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Researchers who create software production environments face considerable problems. Soft-
ware production environments are large systems that are costly to develop. Furthermore, soft-
ware production environments which support particular software engineering methods may not
be applicable to a large number of software production projects. These conditions have formed
a trend towards research into ways which will lessen the cost of developing software production
environments. In particular, the trend has been towards the construction of meta-environments
from which specific software production environments can be created. In this paper, we at-
tempt to categorize more than 60 meta-environment efforts. For each of the categories, we
review research efforts which illustrate different approaches within that category. We conclude
by presenting an emerging common thread of requirements which links this field together.

1 Introduction

Software engineering addresses the complex problems associated with software production. Many
software engineering methods, such as structured design and object-oriented analysis, have emerged
to ease these problems. Recently, there has been considerable attention paid to the application of
these methods through software production environments in order to evaluate the effectiveness
of each method [7, 43, 67]. A software production environment (SPE) is a system consisting of
a software infrastructure providing a common operating environment for software tools, a set of
tools, and an interface which provides users with access to the environment’s capabilities.

Both software production organizations and research organizations have found that there are
considerable problems in using SPE technology. One underlying problem is that software produc-
tion environments are large systems and, without sufficient support, are costly to engineer and
build. This result is not surprising, especially given that software production environments are
large software products. Coupled with this problem, researchers have found that little is known
about the requirements for a good SPE. Many researchers believe that the only way in which the
requirements can be found is by developing, using, and evolving environments. Unfortunately, such



an evolutionary approach will be costly because of the time and effort required for creating new
SPEs, and because as better SPEs are developed, users are likely to change the manner in which
they use the SPE [67]. Worse yet, each software production project may have different requirements
for an SPE [10]. These factors imply that in order to research the requirements for SPEs and to
support the requirements of individual projects we must reduce the cost of creating SPEs.

Because SPEs are themselves software products, we can consider the software production process
used to construct SPEs. SPE construction processes have taken many forms, with early SPEs being
constructed using a simple program-debug-test process based on a single programming language.
Meta-environments[53, 55, 80] are emerging as a means of constructing SPEs with significantly more
powerful constructs than are generally available in programming languages. Meta-environments
have also been called generic environments [36] and environment generators [25, 31, 95]. The
distinction between these terms is somewhat vague. As such, we will use the term meta-environment
to include generic environments, environment generators, and other approaches to environment
construction.

We find a meta-environment consists of a construction model, a transformation of instances
of the model into an SPE, and a process for using the construction model and transformation to
create an SPE. An environment specification is an instantiated construction model which specifies
the intended environment. A meta-environment construction processis the collection of tasks, agent
roles, resources, tools, and their relationships which specifies the procedures used to create viable
software production environments.

In general, meta-environments are designed to overcome two major issues. The first issue
is that SPEs are themselves large software systems and are extremely costly to create without
the support provided by meta-environments. The second issue is that a high level of assistance
in reducing the cost of environment creation often requires assumptions about the form of the
resulting environment. These assumptions reduce the ability of a meta-environment to support
many different kinds of software engineering methods.

In the rest of this paper, we examine the trend for creating meta-environments. First, we
attempt to categorize current meta-environment approaches. For each of the categories, we re-
view research efforts which illustrate different approaches within that category. We conclude by
presenting the common thread which links this field together.

2 Related Research

Software engineering environments were initially constructed as monolithic systems, using a pro-
gramming language as the construction model. Two of the more notable examples of this approach
are the programming support environments for Smalltalk [37] and Interlisp [88]. Both environments
support a single method of software production: interpretive, incremental program development.
While the monolithic approach can be applied to construct environments which support virtually
any software production method and programming language, the cost of productng an environment
using this approach is generally prohibitive for most research organizations.

Since the monolithic approach, a variety of methods have been suggested for lessening the cost
of construction and improving the utility of environments. We have categorized the approaches to
environment construction into the following five classes:

o Pnvironment frameworks support a set of low-level services including object management,



control management and sometimes user-interface management.

o (ustomizable environments provide high-level core environment capabilities and a means of
customizing those capabilities.

e Process modeling provides a meta-model which can be instantiated to specify the activities,
developers, resources, artifacts, and their relationships which together form the processes of
the environment.

o Process programming provides a programming language oriented towards the description of
processes as the basis of constructing process-driven environments.

o Tool integration provides the means to combine tools into an integrated set of environment
capabilities.

In the following sections, we further define each of these categories. We also present several
research efforts in each category which serve both to give further insight into the basic category
and also to illustrate the main issues which separate researchers within a category. Most research
efforts in meta-environments actually combine technology from more than one category. For ex-
ample, many environment frameworks provide support for tool integration. Nonetheless, we have
categorized and presented these efforts in order to illustrate the meta-environment trend as a whole.

