
META�ENVIRONMENTS FOR SOFTWARE PRODUCTION

ANTHONY S� KARRER

Computer Science Department� Loyola�Marymount University

Los Angeles� CA �������	�� USA

WALT SCACCHI

Information and Operations Management Department

and

Center for Software Engineering

University of Southern California

Los Angeles� CA ���
������� USA

December ����

Researchers who create software production environments face considerable problems� Soft�

ware production environments are large systems that are costly to develop� Furthermore� soft�

ware production environments which support particular software engineering methods may not

be applicable to a large number of software production projects� These conditions have formed

a trend towards research into ways which will lessen the cost of developing software production

environments� In particular� the trend has been towards the construction of meta�environments

from which speci�c software production environments can be created� In this paper� we at�

tempt to categorize more than 	� meta�environment eorts� For each of the categories� we

review research eorts which illustrate dierent approaches within that category� We conclude

by presenting an emerging common thread of requirements which links this �eld together�

� Introduction

Software engineering addresses the complex problems associated with software production� Many
software engineering methods� such as structured design and object�oriented analysis� have emerged
to ease these problems� Recently� there has been considerable attention paid to the application of
these methods through software production environments in order to evaluate the e�ectiveness
of each method ��� ��� 	�
� A software production environment �SPE� is a system consisting of
a software infrastructure providing a common operating environment for software tools� a set of
tools� and an interface which provides users with access to the environments capabilities�

Both software production organizations and research organizations have found that there are
considerable problems in using SPE technology� One underlying problem is that software produc�
tion environments are large systems and� without su�cient support� are costly to engineer and
build� This result is not surprising� especially given that software production environments are
large software products� Coupled with this problem� researchers have found that little is known
about the requirements for a good SPE� Many researchers believe that the only way in which the
requirements can be found is by developing� using� and evolving environments� Unfortunately� such

�



an evolutionary approach will be costly because of the time and e�ort required for creating new
SPEs� and because as better SPEs are developed� users are likely to change the manner in which
they use the SPE �	�
� Worse yet� each software production project may have di�erent requirements
for an SPE ���
� These factors imply that in order to research the requirements for SPEs and to
support the requirements of individual projects we must reduce the cost of creating SPEs�

Because SPEs are themselves software products� we can consider the software production process
used to construct SPEs� SPE construction processes have taken many forms� with early SPEs being
constructed using a simple program�debug�test process based on a single programming language�
Meta�environments ���� ��� ��
 are emerging as a means of constructing SPEs with signi�cantlymore
powerful constructs than are generally available in programming languages� Meta�environments
have also been called generic environments ��	
 and environment generators ���� ��� ��
� The
distinction between these terms is somewhat vague� As such� we will use the termmeta�environment
to include generic environments� environment generators� and other approaches to environment
construction�

We �nd a meta�environment consists of a construction model� a transformation of instances
of the model into an SPE� and a process for using the construction model and transformation to
create an SPE� An environment speci�cation is an instantiated construction model which speci�es
the intended environment� Ameta�environment construction process is the collection of tasks� agent
roles� resources� tools� and their relationships which speci�es the procedures used to create viable
software production environments�

In general� meta�environments are designed to overcome two major issues� The �rst issue
is that SPEs are themselves large software systems and are extremely costly to create without
the support provided by meta�environments� The second issue is that a high level of assistance
in reducing the cost of environment creation often requires assumptions about the form of the
resulting environment� These assumptions reduce the ability of a meta�environment to support
many di�erent kinds of software engineering methods�

In the rest of this paper� we examine the trend for creating meta�environments� First� we
attempt to categorize current meta�environment approaches� For each of the categories� we re�
view research e�orts which illustrate di�erent approaches within that category� We conclude by
presenting the common thread which links this �eld together�

� Related Research

Software engineering environments were initially constructed as monolithic systems� using a pro�
gramming language as the construction model� Two of the more notable examples of this approach
are the programming support environments for Smalltalk ���
 and Interlisp ���
� Both environments
support a single method of software production� interpretive� incremental program development�
While the monolithic approach can be applied to construct environments which support virtually
any software production method and programming language� the cost of productng an environment
using this approach is generally prohibitive for most research organizations�

Since the monolithic approach� a variety of methods have been suggested for lessening the cost
of construction and improving the utility of environments� We have categorized the approaches to
environment construction into the following �ve classes�

� Environment frameworks support a set of low�level services including object management�

�



control management and sometimes user�interface management�

� Customizable environments provide high�level core environment capabilities and a means of
customizing those capabilities�

� Process modeling provides a meta�model which can be instantiated to specify the activities�
developers� resources� artifacts� and their relationships which together form the processes of
the environment�

� Process programming provides a programming language oriented towards the description of
processes as the basis of constructing process�driven environments�

� Tool integration provides the means to combine tools into an integrated set of environment
capabilities�

In the following sections� we further de�ne each of these categories� We also present several
research e�orts in each category which serve both to give further insight into the basic category
and also to illustrate the main issues which separate researchers within a category� Most research
e�orts in meta�environments actually combine technology from more than one category� For ex�
ample� many environment frameworks provide support for tool integration� Nonetheless� we have
categorized and presented these e�orts in order to illustrate the meta�environment trend as a whole�

��� Environment frameworks

One of the recent trends in the commercial and government sectors has been the development of
environment frameworks which provide a set of computational services as a basis for environment
construction� As a starting point for a survey of this research� it is a good idea to mention that
considerable attention is being directed to the de�nition of the kinds of services which environment
frameworks should address� Much of this work has been done by creating reference models including
the Conceptual Environment Architecture Reference Model �CEARM� ���
� the ECMA Reference
Model ���
� and the NIST Reference Model ���
� ���
 used one of these reference models to survey
current environment framework research� This survey showed the usefulness of a reference model
as a conceptual framework for comparing the capabilities of frameworks� Much of this section is
derived from that study�

These reference models suggest that frameworks should address Object Management Services�
User�Interface Management Services� and Life�cycle Process Management Services �also called En�
vironment Management ���
 and Task Management ���
�� The Object Management Services �OMS�
provide for persistent objects and relationships as opposed to �les and directories traditionally sup�
ported by operating systems� The Life�Cycle Process Management Services �LCPMS� provide a
means for enacting change upon the current state of life�cycle objects� Most LCPMS are based
on the operating system process� However� the LCPMS combines operating system processes with
additional modeling services to provide a more powerful control mechanism� The User�Interface
Management Services �UIMS� provide basic mechanisms for de�ning user�interfaces and associating
objects graphically depicted with objects and actions within the environment�

These reference models suggest that environment frameworks must provide construction models
for modeling data� control� and user�interface� While other meta�environment approaches require�

�



for example� some kind of translation of a language or environment speci�cation into an environ�
ment� a similar transformation of the frameworks models is not needed since the framework models
are used as the architectural basis of the environment� The examples that we present next show a
variety of data and control models�

Atherton Technologys Software BackPlane �	�
 is an integration and portability framework
designed to assist in building SPEs independent of tools� methodology� or languages� It provides
a generic operating system� an object�oriented OMS and a Macintosh�like user interface� The
Software BackPlanes OMS provides an object�oriented software interface and a set of prede�ned
classes which give the database its form� The OMS uses the concept of Generic Messages to invoke
methods for new�free� open�close� checkin�checkout� and others which are applicable to virtually
all objects� This approach allows users to invoke similar tools using identical messages�

Some tool integration is addressed through the object�oriented integration techniques for de�n�
ing new classes or attaching existing tools to previously de�ned classes as methods� Tools created
without using the Software BackPlane as its persistence mechanism store their data using the na�
tive operating system� Translation of their data and rehosting to the Software BackPlane can be
accomplished by creating a method which does both a translation from a �le into a set of objects
and tool invocation over those objects�

Atherton has also provided a high�level speci�cation of an environment construction process
called the �Environment Customization Plan�� This process suggests the creation of user�de�ned
methods as a form of process programming� tool de�nition� data de�nition� and user�role de�nition�

Gaia ���
 embodies an approach similar to the Software Backplane by providing an object�
oriented OMS as its cornerstone� It lacks some of the integration techniques present in the Software
Backplane� It also lacks a plan for using object�oriented technology to instantiate an environment�

CAIS�A �	�� ��� ��
� the latest version of CAIS� is de�ned in the military standard report MIL�
STD�����A� under the control of the Ada Joint Program O�ce �AJPO� within the U�S� Department
of Defense� CAIS�A is a set of Ada interfaces which are designed to act like a high�level virtual
operating system� It provides an object management system �OMS� and process control based on
the OMS� The OMS is a distributed database providing a node model which is similar in �avor to
an entity�relationship�attribute �ERA� model with type inheritance� The node model is used to
formalize the structures and capabilities of the OMS� Processes in CAIS�A form a tree of parent�
child processes� All process information is kept in the OMS� Processes can communicate through
special OMS�based queues�

The Portable Common Tool Environment �PCTE� ���
 is a Public Tool Interface �PTI� which
can be used as a basis for integrating tools as part of the development of an SPE� The PCTE PTI
consists of software interfaces to services of an OMS� LCPMS� and UIMS� The Object Management
System is a distributed database based on an ERA model with multiple type inheritance� The
object types are modeled by a single overall schema which is actually comprised of a set of possibly
overlapping Schema De�nition Sets �SDS�� PCTE models the static context of processes which are
used to control process invocation� Inter�process communication is achieved through the OMS�
message queues� pipes and signals� Monitoring of process execution is also available� PCTE has
de�ned a set of user�interface management primitives� as well as extensions to support production
of real�time software through the PCTE� and PACT versions of PCTE�

The Sun Network Software Environment �NSE� ��
 is a network�based object manager and tool
integration facility� NSE is primarily a Unix environment with additional support for object man�
agement� con�guration management� version management� distribution� environment management�

�



target generation� and environment front�ends� The object manager is oriented around a speci�c
view of version and con�guration control based on an optimistic concurrency control mechanism�
Tools are integrated into NSE by using NSE to control their objects ��les� and by adding the tools
to the NSE environment front�end� More recently� an object�based tool integration facility called
ToolTalk has been introduced to support this capability

The NSE object manager is not a general purpose object manager in the same vein as PCTE�
CAIS� and the Software BackPlane� It provides no extensibility of the base classes� It does support
an extension to Unix process management by allowing triggers associated with NSE commands to
perform some of the environment tasks�

The Software Life�Cycle Support Environment �SLCSE� ���
 is a framework which provides a
common database� a set of common schemata� and tools� The common schemata and tools are
designed to support a MIL�STD ��	�A model for documenting the software production life�cycle�
The ��	�A model is based on the waterfall model of software production based primarily on the
production of documents after each step in the life�cycle� The SLCSE framework also supports
speci�cation of alternative schemata and alternate life�cycles�

RDPE� �	�
 is a programming environment which is primarily oriented around the support
of adaptation and extension of environments� RDPE� uses an extended object�oriented� �ne�
grained programming paradigm to represent program fragments� Thus� RDPE� focuses on a smaller
component size as compared to PCTE� CAIS�A� etc� Furthermore� RDPE� suggests a di�erent
integration scheme than those suggested by other frameworks� one in which the function of the
integrated components must be accessible�

The ALMA ���
 generic environment provides the capability to de�ne a life�cycle support
database schema based on the entity�relationship model� While the ALMA environment has capa�
bilities similar to other frameworks� it speci�cally presents a plan for the use of the framework as
both a meta�environment and a software production environment�

The Distributed System Factory �DSF� project is developing a multilayer infrastructure of
software services which can integrate multiple data� control� presentation� and process models
that can span a distributed wide�area network ���
� The DSF infrastructure provides a distributed
hypertext �DHT� framework to integrate heterogeneous software object repositories �e�g�� those with
di�erent data models� �	�
 with forward and reverse software engineering tools ��	
� graph�based
editors and user interfaces ���
� process�driven user interfaces with partially order tool invocation
sequences ���
� and a knowledge�based process modeling and simulation environment ���
� Using
these mechanisms and components� it is possible to semi�automatically generate multirole� process�
driven software production environments for a hierarchy of concurrent production processes ���� ��
�

The EUREKA Software Factory �ESF� ���
 is a large�scale pan�European research e�ort aiming
at the development of an integration framework for a meta�environment that can accomodate the
interoperation of various tools and the interactions of people working together with these tools
according to a process meta�model ��
� The heart of the ESF architecture is a Software Bus �SWB��
which is an abstract communication channel hiding distribution and supporting the exchange of
data and control information using abstract data type interfaces� User�interaction components
�UIC� and service components �SC� communicate across the SWB� UIC� which have no persistent
data� communicate with the user and make requests on service components across the SWB� SC
may not have a user�interface� One UIC and one SC taken together are essentially a tool in current
environments�

The ESF kernel� K��r ��
� is not tied to the use of a central OMS as the basis of integration�

�



Rather� the ESF project uses process models as the basis of tool integration� although di�erent
schemes ���� ��
 and modeling formalisms ���� ��
 are being investigated� In this way� the ESF and
DSF projects share many common goals� although their approaches di�er�

Each of these environment frameworks provides services which are needed in virtually all soft�
ware production environments� Access to an implementation of these services assists environment
construction� In general� environment frameworks are intended to maintain independence from any
particular software production method� While environment frameworks provide some support to
environment construction� the services they provide are generally low�level functions� There is a
considerable gap between these services and the services provided by a full software production
environment�

Existing environment frameworks seem to be split on the kind of data and control models to
provide� The object�oriented camp with Atherton and Gaia suggest a single model for both data
and control� The extended ERA camp with PCTE� CAIS�A� SLCSE� ALMA� DSF�DHT� and ESF�
K��r suggest a data model based on the ER or object�based model� and a control model based on
concepts which are similar to operating system processes�

��� Customizable environments

Customizable environments are based on the existence of a high�level� �xed core of services or
capabilities� Di�erent customizable environments will provide di�erent methods of customization
and di�erent core capabilities� The construction method provided by a customizable environment
allows the user to specify a set of extensions or changes to the core capabilities� This speci�cation is
then combined with the core capabilities to form an environment� This approach is very similar to
the approach used in most tool generators� such as those used for parser generators ���
� language�
directed editor generators ��	� 	�� �	
� or extensible graph editors ���� 	�� ��
�

Customizable environments di�er from frameworks in that they trade ease of instantiation for
less generality� In other words� customizable environments will support a model which can be used
to describe only a small portion of the entire environment� The remainder of the environment is �xed
by assumptions built into the customizable environment� In particular� customizable environments
will �x the process supported by the environment� but will allow particular parts of the process to
be subsequently modi�ed�

Several researchers have developed customizable environments centered around the use of struc�
tured editors� These customizable environments provide a construction model which can be used
to describe the grammars for the languages which will be manipulated in the environment� The
�xed part of the environment is the process of using a series of editors� For example� the Mentor
programming environment ���
 is founded on an abstract syntax tree representation of the program
as the common information base� This syntax tree can be annotated by means of other abstract
syntax trees in specialized languages� By allowing arbitrary annotations of nodes in the syntax
tree� Mentor allows the extension of the environment�

GANDALF �	�
� the Synthesizer Generator ��	
� and SOFTMAN ��	
 provide customizable
structure�text editors which allow an environment to be constructed as a suite of tightly integrated
editors� Editors are customized through the speci�cation of �a� the grammars of the languages which
they edit� and �b� the attributes or action routines which support incremental semantic checking�
GANDALF also provides for the speci�cation of commands which invoke external tools integrated
around centralized parse tree representations� while SOFTMAN provides for the integration of

	



generated multilanguage editors with an OMS�
TRIAD ���
 is a customizable environment which supports a set of form�based� methodology�

driven tools designed to operate over an extendible attribute grammar� This grammar is used to
encode process information as well as syntax information� The grammar is used by TRIAD to
construct various portions of the environment including a syntax�directed editor�

DRACO �	�
� Popart ���
� GEM ���
� KIDS ���
� and Centaur ���
 are generators of grammar�
based or notation�based meta�programming environments� A meta�programming environment is
an environment which assists in the creation of parsers and related tools which manipulate a
particular language� Each generator accepts the speci�cation of a language� then assembles a
library of routines which can be used to operate over a parse tree or similar internal form of
a program in the manipulated language� DRACO� Popart� KIDS� and Centaur are designed to
support the development of domain language de�nitions using either �a� patterns� transformations�
rules� or annotations for DRACO� Popart� and KIDS� or �b� algebraic and syntactic speci�cation
formalisms for Centaur� In addition� Popart is used in conjunction with Common Lisp Framework
��
 and a generic process engine developed at USC�ISI ��
� which accomodates the generation of rule�
based programming and transformational implementation environments� The DRACO and KIDS
environments provide similar capabilities� although they lack integration with a process engine�
However� DRACO also supports the integration and composition of reusable components or tools�
as described later�

