
Understanding and Improving
Software Productivity

Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425 USA
www.ics.uci.edu/~wscacchi

16 February 2005

http://www.ics.uci.edu/~wscacchi

2

Introduction

• What affects software productivity?
– Software productivity has been one of the most studied

aspects of software engineering
– Goal: review sample of empirical studies of software

productivity for large-scale software systems from the
1970's through the early 2000's.

• How do we improve software productivity?
– Looking back (history)
– Looking forward (future)

3

Understanding and improving
software productivity:

Historic view

4

Preview of findings
• Most software productivity studies are inadequate

and misleading.
• How and what you measure determines how much

productivity you see.
• Small-scale programming productivity has more

than an order of magnitude variation across
individuals and languages

• We find contradictory findings and repeated
shortcomings in productivity measurement and
data analysis, among the few nuggets of improved
understanding.

5

Basic software productivity dilemma

• What to measure?
• Productivity is usually expressed as a ratio

– Outputs/Inputs
– This assumes we know what the units of output and

input are
– This assumes that both are continuous and linear (like

“real numbers”, not like “weather temperatures”)

6

Software productivity dilemma

• We seek to understand what affects and how to
improve software productivity
– Measurement is a quest for certainty and control
– What role does measurement take in helping to improve

software productivity?

• Measurement depends on instrumentation, so the
relationship must be clear.

• Instrumentation choices lead to trade-offs.

7

Measurement-instrumentation trade-offs
• Who/what should perform measurement?
• What types of measurements to use?
• How to perform the measurements?
• How to present results to minimize distortion?
• Most software productivity studies assume ratio

measurement data is preferred.
– However, nominal, ordinal, or interval measures may

be very useful.
• Thus, what types of measures are most appropriate

for understanding software productivity?

8

Why measure software productivity?

• Increase software production productivity or
quality

• Develop more valuable products for lower costs
• Rationalize higher capital-to-staff investments
• Streamline or downsize software production

operations
• Identify production bottlenecks or underutilized

resources
• But trade-offs exist among these!

9

Who should measure software
productivity?

• Programmer self-report
• Project or team manager
• Outside analysts or observers
• Automated performance monitors
• Trade-offs exist among these

10

What to measure?

• Software products
• Software production processes and

structures
• Software production setting

11

Software products

• Delivered source statements, function points, and
reused/external components

• Software development analyses
• Documents and artifacts
• Application-domain knowledge
• Acquired software development skills with

product or product-line

12

Software production processes
• Requirements analysis: frequency and distribution of requirements changes, and

other volatility measures.
• Specification: number and interconnection of computational objects, attributes,

relations, and operations in target system, and their volatility.
• Architectural design: design complexity; the volatility of the architecture's

configuration, version space, and design team composition; ratio of new to
reused architectural components.

• Unit design: design effort; number of potential design defects detected and
removed before coding.

• Coding: effort to code designed modules; ratio of inconsistencies found between
module design and implementation by coders.

• Testing: ratio of effort allocated to spent on module, subsystem, or system
testing; density of known error types; extent of automated mechanisms employed
to generate test case data and evaluate test case results.

13

Software production setting

• Programming language(s)
• Application type

• Computing platforms
• Disparity between host and target platforms
• Software development environment
• Personnel skill base
• Dependence on outside organizations
• Extent of client or end-user participation
• Frequency and history of mid-project platform upgrades
• Frequency and history of troublesome anomalies and mistakes in prior projects

14

Findings from software productivity
studies

• More than 30 empirical studies of software
productivity have been published
– Aerospace, telecommunications, insurance, banking,

IT, and others
– Company studies, laboratory studies, industry studies,

field studies, international studies, and others
• A small sample of studies

– ITT Advanced Technology Center (1984)
– USC System Factory (1990)
– IT and Productivity (1995)

15

ITT Advanced Technology Center
• Systematic data on programming productivity,

quality, and cost was collected from 44 projects in
17 corporate subsidiaries in 9 countries,
accounting for 2.3M LOC and 1500 person years
of effort.

• Finding: product-related and process-related
factors account for approximately the same
amount (~33%) of productivity variance.

• Finding: you can distinguish productivity factors
that can be controlled (process-related) from those
that cannot (product-related).