2.1 Environment frameworks

One of the recent trends in the commercial and government sectors has been the development of
environment frameworks which provide a set of computational services as a basis for environment
construction. As a starting point for a survey of this research, it is a good idea to mention that
considerable attention is being directed to the definition of the kinds of services which environment
frameworks should address. Much of this work has been done by creating reference models including
the Conceptual Environment Architecture Reference Model (CEARM) [70], the ECMA Reference
Model [23], and the NIST Reference Model [94]. [48] used one of these reference models to survey
current environment framework research. This survey showed the usefulness of a reference model
as a conceptual framework for comparing the capabilities of frameworks. Much of this section is
derived from that study.

These reference models suggest that frameworks should address Object Management Services,
User-Interface Management Services, and Life-cycle Process Management Services (also called En-
vironment Management [70] and Task Management [23]). The Object Management Services (OMS)
provide for persistent objects and relationships as opposed to files and directories traditionally sup-
ported by operating systems. The Life-Cycle Process Management Services (LCPMS) provide a
means for enacting change upon the current state of life-cycle objects. Most LCPMS are based
on the operating system process. However, the LCPMS combines operating system processes with
additional modeling services to provide a more powerful control mechanism. The User-Interface
Management Services (UIMS) provide basic mechanisms for defining user-interfaces and associating
objects graphically depicted with objects and actions within the environment.

These reference models suggest that environment frameworks must provide construction models
for modeling data, control, and user-interface. While other meta-environment approaches require,



for example, some kind of translation of a language or environment specification into an environ-
ment, a similar transformation of the framework’s models is not needed since the framework models
are used as the architectural basis of the environment. The examples that we present next show a
variety of data and control models.

Atherton Technology’s Software BackPlane [68] is an integration and portability framework
designed to assist in building SPEs independent of tools, methodology, or languages. It provides
a generic operating system, an object-oriented OMS and a Macintosh-like user interface. The
Software BackPlane’s OMS provides an object-oriented software interface and a set of predefined
classes which give the database its form. The OMS uses the concept of Generic Messages to invoke
methods for new/free, open/close, checkin/checkout, and others which are applicable to virtually
all objects. This approach allows users to invoke similar tools using identical messages.

Some tool integration is addressed through the object-oriented integration techniques for defin-
ing new classes or attaching existing tools to previously defined classes as methods. Tools created
without using the Software BackPlane as its persistence mechanism store their data using the na-
tive operating system. Translation of their data and rehosting to the Software BackPlane can be
accomplished by creating a method which does both a translation from a file into a set of objects
and tool invocation over those objects.

Atherton has also provided a high-level specification of an environment construction process
called the “Environment Customization Plan”. This process suggests the creation of user-defined
methods as a form of process programming, tool definition, data definition, and user/role definition.

Gaia [90] embodies an approach similar to the Software Backplane by providing an object-
oriented OMS as its cornerstone. It lacks some of the integration techniques present in the Software
Backplane. It also lacks a plan for using object-oriented technology to instantiate an environment.

CAIS-A [60, 18, 71], the latest version of CAIS, is defined in the military standard report MIL-
STD-1838A, under the control of the Ada Joint Program Office (AJPO) within the U.S. Department
of Defense. CAIS-A is a set of Ada interfaces which are designed to act like a high-level virtual
operating system. It provides an object management system (OMS) and process control based on
the OMS. The OMS is a distributed database providing a node model which is similar in flavor to
an entity-relationship-attribute (ERA) model with type inheritance. The node model is used to
formalize the structures and capabilities of the OMS. Processes in CAIS-A form a tree of parent-
child processes. All process information is kept in the OMS. Processes can communicate through
special OMS-based queues.

The Portable Common Tool Environment (PCTE) [89] is a Public Tool Interface (PTI) which
can be used as a basis for integrating tools as part of the development of an SPE. The PCTE PTI
consists of software interfaces to services of an OMS, LCPMS, and UIMS. The Object Management
System is a distributed database based on an ERA model with multiple type inheritance. The
object types are modeled by a single overall schema which is actually comprised of a set of possibly
overlapping Schema Definition Sets (SDS). PCTE models the static context of processes which are
used to control process invocation. Inter-process communication is achieved through the OMS,
message queues, pipes and signals. Monitoring of process execution is also available. PCTE has
defined a set of user-interface management primitives, as well as extensions to support production
of real-time software through the PCTE+ and PACT versions of PCTE.