Another approach to customizable environments is to provide a model which supports the
speci�cation of the objects to be manipulated during a software life�cycle process� The SOFTMAN
environment ��	
 provides core capabilities which enforce a particular model of incremental software
development and veri�cation across life�cycle activity boundaries� It allows customization based
on the speci�cation of the formal attributes of life�cycle objects and speci�cation of tools which
operate on these objects� Thus� the speci�cation refers to objects beyond those directly tied to the
programming language� However� the primary tools in a SOFTMAN environment are customizable
structure editors interfaced to a constraint�based OMS� The combination of the tools and the object
repository can then track and verify the correctness attributes of objects that have been created or
modi�ed ���
�

ISHYS ���
 provides an interface to a hypertext�based information storage structure and to a
structured documentation process� ISHYS supports the speci�cation of the type� attributes� and
composition of hypertext�based life�cycle documents based on the DIF software hypertext system
���
� It also supports the speci�cation of a process model which describes the production and use of
the documents by collaborating agents� The document formats and process model support multiple
forms of group�based or team�based interaction and communication structures within a project and
support multiple simultaneous projects�

META�GA ���
 is a Life�Cycle Support System generator based on the speci�cation of the
format of information which must be processed in the generated environment� META�GA gener�
ated environments support a speci�c life�cycle approach to the creation of information processing
systems� However� the META�GA user� the environment constructor� is able to specify the type of
information which will be processed� This customizable environment attempts to help standardize
the type of information and leave the life�cycle as general as possible�

The Metaview project ���� ��
 takes an approach that is a hybrid of framework approaches
and customizable environments� The models provided are based on an ERA model extended with
constraints� transformations� and a graphical interaction model� These models are used to describe

�



the data manipulated by the environment as a whole and by generic tools� So both the environment
framework as well as tools which operate over the environment are speci�ed using this model�

There is growing interest in developing structure� or language�based editors for manipulating
graph�based or graphic software speci�cation notations� EDGE �	�
� TGE ���
� MetaEdit ���
�
VSF ���� ��
� and GEDL ���
 are recent examples� In contrast to structured�text editors and
related functionality generated by GANDALF or Synthesizer Generator� these graphic meta�editors
provide multiple layouts of graphic information ���� 	�
� allow the speci�cation or rede�nition of
user interface functionality ���� ��
� and support a variety of object modeling� software process
���� ��
 and method notations ���� ��� ��
� Each meta�editor employs a language�based speci�cation
notation for describing the iconic syntax and composition semantics to be supported in the target
editors that are generated or instantiated� Finally� TGE� VSF� and GEDL have speci�cation�level
interfaces which allow them or their derived editors to be integrated with one or more repositories
and environments� such as SOFTMANs use of TGE�based graph editors ��	� ��
� Subsequently�
this provides another dimension for the extension of resulting meta�environments�

Overall� the primary advantage of customizable environments is the speed and relative ease
of constructing high functionality environments� However� most customizable environments have
lessened the burden of environment construction by adopting a particular approach to software
development� This means that a customizable environment may only support certain kinds of soft�
ware processes or development methods� Environments centered or driven by software production
process models thus represent an alternative to this situation�

��� Process Modeling

In environments based on process models� a software process meta�model is used to circumscribe the
family of processes the environment supports� Thus� a process model�based construction method
must provide a process meta�model as the basis of implementing a speci�c life�cycle model� Instances
of a meta�model describe active and inactive objects in an environment� Further� an instance of a
meta�model allows the execution of a process�centered environment�

The GENESIS �from UC Berkeley� ���
� Marvel ��	
� and Merlin ���
 environments are among
those that provide production rules and rule interpreters as the means for specifying and enacting
software processes� A production rule has ��� a precondition� ��� an action part which is executed
when the precondition is true� and possibly ��� a postcondition which becomes true once the action
is executed� Environment construction using these systems consists of specifying the production
rules for all of the activities or events which the environment should support�

PRISM ��	
� IPSE ��� ���
� and its successor� PSS ���
� provide process meta�models similar to
Marvel and GENESIS� However� these e�orts suggest a particular execution of the process models�
which provides the environment to the user� In these environments� a process model execution
facility serves as the means of invoking tools and presenting choices to environment users�

MELMAC ���
 is a software process management environment based on the execution of high�
level Petri�net representations of software process models ��	
� The MELMAC research e�ort has
led to the development of a prototype capable of enacting a software process model on top of a
framework similar to the ones described in subsection ���� A major part of this prototype is the
graphical user�interface� which depicts the Petri�nets and allows both the speci�cation of process
models and the enaction of process models�

The Software Designers Associate �SDA� project ���
 is a software design environment in which

�



the executable process descriptions are speci�ed as a process model consisting of activities� com�
posite activities� products and tools� SDA is unique in that it only addresses the early phase of
design and that it uses a model�based approach to the design and construction of an environment�

The DSF project has been developing and using the Articulator ���
� which is a knowledge�based
environment for modeling� analyzing� and simulating software production processes� The Articu�
lator uses a hierarchical object�oriented representation of agent roles� products �or resources�� and
tasks� which can be either partially ordered or triggered through rule�based mechanisms� Modeled
agents communicate process task status and resource availability to one another through queries
and messages� These queries can entail direct or deductive retrieval of process enactment informa�
tion� or trigger either the symbolic execution of new processes or replay processes already enacted�
Multiple concurrent processes can be enacted and agents can interact across processes� In addition�
the environment maintains persistent information about the state of enacted processes as process
transitions occur� This information is used to track the execution history of planned activities� and
to facilitate incremental process rescheduling and replanning when unplanned or dynamic changes
in the process occur ���
�

The Articulator has been integrated with a process�based user interface and a process model
interpreter �together called PBI� to provide a framework for developing process model�driven envi�
ronments ���
� The Articulator� PBI� and an open software environment or set of software tools can
the be used to construct and instantiate process�driven software production environments� That is�
process models created with the Articulator are automatically transformed into process programs
that can be enacted by PBIs process interpreter� When the process models specify tool bindings to
process pre� or postconditions� data objects� and object repositories� then process�driven software
environments can be automatically produced� In one study ���
� the SOFTMAN environment ��	

was used as the base environment� and a software life�cycle process model that guides a user in
their invocation of SOFTMAN tools was developed using the Articulator� The SOFTMAN process
model was then transformed and loaded into the PBI process interpreter� This interpreter drives
the process�based user interface by structuring access to which SOFTMAN tools can be invoked
on the designated objects� This in turn depends on the development process history and process
enactment status at that time� In order to do this� the pre�existing top�level user interface for
SOFTMAN had to be disabled and redirected to the new process interface� while the tool�speci�c
interfaces and object repository for SOFTMAN remained intact and unmodi�ed� With the new
PBI interface� a user is presented with a visual representation of the development process currently
assigned to them� Users can then select the next process task or action to perform� In this way�
we can say that a process integration interpreter and user interface enable knowledge�based pro�
cess models to guide user invocation of tools within a software production environment� such as
PBI�SOFTMAN ���
�

The Articulator has also been integrated with the Matisse team programming environment
���
 and the SynerVision process execution engine ���
 in place of PBI� The resulting composite
environment is called SMART ���
� SMART supports the modeling� analysis� enactment� measure�
ment� and improvement of software processes utilizing encapsulated CASE tools that communicate
messages and tool invocations across the SoftBench BMS ���
� and that manipulate data stored in
networked repositories� Since SMART can con�gure commercially available CASE tools� and as
most Unix�based CASE tools have SoftBench encapsulations� then the number and con�guration of
process�based CASE environments that can be generated using SMART is very large� Finally� the
Articulator has similarly been integrated with the generic process engine developed at USC�ISI ��
�

�



which supports the re�nement of generic process descriptions into concrete instantiations during
its enactment� Thus� the Articulator environment successfully demonstrates the power of software
process meta�models as a basis for integrating and interoperating independently developed tools
within generated process�driven environments�

