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Introduction

• What affects software productivity?
– Software productivity has been one of the most studied 

aspects of software engineering
– Goal: review sample of empirical studies of software 

productivity for large-scale software systems from the 
1970's through the early 2000's.

• How do we improve software productivity?
– Looking back (history)
– Looking forward (future)
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Understanding and improving 
software productivity:      

Historic view
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Preview of findings
• Most software productivity studies are inadequate 

and misleading.
• How and what you measure determines how much 

productivity you see.
• Small-scale programming productivity has more 

than an order of magnitude variation across 
individuals and languages

• We find contradictory findings and repeated 
shortcomings in productivity measurement and 
data analysis, among the few nuggets of improved 
understanding.
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Basic software productivity dilemma

• What to measure?
• Productivity is usually expressed as a ratio

– Outputs/Inputs
– This assumes we know what the units of output and 

input are
– This assumes that both are continuous and linear (like 

“real numbers”, not like “weather temperatures”)
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Software productivity dilemma

• We seek to understand what affects and how to 
improve software productivity
– Measurement is a quest for certainty and control
– What role does measurement take in helping to improve 

software productivity?

• Measurement depends on instrumentation, so the 
relationship must be clear.

• Instrumentation choices lead to trade-offs.
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Measurement-instrumentation trade-offs
• Who/what should perform measurement?
• What types of measurements to use?
• How to perform the measurements?
• How to present results to minimize distortion?
• Most software productivity studies assume ratio

measurement data is preferred.
– However, nominal, ordinal, or interval measures may 

be very useful.
• Thus, what types of measures are most appropriate 

for understanding software productivity?
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Why measure software productivity?

• Increase software production productivity or 
quality 

• Develop more valuable products for lower costs 
• Rationalize higher capital-to-staff investments 
• Streamline or downsize software production 

operations 
• Identify production bottlenecks or underutilized 

resources 
• But trade-offs exist among these! 
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Who should measure software 
productivity?

• Programmer self-report
• Project or team manager
• Outside analysts or observers
• Automated performance monitors
• Trade-offs exist among these
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What to measure?

• Software products
• Software production processes and 

structures
• Software production setting
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Software products

• Delivered source statements, function points, and 
reused/external components

• Software development analyses
• Documents and artifacts
• Application-domain knowledge
• Acquired software development skills with 

product or product-line
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Software production processes
• Requirements analysis: frequency and distribution of requirements changes, and 

other volatility measures.
• Specification: number and interconnection of computational objects, attributes, 

relations, and operations in target system, and their volatility.
• Architectural design: design complexity; the volatility of the architecture's 

configuration, version space, and design team composition; ratio of new to 
reused architectural components.

• Unit design: design effort; number of potential design defects detected and
removed before coding. 

• Coding: effort to code designed modules; ratio of inconsistencies found between 
module design and implementation by coders.

• Testing: ratio of effort allocated to spent on module, subsystem, or system 
testing; density of known error types; extent of automated mechanisms employed 
to generate test case data and evaluate test case results.
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Software production setting

• Programming language(s)
• Application type

• Computing platforms
• Disparity between host and target platforms
• Software development environment
• Personnel skill base
• Dependence on outside organizations
• Extent of client or end-user participation
• Frequency and history of mid-project platform upgrades
• Frequency and history of troublesome anomalies and mistakes in prior projects
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Findings from software productivity 
studies

• More than 30 empirical studies of software 
productivity have been published
– Aerospace, telecommunications, insurance, banking, 

IT, and others
– Company studies, laboratory studies, industry studies, 

field studies, international studies, and others
• A small sample of studies

– ITT Advanced Technology Center (1984)
– USC System Factory (1990)
– IT and Productivity (1995)
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ITT Advanced Technology Center
• Systematic data on programming productivity, 

quality, and cost was collected from 44 projects in 
17 corporate subsidiaries in 9 countries, 
accounting for 2.3M LOC and 1500 person years 
of effort.

• Finding: product-related and process-related 
factors account for approximately the same 
amount (~33%) of productivity variance.

• Finding: you can distinguish productivity factors 
that can be controlled (process-related) from those 
that cannot (product-related).
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ITT productivity factors
Process-related factors (more 

easily controlled)
• avoid hardware-software   

co-development
• development computer size 

(bigger is better)
• Stable requirements and 

specification
• use of "modern 

programming practices”
• assign experienced personnel 

to team

Product-related factors (not 
easily controlled) 

• computing resource 
constraints (fewer is 
better)

• program complexity (less 
is better)

• customer participation 
(less is better)

• size of program product 
(smaller is better)
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USC System Factory
• Examined the effect of teamwork in developing both formal and 

informal software specifications.
• Finding: observed variation in productivity and specification quality 

could be best explained in terms of recurring teamwork structures.
– Six teamwork structures (patterns of interaction) were observed 

across five teams; teams frequently shifted from one structure to 
another.

• High productivity and high product quality results could be traced back 
to observable patterns of teamwork.

• Teamwork structures, cohesiveness, and shifting patterns of teamwork 
are salient productivity variables.

• See S. Bendifallah and W. Scacchi, Work Structures and Shifts: An 
Empirical Analysis of Software Specification Teamwork, Proc. 11th. 
Intern. Conf. Software Engineering , Pittsburgh, PA, IEEE Computer 
Society, 260-270, May 1989.

http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee89-icse-work-strux-01.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee89-icse-work-strux-01.pdf
http://www.ics.uci.edu/%7Ewscacchi/Papers/Vintage/ieee89-icse-work-strux-01.pdf
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IT and Productivity
• IT is defined to include software systems for transaction 

processing, strategic information systems, and other 
applications.