The Sun Network Software Environment (NSE) [1] is a network-based object manager and tool
integration facility. NSE is primarily a Unix environment with additional support for object man-
agement, configuration management, version management, distribution, environment management,



target generation, and environment front-ends. The object manager is oriented around a specific
view of version and configuration control based on an optimistic concurrency control mechanism.
Tools are integrated into NSE by using NSE to control their objects (files) and by adding the tools
to the NSE environment front-end. More recently, an object-based tool integration facility called
ToolTalk has been introduced to support this capability

The NSE object manager is not a general purpose object manager in the same vein as PCTE,
CAIS, and the Software BackPlane. It provides no extensibility of the base classes. It does support
an extension to Unix process management by allowing triggers associated with NSE commands to
perform some of the environment tasks.

The Software Life-Cycle Support Environment (SLCSE) [84] is a framework which provides a
common database, a set of common schemata, and tools. The common schemata and tools are
designed to support a MIL-STD 2167A model for documenting the software production life-cycle.
The 2167A model is based on the waterfall model of software production based primarily on the
production of documents after each step in the life-cycle. The SLCSE framework also supports
specification of alternative schemata and alternate life-cycles.

RDPE3 [65] is a programming environment which is primarily oriented around the support
of adaptation and extension of environments. RDPE3 uses an extended object-oriented, fine-
grained programming paradigm to represent program fragments. Thus, RDPE3 focuses on a smaller
component size as compared to PCTE, CAIS-A, etc. Furthermore, RDPE3 suggests a different
integration scheme than those suggested by other frameworks, one in which the function of the
integrated components must be accessible.

The ALMA [55] generic environment provides the capability to define a life-cycle support
database schema based on the entity-relationship model. While the ALMA environment has capa-
bilities similar to other frameworks, it specifically presents a plan for the use of the framework as
both a meta-environment and a software production environment.

The Distributed System Factory (DSF) project is developing a multilayer infrastructure of
software services which can integrate multiple data, control, presentation, and process models
that can span a distributed wide-area network [77]. The DSF infrastructure provides a distributed
hypertext (DHT) framework to integrate heterogeneous software object repositories (e.g., those with
different data models) [63] with forward and reverse software engineering tools [16], graph-based
editors and user interfaces [49], process-driven user interfaces with partially order tool invocation
sequences [59], and a knowledge-based process modeling and simulation environment [58]. Using
these mechanisms and components, it is possible to semi-automatically generate multirole, process-
driven software production environments for a hierarchy of concurrent production processes [31, 59].

The EUREKA Software Factory (ESF') [28] is a large-scale pan-European research effort aiming
at the development of an integration framework for a meta-environment that can accomodate the
interoperation of various tools and the interactions of people working together with these tools
according to a process meta-model [2]. The heart of the ESF architecture is a Software Bus (SWB),
which is an abstract communication channel hiding distribution and supporting the exchange of
data and control information using abstract data type interfaces. User-interaction components
(UIC) and service components (SC) communicate across the SWB. UIC, which have no persistent
data, communicate with the user and make requests on service components across the SWB. SC
may not have a user-interface. One UIC and one SC taken together are essentially a tool in current
environments.

The ESF kernel, K/2r [2], is not tied to the use of a central OMS as the basis of integration.



Rather, the ESF project uses process models as the basis of tool integration, although different
schemes [19, 30] and modeling formalisms [21, 27] are being investigated. In this way, the ESF and
DSF projects share many common goals, although their approaches differ.

Each of these environment frameworks provides services which are needed in virtually all soft-
ware production environments. Access to an implementation of these services assists environment
construction. In general, environment frameworks are intended to maintain independence from any
particular software production method. While environment frameworks provide some support to
environment construction, the services they provide are generally low-level functions. There is a
considerable gap between these services and the services provided by a full software production
environment.

Existing environment frameworks seem to be split on the kind of data and control models to
provide. The object-oriented camp with Atherton and Gaia suggest a single model for both data
and control. The extended ERA camp with PCTE, CAIS-A, SLCSE, ALMA, DSF-DHT, and ESF-
K/2r suggest a data model based on the ER or object-based model, and a control model based on
concepts which are similar to operating system processes.

2.2 Customizable environments

Customizable environments are based on the existence of a high-level, fixed core of services or
capabilities. Different customizable environments will provide different methods of customization
and different core capabilities. The construction method provided by a customizable environment
allows the user to specify a set of extensions or changes to the core capabilities. This specification is
then combined with the core capabilities to form an environment. This approach is very similar to
the approach used in most tool generators, such as those used for parser generators [92], language-
directed editor generators [16, 64, 76], or extensible graph editors [47, 69, 79].