16

ITT productivity factors
Process-related factors (more

easily controlled)
• avoid hardware-software

co-development
• development computer size

(bigger is better)
• Stable requirements and

specification
• use of "modern

programming practices”
• assign experienced personnel

to team

Product-related factors (not
easily controlled)

• computing resource
constraints (fewer is
better)

• program complexity (less
is better)

• customer participation
(less is better)

• size of program product
(smaller is better)

17

USC System Factory
• Examined the effect of teamwork in developing both formal and

informal software specifications.
• Finding: observed variation in productivity and specification quality

could be best explained in terms of recurring teamwork structures.
– Six teamwork structures (patterns of interaction) were observed

across five teams; teams frequently shifted from one structure to
another.

• High productivity and high product quality results could be traced back
to observable patterns of teamwork.

• Teamwork structures, cohesiveness, and shifting patterns of teamwork
are salient productivity variables.

• See S. Bendifallah and W. Scacchi, Work Structures and Shifts: An
Empirical Analysis of Software Specification Teamwork, Proc. 11th.
Intern. Conf. Software Engineering , Pittsburgh, PA, IEEE Computer
Society, 260-270, May 1989.

http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee89-icse-work-strux-01.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee89-icse-work-strux-01.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee89-icse-work-strux-01.pdf

18

19

IT and Productivity
• IT is defined to include software systems for transaction

processing, strategic information systems, and other
applications.

• Examines studies drawn from multiple economic sectors in
the US economy.

• Finding: apparent "productivity paradox" in the
development and use of IT is due to:
– Mismeasurement of inputs and outputs.
– Lags due to adaptation and learning curve effects.
– Redistribution of gains or profits.
– Mismanagement of IT within industrial organizations.

• Thus, one significant cause for our inability to understand
software productivity is found in mismeasurement.

20

Summary:
Software Productivity Drivers

• What affects software productivity?
– Software development environment attributes
– Software system product attributes
– Project staff attributes

21

Software development environment
attributes

• Provide substantial (and fast!) computing resource
infrastructure

• Use contemporary SE tools and techniques
• Employ development aids that help project

coordination
• Use "appropriate" (domain-specific) programming

languages
• Employ process-center development environments

22

Software system product
attributes

• Develop small-to-medium complexity systems
• Reuse software that already addresses the problem
• No real-time or distributed software to develop
• Minimal constraints for validation of accuracy,

security, and ease of modification
• Stable requirements and specifications
• Short task schedules to avoid slippages

23

Project staff attributes

• Small, well-organized project teams
• Experienced development staff
• People who collect their own productivity data
• Shifting patterns of teamwork structures

24

How to improve software
productivity (so far)

• Get the best from well-managed people.
• Make development steps more efficient and more

effective.
• Simplify, collapse, or eliminate development

steps.
• Eliminate rework.
• Build simpler products or product families.
• Reuse proven products, processes, and production

settings.

25

Summary of software productivity
measurement challenges

• Understanding software productivity requires a large,
complex set of qualitative and quantitative data from
multiple sources.

• The number and diversity of variables indicate that
software productivity cannot be understood simply as a
ratio source code/function points produced per unit of
time/budget.

• A more systematic understanding of interrelationships,
causality, and systemic consequences is required.

• We need a more robust theoretical framework, analytical
method, and support tools to address these challenges

26

Understanding and improving
software productivity:

Future view

27

A knowledge management
approach to software engineering

• Develop setting-specific theories of software
production

• Identify and cultivate local software productivity
drivers

• Develop knowledge-based systems that model,
simulate, re-enact, and redesign software
development and usage processes

• Develop, deploy, use, and continuously improve a
computer-supported cooperative organizational
learning environment

28

Develop setting-specific theories of
software production

• Conventional measures of software product attributes do
little in helping to understand software productivity.

• We lack an articulated theory of software production.
• We need to construct models, hypotheses, and measures

that account for software production in different settings.
• These models and measures should be tuned to account for

the mutual influence of software products, processes, and
setting characteristics specific to a development project.

• We need field study efforts to contribute to this

29

Identify and cultivate software
productivity drivers

• Why are software developers so productive in the presence
of technical and organizational constraints?

• Software developers must realize the potential for
productivity improvement.
– The potential for productivity improvement is not an inherent

property of new software development technology.
– Technological impediments and organizational constraints can

nullify this potential.

• Thus, a basic concern must be to identify and cultivate
software productivity drivers.
– Examples include workplace incentives and alternative software

business models

30

Model, simulate, re-enact, and redesign
software development and usage

processes
• New software process modeling, analysis, and simulation

technology is becoming available.
• Knowledge-based software process technology supports

capture, description, and application of causal and
interrelated knowledge about what can affect software
development (from field studies).

• Requires an underlying computational model of process
states, actions, plans, schedules, expectations, histories, etc.
in order to answer dynamic "what-if" questions.

