Open Sources: Voices
from the Open Source Revolution, O'Reilly Press, 1999.
[6] M. Elliott and W. Scacchi, Free Software Development:
Cooperation and Conflict in A Virtual Organizational Culture, in
S. Koch (ed.), Free/Open Source Software Development, 152-172,
Idea Publishing, Pittsburgh, PA, 2004.
[7] R. Fielding, Shared Leadership in the Apache Project,
Communications ACM, 42(4), 42-43, 1999.
[8] I-H. Hann, J. Roberts, S. Slaughter, and R. Fielding, Why Do
Developers Contribute to Open Source Projects? First Evidence of
Economic Incentives, Proc. 2nd Workshop on Open Source
Software Engineering, Orlando, FL, May 2002.

 56

[9] A. Hars and S. Ou, Working for Free? Motivations for
Participating in Open-Source Projects, Intern. J. Electronic
Commerce, 6(3), 25-39, 2002.
[10] M. Hertzum, The importance of trust in software engineers'
assessment and choice of information sources, Information and
Organization, 12(1), 1-18, 2002.
[11] J.Lerner and J. Tirole, Some Simple Economics of Open
Source, Journal of Industrial Economics, 52, 2002.
[12] G. Marwell and P. Oliver. The Critical Mass in Collective
Action: A Micro-Social Theory. Cambridge University Press,
1993.
[13] P.R. Monge, J. Fulk, M.E. Kalman, A.J. Flanagin, C.
Parnassa and S. Rumsey. Production of Collective Action in
Alliance-Based Interorganizational Communication and
Information Systems, Organization Science, 9(3): 411-433, 1998.
[14] J. Noll and W. Scacchi, Supporting Software Development
in Virtual Enterprises, Journal of Digital Information, 1(4),
February 1999.

[15] M. Olson, The Logic of Collective Action, Harvard
University Press, Cambridge, MA, 1971.
[16] R. Pavlicek, Embracing Insanity: Open Source Software
Development, SAMS Publishing, Indianapolis, IN, 2000.
[17] W. Scacchi, Redesigning Contracted Service Procurement
for Internet-based Electronic Commerce: A Case Study, J.
Information Technology and Management, 2(3), 313-334, 2001.
[18] W. Scacchi, Understanding the Requirements for
Developing Open Source Software Systems, IEE Proceedings--
Software, 149(2), 24-39, 2002.
[19] W. Skok and M. Legge, Evaluating Enterprise Resource
Planning (ERP) System using an Interpretive Approach,
Knowledge and Process Management, 9(2), 72-82, 2002.
[20] E. von Hippel and G. von Krogh, Open Source Software and
the “Private-Collective” Innovation Model: Issues for
Organization Science, Organization Science, 14(2), 209-223,
2003.
[21] S. Williams, Free as in Freedom: Richard Stallman's
Crusade for Free Software, O'Reilly Books, Sebastopol, CA,
2002.