Customizable environments differ from frameworks in that they trade ease of instantiation for
less generality. In other words, customizable environments will support a model which can be used
to describe only a small portion of the entire environment. The remainder of the environment is fixed
by assumptions built into the customizable environment. In particular, customizable environments
will fix the process supported by the environment, but will allow particular parts of the process to
be subsequently modified.

Several researchers have developed customizable environments centered around the use of struc-
tured editors. These customizable environments provide a construction model which can be used
to describe the grammars for the languages which will be manipulated in the environment. The
fixed part of the environment is the process of using a series of editors. For example, the Mentor
programming environment [22] is founded on an abstract syntax tree representation of the program
as the common information base. This syntax tree can be annotated by means of other abstract
syntax trees in specialized languages. By allowing arbitrary annotations of nodes in the syntax
tree, Mentor allows the extension of the environment.

GANDALF [64], the Synthesizer Generator [76], and SOFTMAN [16] provide customizable
structure/text editors which allow an environment to be constructed as a suite of tightly integrated
editors. Editors are customized through the specification of (a) the grammars of the languages which
they edit, and (b) the attributes or action routines which support incremental semantic checking.
GANDALF also provides for the specification of commands which invoke external tools integrated
around centralized parse tree representations, while SOFTMAN provides for the integration of



generated multilanguage editors with an OMS.

TRIAD [51] is a customizable environment which supports a set of form-based, methodology-
driven tools designed to operate over an extendible attribute grammar. This grammar is used to
encode process information as well as syntax information. The grammar is used by TRIAD to
construct various portions of the environment including a syntax-directed editor.

DRACO [62], Popart [92], GEM [38], KIDS [78], and Centaur [53] are generators of grammar-
based or notation-based meta-programming environments. A meta-programming environment is
an environment which assists in the creation of parsers and related tools which manipulate a
particular language. FEach generator accepts the specification of a language, then assembles a
library of routines which can be used to operate over a parse tree or similar internal form of
a program in the manipulated language. DRACO, Popart, KIDS, and Centaur are designed to
support the development of domain language definitions using either (a) patterns, transformations,
rules, or annotations for DRACO, Popart, and KIDS, or (b) algebraic and syntactic specification
formalisms for Centaur. In addition, Popart is used in conjunction with Common Lisp Framework
[4] and a generic process engine developed at USC/ISI [5], which accomodates the generation of rule-
based programming and transformational implementation environments. The DRACO and KIDS
environments provide similar capabilities, although they lack integration with a process engine.
However, DRACO also supports the integration and composition of reusable components or tools,
as described later.

Another approach to customizable environments is to provide a model which supports the
specification of the objects to be manipulated during a software life-cycle process. The SOFTMAN
environment [16] provides core capabilities which enforce a particular model of incremental software
development and verification across life-cycle activity boundaries. It allows customization based
on the specification of the formal attributes of life-cycle objects and specification of tools which
operate on these objects. Thus, the specification refers to objects beyond those directly tied to the
programming language. However, the primary tools in a SOFTMAN environment are customizable
structure editors interfaced to a constraint-based OMS. The combination of the tools and the object
repository can then track and verify the correctness attributes of objects that have been created or
modified [14].

ISHYS [33] provides an interface to a hypertext-based information storage structure and to a
structured documentation process. ISHYS supports the specification of the type, attributes, and
composition of hypertext-based life-cycle documents based on the DIF software hypertext system
[34]. Tt also supports the specification of a process model which describes the production and use of
the documents by collaborating agents. The document formats and process model support multiple
forms of group-based or team-based interaction and communication structures within a project and
support multiple simultaneous projects.

META/GA [95] is a Life-Cycle Support System generator based on the specification of the
format of information which must be processed in the generated environment. META/GA gener-
ated environments support a specific life-cycle approach to the creation of information processing
systems. However, the META /GA user, the environment constructor, is able to specify the type of
information which will be processed. This customizable environment attempts to help standardize
the type of information and leave the life-cycle as general as possible.

The Metaview project [11, 82] takes an approach that is a hybrid of framework approaches
and customizable environments. The models provided are based on an ERA model extended with
constraints, transformations, and a graphical interaction model. These models are used to describe



the data manipulated by the environment as a whole and by generic tools. So both the environment
framework as well as tools which operate over the environment are specified using this model.