31

Sun
Microsystems

The Board
Release
Manager

Maintainer Developers/ Contributors

Website
Mailing Lists

Users

Contribute to
community,
meet time

constraints for
the release

Maintain a
project/
module,

manage a
group of

developers

Ensure that the
netbeans community
is being run in a fair

and open manner

Start new
release phase,

propose
schedule/plan

CVS

Funds, support,
Promote

Java/Open
source

IssueZilla

QA Team

Produce Q-
builds and

ensure
quality of

the software

release proposal, release
updates, branch for current

release, release post
mortem, review release
candidates (2) & decide

final release

download
development

builds and test,
release Q-

builds

download new
release

report bugs

select feature to
develop, bug to fix,
download netbeans,

commit code

decide features for the
project and merge
patches/bug fixes,

create module web page

make decisions for
the community, on

high level

grant CVS
commit

privilege to
developers

Link to all Use Cases Links to all Agents

CVS
Manager

Configure
and

maintain
CVS

grant
access

Site
Administrator

Manage
website

deploy
builds SourceCast

Tools

Link to Tools

Download and
use free
software

Community
Manager

Share
knowledge

and ensure all
community
issues are
addressed

respond to tech
issues, unanswered

questions

Rich Picture

http://www.netbeans.org/

32

Figure 2. A hyperlink selection within a rich hypermedia presentation that reveals a corresponding use case.

Test Builds
• The QA team tests the latest nightly

builds every Friday
• QA team executes a set of manual

tests on the builds as well as some
sanity checks

• Test results are categorized as
Š Bug Types

• User Constraint:
Š The tests depend on the manual

tests specification
• System Constraint:

Š Not all bugs may be identified

33

34

35

36

As-is vs. to-be process

37

A complex software production process:
a decomposition-precedence relationship view

(19 levels of decomposition, 400+ tasks)

W. Scacchi, Experience with Software Process Simulation and Modeling, J. Systems and Software,
46(2/3):183-192,1999.

http://www.ics.uci.edu/~wscacchi/Papers/ProSim-1998/Process-Experience.pdf

38

Computer-supported cooperative
organizational learning environment

• Supports process modeling, simulation, re-
enactment, and redesign.

• Supports capture, linkage, and visualization of
ongoing group communications of developers,
users, field researchers, and others

• Supports graphic visualization and animation of
simulated/re-enacted processes, similar to
computer game capabilities

• Goal: online environment that supports continuous
organizational learning and transformation

39

Software production business models

• Custom software product engineering
• Agile production
• Revenue maximization
• Profit maximization
• Market dominance
• Cost reduction

40

Software production business models

• Custom software product engineering
– Focus on Software Engineering textbook methods, with

minimal concern for profitability
• Agile production

– Focus on alternative development team configurations
and minimal documentation, hence cost reduction

• Revenue maximization
– Focus on stockholder value and equity markets, hence

margin shrinkage in the presence of competition

41

Software production business models
• Profit maximization

– Focus on developing and delivering reusable software
product-lines; avoid one-off/highly custom systems

• Market domination
– Focus on positioning products in the market by

comparison to competitors; offer lower cost and more
product functionality; continuous feature enhancement

• Cost reduction -- Open source software
– Focus on forming internal and external consortia who

develop (non-competitive) reusable platform systems;
offer industry-specific services that tailor and enhance
platform solutions

42

Questions?

	Understanding and Improving Software Productivity
	Introduction
	Understanding and improving software productivity: Historic view
	Preview of findings
	Basic software productivity dilemma
	Software productivity dilemma
	Measurement-instrumentation trade-offs
	Why measure software productivity?
	Who should measure software productivity?
	What to measure?
	Software products
	Software production processes
	Software production setting
	Findings from software productivity studies
	ITT Advanced Technology Center
	ITT productivity factors
	USC System Factory
	IT and Productivity
	Summary:Software Productivity Drivers
	Software development environment attributes
	Software system product attributes
	Project staff attributes
	How to improve software productivity (so far)
	Summary of software productivity measurement challenges
	Understanding and improving software productivity: Future view
	A knowledge management approach to software engineering
	Develop setting-specific theories of software production
	Identify and cultivate software productivity drivers
	Model, simulate, re-enact, and redesign software development and usage processes
	Rich Picture
	As-is vs. to-be process
	A complex software production process: a decomposition-precedence relationship view (19 levels of
	Computer-supported cooperative organizational learning environment
	Software production business models
	Software production business models
	Software production business models
	Questions?