Last� the SPADE environment �	
 is similar in scope to the Articulator in that it supports the
design� analysis� and enactment of software process models� Its process representation is based
on extended Petri�nets� and the environment includes functional mechanisms for accommodating
dynamic changes to a process description during its enactment� However� it does not utilize a
process simulation facility� nor does it include inferential mechanisms for diagnosing and repairing
process faults� as does the Articulator�

��� Process programming

Process programming environments use a programming language to describe the processes that
form the capabilities of the environment� The goal of process programming�based systems is to
provide a highly �exible� process�oriented environment construction mechanism� Process program�
ming di�ers from process modeling in the form of the meta�model provided for environment con�
struction� However� we can view process programming as process modeling where the meta�model
is a programming language�

The Arcadia Research Project ���
 consists of a collection of loosely coordinated research and
development projects conducted by the Arcadia Consortium� Like ESF� Arcadia could also be
categorized as an environment framework� but the architecture of the Arcadia framework is centered
on the capability to execute process programs� In this manner� users interact with an Arcadia�based
environment by executing parts of the process� The Arcadia environment is a process�centered
environment� The form of the environment which the users see is wholly determined by the processes
which are executed to form the environment�

Arcadia is currently a collection of many partially integrated components including a UIMS� an
OMS� an Ada�based Process Programming Language �APPL�A�� a Measurement and Evaluation
�M�E� system� and a Process Administration System� The UIMS is based on Chiron ���
� an Ada
UIMS based on a very strong separation of functionality from interaction� The OMS in Arcadia is
viewed as possibly many di�erent object managers combined through a common underlying type
model where data is combined through interoperability mechanisms� Triton ���
 and PGraphite
���
 are two OMSs which have been used as a basis of object management in the Arcadia project�
APPL�A ��	
 is a process programming language which consists of extensions to Ada that include
the notion of persistent relations associated with the OMS� The Process Administration System is a
run�time support interface for executing processes based on a corporate metaphor� This metaphor
has been suggested as a basis for the speci�cation of environment characteristics�

Environment adaptation is the primary focus of the Arcadia architecture� Data and processes
can be directly de�ned using the software interfaces provided by the Arcadia infrastructure� Further
adaptation can be built up by creating processes which act like virtual architectures� In other
words� a process could be de�ned which would allow the speci�cation of user�role de�nitions� This
mechanism would not be part of the Arcadia infrastructure� but it would be part of the virtual
environment created by the de�nition of the process which allows user�role speci�cation�

In contrast� the Adele�� environment �	�
 utilizes a special�purpose persistent database and
programming language� Adele� to describe and implement enactable processes� Adele�� provides

��



support for multiple work environments �i�e�� tool� policy� and method con�gurations� that are
coordinated and coupled through an activity manager and a task manager� Coordination and
coupling� as well as activity and task speci�cation� are all realized using the Adele�� language�

Process WEAVER ���
 and SynerVision ���
 are commercially available process execution en�
gines� Each provides a process programming language based on the Unix shell command lan�
gugage� Their use is similar in scope to Adele��� but they both lack support for a persistent
object store� other than the underlying �le system� However� the SMART environment ���
 can
semi�automatically generate SynerVision process program code via transformations on Articulator�
based software process models ���
� while Process WEAVER allows modeled process states to be
attributed with Unix shell commands� which can subsequently be executed under user direction�

Last� both OIKOS ��
 and OPM ���
 propose object�oriented approaches to process program�
ming� The idea in these two e�orts is to show how object�oriented views of process programming
and software development environments can be united into a single view in which both the process
model and programming environment can be dynamically modi�ed� Thus� object�oriented process
programming seeks to provide an object�oriented process model �or meta�model�� process pro�
gramming language� and meta�environment framework where the environment data� control� and
presentation models all share a uniform object�oriented representation and interpretation scheme�

��� Tool integration

A primary concern for environment creators is the integration of existing tools as part of the
capabilities of an environment� Because tool integration provides the ability to invoke other tools�
the technology described in this section is often applied in each of the previous meta�environment
construction approaches� For example� a process model�based environment can be based on a special
tool which is in charge of executing a process model and in turn invokes other tools� However�
we have split tool integration into a separate category because a large body of e�orts have a
distinct model� transformation� and process from any of the previous categories� In particular� tool
integration meta�environments provide a model based on an interface between a set of connected
tools� The execution or use of the interface to the tools is the transformation of the model into an
environment�

Basically two paths towards easier integration have been suggested� One path is the development
of standards which tools must use in order to be integrated� Some standards are merely standards of
data�exchange� while others are standards which a�ect all data storage� The other path is to build
technology which can use tools developed prior to or outside of the standards� In the remainder of
this section� we will consider examples of both approaches�

����� Standards

A Tool Integration Standard �ATIS� ��
 and its more recent name� a Component Integration Stan�
dard �CIS�� is a proposal for an object�oriented approach to the integration of tools that provides
a set of interfaces that support schema�driven dispatching of behavior� ATIS�CIS is presented in
terms of a hierarchy that speci�es and interrelates abstract data types� their properties� and their
methods� In other words� ATIS�CIS proposes an instance of an object�oriented model which de�
�nes a set of classes and their properties� This model is designed to provide services to tools which
promote integration and make tool development easier�

��



The IRDS ���
 is an ANSI Standard �ANSI X������� The IRDS standard de�nes a meta�model
using an ERA model� Instances of the meta�model are models which describe data� IRDS allows
access to schema de�nitions through access to instances of meta�entities� The meta�entities de�ne
the types of entities� relationships� and attributes�

The IRDS�ISO is the IRDS Rapporteur Group of the ISO�IEC JTC��SC�� WG� �International
Standards Organization� International Electotechnical Commission Joint Technical Committee � �
Subcommittee �� Working Group ��� The IRDS�ISO uses a model similar to the relational model
as an approach to representing data� Information is stored at two levels� the de�nition level and the
IRD level� The de�nition level de�nes the tables and the functions which manipulate the tables�
The IRD level contains the application data� This is analogous to class and instance levels of an
object�oriented model�

CDIF ���
 is a de�nition of a common data transfer format which supports many data models
and the transfer of data between CASE tools or frameworks� The CDIF approach is based upon
the concept of a Meta�Meta�Model� In order to describe the conceptual models for each of these do�
mains� a model �i�e�� the meta�meta�model� which can describe data models for di�erent application
domains was developed� The Meta�Meta�Model is similar in form to an Entity�Relation�Attribute
�ERA� model� Various proposals for how to best implement CDIF�based data transformations�
however� seem to focus on batched monolithic transformation of large data sets� In contrast� the
DHT approach noted earlier also incorporates modeling formalism similar in power to a meta�meta�
data model� but does not require transformation of data sets to support access to heterogeneous
data repositories �	�
� In addition� DHT implements a persistent hypertext�based object man�
agement service using a persistent programming language� while CDIF lacks such a service and
programming language�

The P���� reference model for interconnections between computing system tools ���
 is a
tool�integration standard being developed by the IEEE Computer Societys Task Force on Pro�
fessional Computing Tools� The approach taken in P���� is to de�ne reference models for tool�to�
organization and tool�to�platform interconnections� and a language for the transfer of data between
tools� The tool to organization interconnection de�nes roles� life�cycle phases� and support elements
which relate to a tool� The tool to platform interconnection describes various interconnections
which must be supported by the platform and by the tools to e�ectively integrate the tools into
the platform� These interconnections consist of the Data Base Manager� Communication Network
Manager� O�S Service Manager� and the User Interface Manager interfaces�

The Object Management Group �OMG� ���
 is an international organization of more than ��
information systems vendors� users� and research organizations with diverse backgrounds� The basic
technical approach being followed in OMG is an object�oriented layer of services which exists above
various implementations of object managers� user�interface facilities� and environment managers�
This layer de�nes a set of network transparent protocols for message�oriented common service
requests�

The Product Data Exchange using STEP �PDES� is a US organizational activity that supports
the development and implementation of STEP �Standard for the Exchange of Product Model Data
� ISO TC����SC��� STEP is a neutral mechanism capable of completely representing product data
throughout the life�cycle of a product� This representation is suitable for neutral �le exchange and
as the basis for sharing product databases and archiving�

The Engineering Information System �EIS� ���
 is a vast undertaking addressing heterogeneity
of hardware and software platforms� data formats� tools� site�speci�c policies and methodologies�

��



and interfaces primarily oriented around the computer�aided engineering �CAE� domain� Within
the CAE community� the EIS program is intended to produce a consolidated approach to a broad
set of functional and other requirements� This approach consists of proposed standards and guide�
lines for services which enable and accelerate a trend toward uniform engineering environments
and information exchange� The EIS framework contains automated services which support and
control the data and activities of the engineering process� The framework is composed of an OMS�
Application Object Model �AOM�� and Engineering Environment Services �EES�� The OMS is
composed of a meta�model� schema management� execution control� object identi�cation support�
and data access facilities� The AOM uses the OMS to create higher�level constructs which provide
object�oriented capabilities� The EES is a large collection of types� operations� and default policies
that support the engineering and administration processes built on top of the AOM� The EES
addresses con�guration management� access control� audit trails� backup and archival� inter�EIS
exchange� user environment services� e�g�� login� and rule processing �data�driven triggers�� The
UIMS is a family of guidelines and candidate standards for an interface to a CAE system� The
UIMS design not only concentrates on interfaces for interactive EIS applications and tool adapters�
but also provides interfaces for tying in external tools�

Any standardization approach to tool integration will work only if a signi�cant number of tools
use the standard� At this point� most of these standards are unaccepted� either by the national
or international standards organizations� e�g�� ISO� NIST� or by software tool vendors� One of the
problems facing standardization e�orts is the vast number which apply to tool integration� We
have only presented a small subset to give some �avor of this approach� The IEEE P���� e�ort
cites around two hundred standards e�orts� many of which overlap or compete with one another�

Another problem facing standardization e�orts is the large number of existing tools which
cannot be brought up to par with most standards e�orts� While some standards do address this
problem by considering approaches to data transfer which do not require changing storage formats
of existing tools� many of the standards fall short in this area� The following section considers
various technologies which address issues similar to the standards e�orts� but do not assume prior
knowledge of their technology�

����� Integration technologies

Tool integration environments began with the Unix operating system� The Unix pipe facility allows
the combination of tools into larger tools through the interconnection of tool outputs to tool inputs
through standard typeless I�O facilities� However useful this simple piping mechanism may be� it
falls short of the kind of tool integration that other e�orts have demonstrated�

DRACO �	�
 is an approach to the construction of software by organizing reusable software com�
ponents or tools according to a speci�c problem area or domain� DRACO uses a domain language
for describing programs in each domain� Statements of programs in these domain languages are
then optimized by source�to�source program transformations and re�ned into other domains� A sin�
gle reusable component corresponds directly to each object and operation in the domain language�
Given the domain of software production environment construction� DRACO e�ectively provides a
tool composition language based on a module interconnection language paradigm� GENESIS �from
UT Austin� ��
 is similar in purpose to DRACO� but specialized to a domain for constructing and
generating of special�purpose database management systems�

Toolpack �	�
� and later Odin ���
� support the construction of an environment based on the

��



speci�cation of software objects� tools� and relationships between objects and tools� Environments
integrated through the use of Odin can be thought of as collections of tools which are satellites
around a large structured repository of software data� Both Toolpack and Odin are ancestral
predecessors to the Arcadia environment described earlier�

The Hewlett�Packard SoftBench product ���
 is a tool integration framework comprised of sev�
eral components including the Broadcast Message Server �BMS� that functions as a software bus�
a Motif�based user�interface� the Encapsulator ���
� and some integrated CASE tools� In the HP
integration model� each tool makes changes to global information and informs other tools about
its actions via the BMS� The BMS uses a broadcast paradigm via the software bus which is dif�
ferent from the point�to�point paradigm o�ered by object�oriented systems� The broadcast nature
of the BMS communication allows the set of tools managed by a BMS and interested in a par�
ticular message to be extended without requiring any change in the tools that send the messages�
The Encapsulator ���
 provides a means of integrating tools into the HP SoftBench user�interface
and BMS� The encapsulation consists of the Encapsulation Description Language �EDL� which
describes a user�interface and corresponding communication across the BMS� The communication
information consists of messages which it will respond to and messages it will generate in response
to user�interface events� The message model ���
 which is suggested as a basis of the environment
de�nition is very primitive and will be too limited for environments consisting of a very large num�
ber of tools� A �multi�cast� messaging paradigm which transmits strongly typed messages may
provide an alternative� Accordingly� a combination of SoftBench and SUNs ToolTalk tool integra�
tion mechanisms have been proposed as the basis of a new �standard� for open tool integration�
as part of the Common Development Environment �CDE� now being investigated by the Open
Software Foundation �OSF��

Field ���� ��
 provides an integration framework very similar to the BMS using a communication
mechanism called selective broadcasting� Field has extended the HP Softbench approach by passing
all data through the message server rather than relying on a common database� Additionally� Field
supplies an editor which provides consistent access to source code in multiple contexts and a set of
analysis tools�

Forest ���
 has extended the Field communication mechanism with an additional decision mech�
anism based on policies� Policies are rules that determine how and when tools are invoked� This
approach represents a hybrid between process modeling mechanisms and frameworks�

The Common Lisp Framework �CLF� ��
 is an incremental integration� development� and evo�
lution environment� Tools and applications are programs written in an extension of Common Lisp
called AP�� AP� provides a persistent virtual database of relations� objects� and rules� The rules
connect tools through triggering upon detection of changes to data or calling procedures�

The Scorpion Meta�Environment ���
 uses a speci�cation of tool topology using a module in�
terconnection language and a speci�cation of the level of trade�o� between evolution support and
e�ciency� This approach is di�erent from the previous approaches in that it primarily addresses
the use of a tool integration technology based on the module interconnection language rather than
addressing the integration technology itself�

Last� the Matisse team programming environment ���
 builds upon concepts previously demon�
strated in the CLF and Odin� Matisse provides a multiuser programming support environment
where user functionality and data object representation are managed by an intepreted� rule�based�
persistent programming language� In this manner� shared objects or software components can
be cached into a users local address space from a networked object repository� to realize a user�

��



con�gurable or user�extended workspace�
Overall� tool integration construction methods address the important problems of integrating

externally developed tools into an environment� However� because tool integration construction is
usually based on a limited control policy� they represent only a partial solution to the problem of
environment construction� Generally� tool integration methods must be used in conjunction with
other environment construction methods in order to support the construction of a full environment�
Thus� it should be no surprise to �nd that many of these tool integration mechanisms are being
extended or combined with environment frameworks or process support technologies�

��� Summary of meta�environment research

In Table �� we brie�y summarize the categories of meta�environments in terms of their models
and transformations� For some of the categories� we have shown subcategories which arise based
on di�ering approaches� Given these various approaches� we will now consider the more general
question of what requirements must a meta�environment address�

� The Meta�Environment Problem

In the previous section� we presented a variety of approaches to lowering the cost and improving
the e�ciency of environment construction� While we have found that the approaches taken are not
similar� the problems they address are� In particular� the common thread among these e�orts is
that all attempt to address problems associated with environment construction� Thus� to present
this trend� we will attempt to give further insight into the problem area and� in particular� to the
functional requirements which form the common thread�

Considerable work has been done in the area of de�ning the requirements for software production
environments �		� ��� ��
� That is� a meta�environment must be capable of producing environments
which satisfy these requirements� In this section� we will �rst present the kinds of roles environment
builders must play and the processes they must perform which are the basis for meta�environment
technology� These roles� processes� and related research are used as the basis of the requirements
presented in the next section�

��� Meta�environment roles

One of the best ways to understand the problems which are to be addressed by meta�environment
technology is to look at the various roles played by environment builders� A complete meta�
environment process must account for the roles of the environment integrator� component builder�
and component model manager among others�

The environment integrator is responsible for creating an environment speci�cation and control�
ling the associated construction of an environment� This role has been the focus of this paper so far�
In particular� developers acting in this role utilize meta�environment technology for environment
construction� build a speci�cation of the environment in terms of the meta�environments construc�
tion model� and then generate and re�ne the speci�ed environment� In general� the generation part
of the process is an automated� or at least semi�automated� task� However� the task of specifying
the environments characteristics in terms of the construction model is a demand often requiring