There is growing interest in developing structure- or language-based editors for manipulating
graph-based or graphic software specification notations. EDGE [69], TGE [49], MetaEdit [79],
VSF [43, 72|, and GEDL [47] are recent examples. In contrast to structured-text editors and
related functionality generated by GANDALF or Synthesizer Generator, these graphic meta-editors
provide multiple layouts of graphic information [47, 69], allow the specification or redefinition of
user interface functionality [49, 47], and support a variety of object modeling, software process
[49, 47] and method notations [43, 72, 79]. Each meta-editor employs a language-based specification
notation for describing the iconic syntax and composition semantics to be supported in the target
editors that are generated or instantiated. Finally, TGE, VSF, and GEDL have specification-level
interfaces which allow them or their derived editors to be integrated with one or more repositories
and environments, such as SOFTMAN’s use of TGE-based graph editors [16, 77]. Subsequently,
this provides another dimension for the extension of resulting meta-environments.

Overall, the primary advantage of customizable environments is the speed and relative ease
of constructing high functionality environments. However, most customizable environments have
lessened the burden of environment construction by adopting a particular approach to software
development. This means that a customizable environment may only support certain kinds of soft-
ware processes or development methods. Environments centered or driven by software production
process models thus represent an alternative to this situation.

2.3 Process Modeling

In environments based on process models, a software process meta-model is used to circumscribe the
family of processes the environment supports. Thus, a process model-based construction method
must provide a process meta-model as the basis of implementing a specific life-cycle model. Instances
of a meta-model describe active and inactive objects in an environment. Further, an instance of a
meta-model allows the execution of a process-centered environment.

The GENESIS (from UC Berkeley) [73], Marvel [46], and Merlin [27] environments are among
those that provide production rules and rule interpreters as the means for specifying and enacting
software processes. A production rule has (1) a precondition, (2) an action part which is executed
when the precondition is true, and possibly (3) a postcondition which becomes true once the action
is executed. Environment construction using these systems consists of specifying the production
rules for all of the activities or events which the environment should support.

PRISM [56], IPSE 2.5 [91], and its successor, PSS [12], provide process meta-models similar to
Marvel and GENESIS. However, these efforts suggest a particular execution of the process models,
which provides the environment to the user. In these environments, a process model execution
facility serves as the means of invoking tools and presenting choices to environment users.

MELMAC [21] is a software process management environment based on the execution of high-
level Petri-net representations of software process models [26]. The MELMAC research effort has
led to the development of a prototype capable of enacting a software process model on top of a
framework similar to the ones described in subsection 2.1. A major part of this prototype is the
graphical user-interface, which depicts the Petri-nets and allows both the specification of process
models and the enaction of process models.

The Software Designer’s Associate (SDA) project [52] is a software design environment in which



the executable process descriptions are specified as a process model consisting of activities, com-
posite activities, products and tools. SDA is unique in that it only addresses the early phase of
design and that it uses a model-based approach to the design and construction of an environment.

The DSF project has been developing and using the Articulator [57], which is a knowledge-based
environment for modeling, analyzing, and simulating software production processes. The Articu-
lator uses a hierarchical object-oriented representation of agent roles, products (or resources), and
tasks, which can be either partially ordered or triggered through rule-based mechanisms. Modeled
agents communicate process task status and resource availability to one another through queries
and messages. These queries can entail direct or deductive retrieval of process enactment informa-
tion, or trigger either the symbolic execution of new processes or replay processes already enacted.
Multiple concurrent processes can be enacted and agents can interact across processes. In addition,
the environment maintains persistent information about the state of enacted processes as process
transitions occur. This information is used to track the execution history of planned activities, and
to facilitate incremental process rescheduling and replanning when unplanned or dynamic changes
in the process occur [58].

The Articulator has been integrated with a process-based user interface and a process model
interpreter (together called PBI) to provide a framework for developing process model-driven envi-
ronments [59]. The Articulator, PBI, and an open software environment or set of software tools can
the be used to construct and instantiate process-driven software production environments. That is,
process models created with the Articulator are automatically transformed into process programs
that can be enacted by PBI’s process interpreter. When the process models specify tool bindings to
process pre- or postconditions, data objects, and object repositories, then process-driven software
environments can be automatically produced. In one study [59], the SOFTMAN environment [16]
was used as the base environment, and a software life-cycle process model that guides a user in
their invocation of SOFTMAN tools was developed using the Articulator. The SOFTMAN process
model was then transformed and loaded into the PBI process interpreter. This interpreter drives
the process-based user interface by structuring access to which SOFTMAN tools can be invoked
on the designated objects. This in turn depends on the development process history and process
enactment status at that time. In order to do this, the pre-existing top-level user interface for
SOFTMAN had to be disabled and redirected to the new process interface, while the tool-specific
interfaces and object repository for SOFTMAN remained intact and unmodified. With the new
PBI interface, a user is presented with a visual representation of the development process currently
assigned to them. Users can then select the next process task or action to perform. In this way,
we can say that a process integration interpreter and user interface enable knowledge-based pro-
cess models to guide user invocation of tools within a software production environment, such as
PBI-SOFTMAN [59].