• Examines studies drawn from multiple economic sectors in 
the US economy.

• Finding: apparent "productivity paradox" in the 
development and use of IT is due to:
– Mismeasurement of inputs and outputs.
– Lags due to adaptation and learning curve effects.
– Redistribution of gains or profits.
– Mismanagement of IT within industrial organizations.

• Thus, one significant cause for our inability to understand 
software productivity is found in mismeasurement.
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Summary:
Software Productivity Drivers

• What affects software productivity?
– Software development environment attributes
– Software system product attributes
– Project staff attributes
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Software development environment 
attributes

• Provide substantial (and fast!) computing resource 
infrastructure

• Use contemporary SE tools and techniques
• Employ development aids that help project 

coordination
• Use "appropriate" (domain-specific) programming 

languages
• Employ process-center development environments
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Software system product      
attributes

• Develop small-to-medium complexity systems
• Reuse software that already addresses the problem
• No real-time or distributed software to develop
• Minimal constraints for validation of accuracy, 

security, and ease of modification
• Stable requirements and specifications
• Short task schedules to avoid slippages
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Project staff attributes

• Small, well-organized project teams
• Experienced development staff
• People who collect their own productivity data
• Shifting patterns of teamwork structures



24

How to improve software 
productivity (so far)

• Get the best from well-managed people.
• Make development steps more efficient and more 

effective.
• Simplify, collapse, or eliminate development 

steps.
• Eliminate rework.
• Build simpler products or product families.
• Reuse proven products, processes, and production 

settings.
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Summary of software productivity 
measurement challenges

• Understanding software productivity requires a large, 
complex set of qualitative and quantitative data from 
multiple sources.

• The number and diversity of variables indicate that 
software productivity cannot be understood simply as a 
ratio source code/function points produced per unit of 
time/budget.

• A more systematic understanding of interrelationships, 
causality, and systemic consequences is required.

• We need a more robust theoretical framework, analytical 
method, and support tools to address these challenges
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Understanding and improving 
software productivity:        

Future view
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A knowledge management 
approach to software engineering

• Develop setting-specific theories of software 
production

• Identify and cultivate local software productivity 
drivers

• Develop knowledge-based systems that model,  
simulate, re-enact, and redesign software 
development and usage processes

• Develop, deploy, use, and continuously improve a 
computer-supported cooperative organizational 
learning environment
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Develop setting-specific theories of 
software production

• Conventional measures of software product attributes do 
little in helping to understand software productivity.

• We lack an articulated theory of software production.
• We need to construct models, hypotheses, and measures 

that account for software production in different settings.
• These models and measures should be tuned to account for 

the mutual influence of software products, processes, and 
setting characteristics specific to a development project.

• We need field study efforts to contribute to this
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Identify and cultivate software 
productivity drivers

• Why are software developers so productive in the presence 
of technical and organizational constraints?

• Software developers must realize the potential for 
productivity improvement.
– The potential for productivity improvement is not an inherent 

property of new software development technology.
– Technological impediments and organizational constraints can 

nullify this potential.

• Thus, a basic concern must be to identify and cultivate 
software productivity drivers.
– Examples include workplace incentives and alternative software 

business models
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Model, simulate, re-enact, and redesign 
software development and usage 

processes
• New software process modeling, analysis, and simulation 

technology is becoming available.
• Knowledge-based software process technology supports 

capture, description, and application of causal and 
interrelated knowledge about what can affect software 
development (from field studies).

• Requires an underlying computational model of process 
states, actions, plans, schedules, expectations, histories, etc.
in order to answer dynamic "what-if" questions.
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Figure 2.  A hyperlink selection within a rich hypermedia presentation that reveals a corresponding use case.

Test Builds
• The QA team tests the latest nightly

builds every Friday
• QA team executes a set of manual

tests on the builds as well as some
sanity checks

• Test results are categorized as
Š Bug Types

• User Constraint:
Š The tests depend on the manual

tests specification
• System Constraint:

Š Not all bugs may be identified
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As-is vs. to-be process
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A complex software production process: 
a decomposition-precedence relationship view

(19 levels of decomposition, 400+ tasks)

W. Scacchi, Experience with Software Process Simulation and Modeling, J. Systems and Software, 
46(2/3):183-192,1999. 

http://www.ics.uci.edu/~wscacchi/Papers/ProSim-1998/Process-Experience.pdf
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Computer-supported cooperative 
organizational learning environment

• Supports process modeling, simulation, re-
enactment, and redesign.

• Supports capture, linkage, and visualization of 
ongoing group communications of developers, 
users, field researchers, and others

• Supports graphic visualization and animation of 
simulated/re-enacted processes, similar to 
computer game capabilities

• Goal: online environment that supports continuous 
organizational learning and transformation
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Software production business models

• Custom software product engineering
• Agile production
• Revenue maximization
• Profit maximization
• Market dominance
• Cost reduction
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Software production business models

• Custom software product engineering
– Focus on Software Engineering textbook methods, with 

minimal concern for profitability
• Agile production

– Focus on alternative development team configurations 
and minimal documentation, hence cost reduction

• Revenue maximization
– Focus on stockholder value and equity markets, hence 

margin shrinkage in the presence of competition
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Software production business models
• Profit maximization

– Focus on developing and delivering reusable software 
product-lines; avoid one-off/highly custom systems

• Market domination
– Focus on positioning products in the market by 

comparison to competitors; offer lower cost and more 
product functionality; continuous feature enhancement

• Cost reduction -- Open source software
– Focus on forming internal and external consortia who 

develop (non-competitive) reusable platform systems; 
offer industry-specific services that tailor and enhance 
platform solutions
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Questions? 
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