��



Category Model Transformation Examples

Frameworks ERA data model� Used directly PCTE� CAIS� SLCSE�
Process�based ALMA� DHT� ESF K��r
Control model
Object�oriented Used directly Atherton� Gaia� RDPE�
data and control
model

Customizable Grammar�based Language�oriented Mentor� GANDALF�
environment generated Synthesizer Generator

TRIAD� GEM� EDGE�
TGE� VSF� GEDL

Life�cycle objects Generates environment Softman� ISHYS�
which is speci�c to the META�GA� MetaView
information domain

Process Process meta�model Executed directly ESF� Genesis� Marvel�
modeling Merlin� PRISM�

IPSE ���� PSS� MELMAC�
SDA�
Articulator� PBI�Softman�
SPADE� SMART

Process
programming

Process�oriented pro�
gramming language

Compiled to generate
environment

Arcadia� Adele��� OIKOS�
OPM� Process WEAVER�
SynerVision

Tool Standards and tool Tools used directly ATIS� IRDS� IRDS�ISO�
integration interface according to tool CDIF� P����� OMG�

interface PDES� EIS
Tool integration Tools used directly Unix� DRACO� Toolpack�
technology and tool according to tool Odin� HP SoftBench�
interface interface Field� Forest� CLF�

Scorpion� PBI� Matisse

Table �� Summary of meta�environment research

�	



the environment integrator to be a software process architect� tool integrator� data modeler� control
modeler� etc�

The component builder is responsible for creating� providing� or automatically generating new
components which will be used in SPEs� This role has not been considered to this point� In
general� the environment integrator does not create all of the environment components from scratch�
Instead� the environment integrator relies on existing frameworks� process execution mechanisms�
tool integration technology� generated or acquired tools� and schemata� The component builder is
responsible for creating this technology� as well as the other software components which may be
incorporated into them� This may entail selecting from existing components available within some
reusable component repository� or extracting �and restructuring if necessary� candidate components
from existing software systems ���� ��
� Note that there can be many component builders building
products which are completely incompatible� The fact that they assume the same role does not
imply that they work together� Nonetheless� once the component builder has created or acquired
a new component� that component is potentially available for use in an environment or meta�
environment�

The component model manager is responsible for the creation and evolution of models of com�
ponent characteristics� Presently� the models are very simple and the description of characteristics
is in natural language� However� as meta�environment technology becomes more prevalent and
sophisticated� there will be a need for more sophisticated models to allow for automated and semi�
automated selection of environment components as part of the environment integrators role� An
emerging line of research has begun to explore and develop such models using module�component
interconnection formalisms and interaction protocols� Thus� the component model manager can
be seen as a mediator between the component builder and the environment integrator� where the
model is the language of discourse between these two roles�

Given these roles� we will now present a set of requirements which meta�environments must
attempt to satisfy�

��� Meta�environment requirements

Environment speci�cation� The fundamental requirement that a meta�environment must satisfy
is that it should be able to support the construction of software production environments in ac�
cord with their speci�cations� This implies that a constructed environment must support desired
software production methods and the process which controls the application of these methods�
Furthermore� a constructed environment must have the characteristics of a �good� environment�
it must be fast� provide a high level of functionality in a consistent and coherent manner� provide
a consistent �look and feel� graphical user interface� etc� �		� ��� ��
� A meta�environment should
provide a construction model able to express policies or methods for dealing with security� integrity�
reuse� process� etc� Furthermore� the construction model should be general enough to express any
of the mechanisms which can be chosen within any of these categories� This includes the ability to
specify data models� data repositories� tool bindings and control message invocations� graphic and
textual presentation displays� and multiple process model descriptions or notations� while accommo�
dating one or more operating systems� computing hardware platforms and network communication
protocols� Finally� either an �i� empirically tested� �ii� experience�based� or �iii� analytically robust
process �or meta�model� should de�ne the procedures for creating an environment�

Ease of use� The construction method supported by a meta�environment should be easy to use in

��



the following ways�

� Multiple levels of support� The users of a meta�environment are likely to have di�erent levels
of expertise in dealing with the meta�environment� For this reason� a meta�environment
should support multiple levels of interaction which give greater power to expert environment
constructors� e�g�� via process programming� and easier interaction for nonexpert environment
constructors� e�g�� by specifying parameter values in a process model�

� Understandable� A meta�environment should provide support in understanding the construc�
tion model through visualization� query� and browsing of process� control� and data model
representations that will be embodied in the resulting environment� In addition� the pro�
cess by which a speci�c environment is constructed should be able to be recorded� analyzed�
replayed� simulated� recon�gured� and reused�

� Selection assistance� The number of possible software production methods and environment
speci�cations which provide support for these methods is likely to be very large� A meta�
environment should assist users in the selection of desired software production methods and
corresponding environment speci�cations� Meta�environments might include reusable or ex�
tensible �starter kits� ���
� or complete working examples of the kinds of environments that
can be readily produced�

� Automatic error checking� A meta�environment should support automatic error checking in
order to prevent the creation of environments with signi�cant bugs in compilation� execution�
or execution semantics� Language�directed text or graphic editors that can detect and prevent
the entry of syntactically or semantically incorrect descriptions are typical tools to support
this� In addition� mechanisms for analyzing� simulating� replaying� or repairing environment
speci�cations or process models will be helpful�

Evolution support� Alterations are likely to occur in response to evolution in both the needs of
a project and available technology� Both the environments created by a meta�environment and
the meta�environments themselves must be capable of supporting evolution� A meta�environment
should support evolution in the following ways�

� Data continuity� Changes to environments are likely to be required during the lifetime of the
project which an environment supports� Therefore� a meta�environment should prevent the
loss of project data during the evolution of environment speci�cations and the corresponding
software production environment�

� Incremental speci�cation� It is likely that only part of the complete environment speci�cation
will be available or known at the start of a project� A meta�environment should support the
incremental construction of an environment based on partial speci�cations�

� Environment versions� As the environment evolves� it is important to control its evolution in a
systematic manner� Therefore� a meta�environment should support version and con�guration
control over environment speci�cations�

� Open for new technology� When new technology such as better tools� frameworks� user inter�
faces� or methods becomes available� the meta�environment and the environments constructed
by the meta�environment should be able to take advantage of this new technology� This re�
quirement a�ects both the form of the environments and the meta�environment itself� The

��



environment should be open such that new technology can be included� A meta�environment
should be able to make the new technology available to environment speci�cations� and thus
integrate and interoperate heterogeneous software data objects� components� tools� reposito�
ries� and process modeling notations�

Adopt Existing Capabilities� One of the primary means for making signi�cant gains in environment
construction capabilities is to adopt existing technology� such as currently available tools� frame�
works� and user interfaces� A meta�environment should support the use of existing technology�
where appropriate� in order to leverage the power of the construction method and correspondingly�
the constructed environments� A meta�environment should also support� where possible� the use of
environment capability generators or tool�building tools� such as editor generators or other appli�
cation generators� Environment capability generators do not have the same characteristics as the
capabilities themselves� but meta�environments should provide an e�ective means of utilizing this
power�

� Conclusions

Research on meta�environments for software production is following a number of alternative paths�
representing a focus on either environment frameworks� customizable environments� process mod�
eling� process programming� or tool integration� These paths represent both competing and com�
plementary alternatives to the challenging problem of how to rapidly produce standardized or cus�
tomized environments for engineering software applications� Clearly� no one path� nor any single
meta�environment architecture� represents the best choice in all circumstances�

While we have examined dozens of e�orts aimed at developing meta�environments� it should be
clear that most of these e�orts combine techniques and mechanisms employed in other categories�
Further� we may expect to see a trend toward new or increased combination of techniques and
mechanisms across these e�orts� Accordingly� we think that further study in this �eld and fur�
ther development of meta�environments is an important stepping stone in the creation of e�ective
software production environments�

Finally� we have attempted to summarize and synthesize an emerging set of requirements that
should be satis�ed or addressed by meta�environments in the time ahead� These requirements
outline a bold agenda for research and development in the area of meta�environments� Meta�
environments have emerged as a key strategy for reducing the cost� time� and e�ort of constructing
software production environments� If these requirements can be met� researchers will be able to use
meta�environments to learn a great deal more about the requirements for environments themselves�
Furthermore� meta�environments will enable the production of a new generation of large�scale
software applications that are engineered using domain�speci�c environments constructed from
meta�environments� Thus� the ultimate payo� from meta�environments will lie in the domain�
speci�c environments and applications that can most readily be produced and supported�

Acknowledgements� Preparation of this report was supported in part through contracts and
grants to the USC System Factory Project from ATT Bell Laboratories� Hewlett�Packard� Northrop
Corporation� the USC Center for Operations Management� Education and Research �COMER�� and
others� No endorsement implied�

��



References

��
 E� W� Adams� M� Honda� and T�C� Miller� Object management in a CASE environment� In
��th Int� Conf� Software Engineering� pages �����	�� May �����

��
 R� Adomeit� W� Dieters� B� Holtkamp� F� Schulke� and H� Weber� K��r� a kernel for the
Eureka Software Factory support environment� In Proc� �nd� Int� Conf� Systems Integration�
pages ������	� IEEE Computer Society Press� June �����

��
 V� Ambriola� P� Ciancarini� and C� Montangero� Software process enactment in OIKOS� In
Proc� Fourth ACM SIGSOFT Symp� Software Development Environments� pages ��������
December �����

��
 R� Balzer� A �� year perspective on automatic programming� IEEE Transaction on Software
Engineering� ��������������	�� November �����

��
 R� Balzer and K� Narayanaswamy� Mechanisms for generic process support� In Proc� First ACM
SIGSOFT Symp� Foundations Software Engineering� pages ������ ACM Software Engineering
Notes� Vol� ������ December �����

�	
 S�C� Bandinelli� A� Fuggetta� and C� Ghezzi� Software process model evolution in the SPADE
environment� IEEE Trans� Software Engineering� ����������������� �����

��
 V�R� Basili and H�D� Rombach� The TAME project� Towards improvement�oriented software
environments� IEEE Trans� Software Engineering� ���	���������� June �����

��
 D�S� Batory� J�R� Bennett� et al� GENESIS� An extensible database management system�
IEEE Trans� Software Engineering� ����������������� �����

��
 H�R� Beyer� K� Chapman� and C� Nolan� The ATIS Reference Model� draft� June �����

���
 B�W� Boehm� Software engineering environments in the United States �Plenary Talk�� In
Fourth ACM SIGSOFT Symp� on Software Development Environments� December �����

���
 G� Boloix� P�G� Sorenson� and J�P� Tremblay� On transformations using a metasystem approach
to software development� Software Engineering J�� ���������� �����

���
 R� F� Bruynooghe� J� Parker� and J�S� Rowles� PSS� A system for process enactment� In Proc�
First Int� Conf� Software Process� pages �������� �����

���
 M� Cagan� The HP SoftBench environment� an architecture for a new generation of software
tools� Hewlett�Packard J�� pages �	���� June �����

���
 S�C� Choi and W� Scacchi� Assuring the correctness of con�gured software descriptions�
Proc� �nd� Int� Work� Software Con�guration Management� ACM Software Engineering Notes�
������	���	� �����

���
 S�C� Choi and W� Scacchi� Extracting and restructuring the design of large systems� IEEE
Software� �����		���� January �����

��



��	
 S�C� Choi and W� Scacchi� SOFTMAN� An environment for forward and reverse computer�
aided software engineering� Information and Software Technology� ������		��	��� November
�����

���
 G� Clemm and L� Osterweil� A mechanism for environment integration� ACM Transactions
on Programming Languages and Systems� ����������� January �����

���
 Common ADA Programming Support Environment �APSE� Interface Set� Introduction to
CAIS� September ����� MIL�STD�����A�

���
 J� Cramer� H� Hunnekens� W� Schafer� and S� Wolf� A process�oriented approach to the reuse
of software components� Technical Report ��� Dortmund University� March �����

���
 H� Davidson� Encapsulator� The plug�in Compatibility tool for SoftBench� SoftBench Tech�
nical Note Series SESD������ Revision ���� Hewlett�Packard� Software Engineering Systems
Division� ���� E� Harmony Road� Fort Collins� Colorado ������ June �����

���
 W� Dieters and V� Gruhn� Managing software processes in the environment MELMAC� In
Proc� Fourth ACM SIGSOFT Symp� Software Development Environments� pages ��������
December �����

���
 V� Donzeau�Gouge et al� Programming Environments Based on Structured Editors� the Mentor
Experience� pages �������� McGraw Hill Book Co�� New York� �����

���
 A� Earl� A Reference Model for Computer Assisted Software Engineering Environment Frame�
works� Hewlett�Packard Laboratories� Fort Collins� CO� USA� May �����

���
 EIA� CDIF Organization and Procedure Manual� cdif�doc�n��v� edition� January ����� Elec�
tronics Industry Association Project No�� EIA�PN������ USA�

���
 R�J� Ellison� Software development environments� research to practice� In Int� Work� Advanced
Programming Environments� Springer�Verlag� June ���	�

��	
 W� Emmerich and V� Gruhn� Software process modeling with FUNSOFT nets� Technical
Report Technical Report ��� University of Dortmund� �����

���
 W� Emmerich� G� Junkerman� et al� Merlin� knowledge�based process modeling� In Proc� First
European Work� Software Process Modeling� pages ������	� Milan� Italy� �����

���
 ESF � Eureka Software Factory� ESF Technical Reference Guide� �����

���
 C� Fernstrom� Process WEAVER� adding process support to Unix� In Proc� �nd� Int� Conf�
Software Process� pages ����	� IEEE Computer Society Press� �����

���
 C� Fernstrom and L� Ohlsson� Integration needs in process enacted environments� In Proc�
First Int� Conf� Software Process� pages �������� �����

���
 P�K� Garg� P� Mi� T� Pham� W� Scacchi� and G� Thunquest� The SMART approach to software
process engineering� In ��th� Int� Conf� Software Engineering� pages �������� IEEE Computer
Society Press� May �����

��



���
 P�K� Garg� T� Pham� et al� Matisse� a knowledge�based team programming environment� Int�
J� Software Engineering and Knowledge Engineering� to appear� �����

���
 P�K� Garg and W� Scacchi� ISHYS� Designing an intelligent software hypertext system� IEEE
Expert� ��������	�� Fall �����

���
 P�K� Garg and W� Scacchi� A hypertext system to manage software life�cycle documents� IEEE
Software� ����������� May �����

���
 D� Garlan and E� Ilias� Low�cost� adaptable tool integration policies for integrated environ�
ments� In Proc� Fourth ACM SIGSOFT Symp� Software Development Environments� pages
����� December �����

��	
 J�L� Giavitto� A� Devarenne� G� Rosuel� and Y� Holvoet� Adage� New trends in CASE envi�
ronments� In Proc� Int� Conf� Systems Development Environments and Factories� May �����

���
 A� Goldberg and D� Robson� Smalltalk�	
� The Language and Its Implementation� Addison�
Wesley� �����

���
 A� V� Goldberg and K� J� Lieberherr� GEM� a generator of environments for metaprogramming�
In COMPSAC 	�� pages �	���� �����

���
 A� Gold�ne and P� Konig� A technical overview of the information resource dictionary sys�
tem� Technical Report NBSIR ������� �Supersedes NBSIR �����	��� U�S� Department of
Commerce� National Bureau of Standards� Institute for Computer Sciences and Technology�
Gaithersburg� MD ������ January �����

���
 M�L� Griss� Software reuse � from library to factory� IBM Systems Journal� �����������		�
�����

���
 D� Heimbigner� Triton reference manual� Technical Report CU�CS�������� Department of
Computer Science� University of Colorado� July �����

���
 Hewlett�Packard� Developing SynerVision Processes� HP Palo ALto� CA� part number� b��	��
����� edition� May �����

���
 M� Heym and H� Osterle� Computer�aided methodology engineering� Information and Software
Technology� ���	������������ �����

���
 IEEE Computer Societys Task Force on Professional Computing Tools� A Standard Reference
Model for Computing System Tool Interconnections� p�����d	 edition� February ����� Draft�

���
 B�T� Jenings� The HP SoftBench Message Model� Concepts and conventions used by the HP
SoftBench Tools� SoftBench Technical Note Series SESD������ Revision ���� Hewlett�Packard�
Software Engineering Systems Division� Fort Collins� C�� USA� September �����

��	
 G�E� Kaiser and P� Feiler� An architecture for intelligent assistance in software development�
In Proceedings of the �th International Conference on Software Engineering� pages ��������
February �����

��



���
 A�S� Karrer� Generating Graph Editors� PhD thesis� Computer Science Department� University
of Southern California� May �����

���
 A�S� Karrer and M� Penedo� A survey of native environment framework architectures� TRW
Corporation Note Arcadia�TRW�������� El Segundo� CA� August �����

���
 A�S� Karrer and W� Scacchi� Requirements for an extensible object�oriented tree�graph editor�
In ACM SIGGRAPH Symposium on User�Interface Software and Technology� pages ������
October �����

���
 R�K� Keller� M� Cameron� R�N� Taylor� and D�B� Troup� Chiron��� a user interface develop�
ment system tailored to software environments� Technical Report UCI�����	� Department of
Information and Computer Science� University of California� Irvine� June �����

���
 J�D� Kiper� The ergonomic� ecient� and economic integration of existing tools into a software
engineering environment� PhD thesis� Ohio State University� USA� �����

���
 K� Kishida� T� Katayama� M� Matsuo� I� Miyamoto� K� Ochimizu� M� Saito� J� Saylet� K� Torii�
and L� Williams� SDA� a novel approach to software environment design and construction� In
Int� Conf� Software Engineering� pages 	����� April �����

���
 P� Klint� A meta�environment for generating programming environments� ACM Trans� Soft�
ware Engineering and Methodology� �������	����� �����

���
 J�W� Krueger� Application Object Model for Engineering Information Systems� Honeywell
Systems and Research Center� Minneapolis� MN� October �����

���
 A� Van Lamsweerde et al� Generic lifecycle support in the ALMA environment� IEEE Trans�
Software Engineering� ���	���������� June �����

��	
 N�H� Madhavji et al� Prism � methodology � process�oriented environment� In Proc� ��th
Int� Conf� Software Engineering� pages �������� �����

���
 P� Mi and W� Scacchi� A knowledge�based environment for modeling and simulating software
engineering processes� IEEE Trans Knowledge and Data Engineering� ������������� March
�����

���
 P� Mi and W� Scacchi� Modeling articulation work in software engineering processes� In Proc�
First Int� Conf� Software Process� pages �������� �����

���
 P� Mi and W� Scacchi� Process integration for CASE environments� IEEE Software� �����������
March �����

�	�
 R� Munck� P� Oberndorf� E� Ploedereder� and R� Thall� An Overview of DOD�STD��	�	A
�proposed�� The Common APSE Interface Set� Revision A� Technical report� Dept� of Defense�
USA� �����

�	�
 W�L� Melo N� Belkhatir� J� Estublier and L�G�I� France� Adele��� A support to large software
development processes� In Proc� First Int� Conf� Software Process� pages �������� �����

��



�	�
 J�M� Neighbors� The DRACO approach to constructing software from reusable components�
IEEE Trans� Software Engineering� �������	������ September �����

�	�
 J� Noll and W� Scacchi� Integrating diverse information repositories� the Distributed Hypertext
approach� Computer� ������������� December �����

�	�
 D� Notkin� The GANDALF project� J� Systems and Software� ������������ May �����

�	�
 H� Ossher and W� Harrison� Support for change in RDPE�� In Proc� Fourth ACM SIGSOFT
Symp� Software Development Environments� pages �������� December �����

�		
 L� Osterweil� Software environment research� directions for the next �ve years� IEEE Com�
puter� ������������ April �����

�	�
 L� Osterweil� TOOLPACK � an experimental software development environment research
project� IEEE Trans� Software Engineering� ��	��	���	��� November �����

�	�
 W� Paseman� The Atherton Software BackPlane � an architecture for tool integration� Unix
Review� April �����

�	�
 F� Newbury Paulisch and W� Tichy� EDGE� an extendible graph editor� Software Practice
and Experience� ���S��� June �����

���
 M� Penedo and W�E� Riddle� Guest editors introduction to software engineering environment
architectures� IEEE Trans� Software Engineering� ���	�� June �����

���
 E� Ploedereder� T�C� Harrison� P� Oberndorf� C� Roby� F� Belz� J�F� Kramer� and J� Clouse�
Rationale for DOD�STD��	�	 �CAIS�� Technical report� Dept� of Defense� USA� August �����

���
 J�N� Popcock� VSF and its relationship to open systems and standard repositories� In Software
Development Environments and CASE Environments� pages ���	�� Springer Verlag� Lecture
Notes in Computer Science� Vol� ���� �����

���
 C�V� Ramamoorthy� Y� Usuda� et al� GENESIS� an integrated environment for supporting
development and evolution of software� In COMPSAC �	�� pages �������� October �����

���
 S�P� Reiss� Connecting tools using message passing in the �eld environment� IEEE Software�
��������		� July �����

���
 S�P� Reiss� Interacting with the �eld environment� Software Practice and Experience�
���S���������� June �����

��	
 T� Reps and T� Teitelbaum� The Synthesizer Generator� In Proc� ACM SIGSOFT�SIGPLAN
Software Engineering Symposium on Practical Software Development Environments� April
�����

���
 W� Scacchi� The Software infrastructure for a Distributed Software Factory� Software Engi�
neering Journal� 	���������	�� September �����

���
 D� Smith� KIDS� A semi�automatic program development system� IEEE Trans� Software
Engineering� �	�������������� �����

��



���
 K� Smolander� P� Marttiin� K� Lyytinen� and V�P� Tahvanainen� MetaEdit � a �exible graphical
environment for methodology modelling� In Advanced Information Systems Engineering� pages
�	������ Springer Verlag� Lecture Notes in Computer Science� Vol� ���� �����

���
 R� Snodgrass and K� Shannon� Fine grained data management to achieve evolution resilience
in a software development environment� In Proc� Fourth ACM SIGSOFT Symp� Software
Development Environments� pages ������	� December �����

���
 R�M� Soley� Object Management Group Standards Manual� Draft ��� OMG TC Document
������� May �����

���
 P�G� Sorenson� J�P� Tremblay� and A�J� McAllister� The Metaview system for many speci�ca�
tion environments� IEEE Software� �������� March �����

���
 Vic Stennig� On the Role of an Environment� Communications of the ACM� �����

���
 Tom Strelich� The Software Life Cycle Support Environment �SLCSE�� a computer based
framework for developing software systems� In Proc� ACM SIGSOFT�SIGPLAN Software En�
gineering Symposium on Practical Software Development Environments� pages ������ Novem�
ber �����

���
 Y� Sugiyama and E� Horowitz� Building your own software development environment� Software
Engineering Journal� 	������������ September �����

��	
 S�M� Sutton� D� Heimbigner� and L� Osterweil� Programmable relations for managing change
during software development� Technical Report CU�CS�������� University of Colorado� Boul�
der� CO ����������� September �����

���
 R� Taylor et al� Foundations for the Arcadia environment architecture� In Proc �rd ACM
Symp� Software Development Environments� November �����

���
 W� Teitelman and L� Masinter� The Interlisp programming environment� IEEE Computer�
������������ April �����

���
 I� Thomas� PCTE interfaces� supporting tools in software engineering environments� IEEE
Software� 	����������� November �����

���
 D� Vines and T� King� Gaia� an object�oriented framework for an Ada environment� In Third
Int� IEEE Conf� Ada Applications and Environments� pages ������ May �����

���
 B� Warboys� The IPSE ��� project � process modeling as the basis for a support environment�
University of Manchester� September �����

���
 D� Wile� Program development� formal explanations of implementations� Communications
ACM� �	������������� November �����

���
 A� Wolf� J� Wileden� C� Fisher� and P� Tarr� Pgraphite� an experiment in persistent typed ob�
ject management� In Proc� ACM SIGSOFT�SIGPLAN Software Engineering Symp� Practical
Software Development Environments� pages �������� Novemeber �����

��



���
 W� Wong and M�V� Zelkowitz� A preliminary description of an Integrated Software Engineer�
ing Environment �ISEE� reference Model� National Institute of Standards and Technology�
February �����

���
 Y� Yamamoto� An approach to the generation of software life�cycle support systems� PhD
thesis� University of Michigan� �����

�	