The Articulator has also been integrated with the Matisse team programming environment
[32] and the SynerVision process execution engine [42] in place of PBI. The resulting composite
environment is called SMART [31]. SMART supports the modeling, analysis, enactment, measure-
ment, and improvement of software processes utilizing encapsulated CASE tools that communicate
messages and tool invocations across the SoftBench BMS [13], and that manipulate data stored in
networked repositories. Since SMART can configure commercially available CASE tools, and as
most Unix-based CASE tools have SoftBench encapsulations, then the number and configuration of
process-based CASE environments that can be generated using SMART is very large. Finally, the
Articulator has similarly been integrated with the generic process engine developed at USC/ISI [5],



which supports the refinement of generic process descriptions into concrete instantiations during
its enactment. Thus, the Articulator environment successfully demonstrates the power of software
process meta-models as a basis for integrating and interoperating independently developed tools
within generated process-driven environments.

Last, the SPADE environment [6] is similar in scope to the Articulator in that it supports the
design, analysis, and enactment of software process models. Its process representation is based
on extended Petri-nets, and the environment includes functional mechanisms for accommodating
dynamic changes to a process description during its enactment. However, it does not utilize a
process simulation facility, nor does it include inferential mechanisms for diagnosing and repairing
process faults, as does the Articulator.

2.4 Process programming

Process programming environments use a programming language to describe the processes that
form the capabilities of the environment. The goal of process programming-based systems is to
provide a highly flexible, process-oriented environment construction mechanism. Process program-
ming differs from process modeling in the form of the meta-model provided for environment con-
struction. However, we can view process programming as process modeling where the meta-model
is a programming language.

The Arcadia Research Project [87] consists of a collection of loosely coordinated research and
development projects conducted by the Arcadia Consortium. Like ESF, Arcadia could also be
categorized as an environment framework, but the architecture of the Arcadia framework is centered
on the capability to execute process programs. In this manner, users interact with an Arcadia-based
environment by executing parts of the process. The Arcadia environment is a process-centered
environment. The form of the environment which the users see is wholly determined by the processes
which are executed to form the environment.

Arcadia is currently a collection of many partially integrated components including a UIMS, an
OMS, an Ada-based Process Programming Language (APPL/A), a Measurement and Evaluation
(M&E) system, and a Process Administration System. The UIMS is based on Chiron [50], an Ada
UIMS based on a very strong separation of functionality from interaction. The OMS in Arcadia is
viewed as possibly many different object managers combined through a common underlying type
model where data is combined through interoperability mechanisms. Triton [41] and PGraphite
[93] are two OMSs which have been used as a basis of object management in the Arcadia project.
APPL/A [86] is a process programming language which consists of extensions to Ada that include
the notion of persistent relations associated with the OMS. The Process Administration System is a
run-time support interface for executing processes based on a corporate metaphor. This metaphor
has been suggested as a basis for the specification of environment characteristics.

Environment adaptation is the primary focus of the Arcadia architecture. Data and processes
can be directly defined using the software interfaces provided by the Arcadia infrastructure. Further
adaptation can be built up by creating processes which act like virtual architectures. In other
words, a process could be defined which would allow the specification of user-role definitions. This
mechanism would not be part of the Arcadia infrastructure, but it would be part of the virtual
environment created by the definition of the process which allows user-role specification.

In contrast, the Adele-2 environment [61] utilizes a special-purpose persistent database and
programming language, Adele, to describe and implement enactable processes. Adele-2 provides
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support for multiple work environments (i.e., tool, policy, and method configurations) that are
coordinated and coupled through an activity manager and a task manager. Coordination and
coupling, as well as activity and task specification, are all realized using the Adele-2 language.
Process WEAVER [29] and SynerVision [42] are commercially available process execution en-
gines. Iach provides a process programming language based on the Unix shell command lan-
gugage. Their use is similar in scope to Adele-2, but they both lack support for a persistent
object store, other than the underlying file system. However, the SMART environment [31] can
semi-automatically generate SynerVision process program code via transformations on Articulator-
based software process models [57], while Process WEAVER allows modeled process states to be
attributed with Unix shell commands, which can subsequently be executed under user direction.
Last, both OIKOS [3] and OPM [85] propose object-oriented approaches to process program-
ming. The idea in these two efforts is to show how object-oriented views of process programming
and software development environments can be united into a single view in which both the process
model and programming environment can be dynamically modified. Thus, object-oriented process
programming seeks to provide an object-oriented process model (or meta-model), process pro-
gramming language, and meta-environment framework where the environment data, control, and
presentation models all share a uniform object-oriented representation and interpretation scheme.

2.5 Tool integration

A primary concern for environment creators is the integration of existing tools as part of the
capabilities of an environment. Because tool integration provides the ability to invoke other tools,
the technology described in this section is often applied in each of the previous meta-environment
construction approaches. For example, a process model-based environment can be based on a special
tool which is in charge of executing a process model and in turn invokes other tools. However,
we have split tool integration into a separate category because a large body of efforts have a
distinct model, transformation, and process from any of the previous categories. In particular, tool
integration meta-environments provide a model based on an interface between a set of connected
tools. The execution or use of the interface to the tools is the transformation of the model into an
environment.

Basically two paths towards easier integration have been suggested. One path is the development
of standards which tools must use in order to be integrated. Some standards are merely standards of
data-exchange, while others are standards which affect all data storage. The other path is to build
technology which can use tools developed prior to or outside of the standards. In the remainder of
this section, we will consider examples of both approaches.

2.5.1 Standards

A Tool Integration Standard (ATIS) [9] and its more recent name, a Component Integration Stan-
dard (CIS), is a proposal for an object-oriented approach to the integration of tools that provides
a set of interfaces that support schema-driven dispatching of behavior. ATIS/CIS is presented in
terms of a hierarchy that specifies and interrelates abstract data types, their properties, and their
methods. In other words, ATIS/CIS proposes an instance of an object-oriented model which de-
fines a set of classes and their properties. This model is designed to provide services to tools which
promote integration and make tool development easier.
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The IRDS [39] is an ANSI Standard (ANSI X3.138). The IRDS standard defines a meta-model
using an ERA model. Instances of the meta-model are models which describe data. IRDS allows
access to schema definitions through access to instances of meta-entities. The meta-entities define
the types of entities, relationships, and attributes.

The IRDS/ISO is the IRDS Rapporteur Group of the ISO/IEC JTC1/SC21 WG3 (International
Standards Organization, International Electotechnical Commission Joint Technical Committee 1 /
Subcommittee 21 Working Group 3). The IRDS/ISO uses a model similar to the relational model
as an approach to representing data. Information is stored at two levels, the definition level and the
IRD level. The definition level defines the tables and the functions which manipulate the tables.
The IRD level contains the application data. This is analogous to class and instance levels of an
object-oriented model.

CDIF [24] is a definition of a common data transfer format which supports many data models
and the transfer of data between CASE tools or frameworks. The CDIF approach is based upon
the concept of a Meta-Meta-Model. In order to describe the conceptual models for each of these do-
mains, a model (i.e., the meta-meta-model) which can describe data models for different application
domains was developed. The Meta-Meta-Model is similar in form to an Entity-Relation-Attribute
(ERA) model. Various proposals for how to best implement CDIF-based data transformations,
however, seem to focus on batched monolithic transformation of large data sets. In contrast, the
DHT approach noted earlier also incorporates modeling formalism similar in power to a meta-meta-
data model, but does not require transformation of data sets to support access to heterogeneous
data repositories [63]. In addition, DHT implements a persistent hypertext-based object man-
agement service using a persistent programming language, while CDIF lacks such a service and
programming language.

The P1175 reference model for interconnections between computing system tools [44] is a
tool-integration standard being developed by the IEEE Computer Society’s Task Force on Pro-
fessional Computing Tools. The approach taken in P1175 is to define reference models for tool-to-
organization and tool-to-platform interconnections, and a language for the transfer of data between
tools. The tool to organization interconnection defines roles, life-cycle phases, and support elements
which relate to a tool. The tool to platform interconnection describes various interconnections
which must be supported by the platform and by the tools to effectively integrate the tools into
the platform. These interconnections consist of the Data Base Manager, Communication Network
Manager, O/S Service Manager, and the User Interface Manager interfaces.

The Object Management Group (OMG) [81] is an international organization of more than 50
information systems vendors, users, and research organizations with diverse backgrounds. The basic
technical approach being followed in OMG is an object-oriented layer of services which exists above
various implementations of object managers, user-interface facilities, and environment managers.
This layer defines a set of network transparent protocols for message-oriented common service
requests.

The Product Data Exchange using STEP (PDES) is a US organizational activity that supports
the development and implementation of STEP (Standard for the Exchange of Product Model Data
- ISO TC184/SC4). STEP is a neutral mechanism capable of completely representing product data
throughout the life-cycle of a product. This representation is suitable for neutral file exchange and
as the basis for sharing product databases and archiving.

The Engineering Information System (EIS) [54] is a vast undertaking addressing heterogeneity
of hardware and software platforms, data formats, tools, site-specific policies and methodologies,
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and interfaces primarily oriented around the computer-aided engineering (CAE) domain. Within
the CAFE community, the EIS program is intended to produce a consolidated approach to a broad
set of functional and other requirements. This approach consists of proposed standards and guide-
lines for services which enable and accelerate a trend toward uniform engineering environments
and information exchange. The EIS framework contains automated services which support and
control the data and activities of the engineering process. The framework is composed of an OMS,
Application Object Model (AOM), and Engineering Environment Services (EES). The OMS is
composed of a meta-model, schema management, execution control, object identification support,
and data access facilities. The AOM uses the OMS to create higher-level constructs which provide
object-oriented capabilities. The EES is a large collection of types, operations, and default policies
that support the engineering and administration processes built on top of the AOM. The EES
addresses configuration management, access control, audit trails, backup and archival, inter-EIS
exchange, user environment services, e.g., login, and rule processing (data-driven triggers). The
UIMS is a family of guidelines and candidate standards for an interface to a CAE system. The
UIMS design not only concentrates on interfaces for interactive EIS applications and tool adapters,
but also provides interfaces for tying in external tools.

Any standardization approach to tool integration will work only if a significant number of tools
use the standard. At this point, most of these standards are unaccepted, either by the national
or international standards organizations, e.g., ISO, NIST, or by software tool vendors. One of the
problems facing standardization efforts is the vast number which apply to tool integration. We
have only presented a small subset to give some flavor of this approach. The IEEE P1175 effort
cites around two hundred standards efforts, many of which overlap or compete with one another.

Another problem facing standardization efforts is the large number of existing tools which
cannot be brought up to par with most standards efforts. While some standards do address this
problem by considering approaches to data transfer which do not require changing storage formats
of existing tools, many of the standards fall short in this area. The following section considers
various technologies which address issues similar to the standards efforts, but do not assume prior
knowledge of their technology.

2.5.2 Integration technologies

Tool integration environments began with the Unix operating system. The Unix pipe facility allows
the combination of tools into larger tools through the interconnection of tool outputs to tool inputs
through standard typeless 1/0 facilities. However useful this simple piping mechanism may be, it
falls short of the kind of tool integration that other efforts have demonstrated.

DRACO [62] is an approach to the construction of software by organizing reusable software com-
ponents or tools according to a specific problem area or domain. DRACO uses a domain language
for describing programs in each domain. Statements of programs in these domain languages are
then optimized by source-to-source program transformations and refined into other domains. A sin-
gle reusable component corresponds directly to each object and operation in the domain language.
Given the domain of software production environment construction, DRACO effectively provides a
tool composition language based on a module interconnection language paradigm. GENESIS (from
UT Austin) [8] is similar in purpose to DRACO, but specialized to a domain for constructing and
generating of special-purpose database management systems.

Toolpack [67], and later Odin [17], support the construction of an environment based on the
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specification of software objects, tools, and relationships between objects and tools. Environments
integrated through the use of Odin can be thought of as collections of tools which are satellites
around a large structured repository of software data. Both Toolpack and Odin are ancestral
predecessors to the Arcadia environment described earlier.

The Hewlett-Packard SoftBench product [13] is a tool integration framework comprised of sev-
eral components including the Broadcast Message Server (BMS) that functions as a software bus,
a Motif-based user-interface, the Encapsulator [20], and some integrated CASE tools. In the HP
integration model, each tool makes changes to global information and informs other tools about
its actions via the BMS. The BMS uses a broadcast paradigm via the software bus which is dif-
ferent from the point-to-point paradigm offered by object-oriented systems. The broadcast nature
of the BMS communication allows the set of tools managed by a BMS and interested in a par-
ticular message to be extended without requiring any change in the tools that send the messages.
The Encapsulator [20] provides a means of integrating tools into the HP SoftBench user-interface
and BMS. The encapsulation consists of the Encapsulation Description Language (EDL) which
describes a user-interface and corresponding communication across the BMS. The communication
information consists of messages which it will respond to and messages it will generate in response
to user-interface events. The message model [45] which is suggested as a basis of the environment
definition is very primitive and will be too limited for environments consisting of a very large num-
ber of tools. A “multi-cast” messaging paradigm which transmits strongly typed messages may
provide an alternative. Accordingly, a combination of SoftBench and SUN’s ToolTalk tool integra-
tion mechanisms have been proposed as the basis of a new “standard” for open tool integration,
as part of the Common Development Environment (CDE) now being investigated by the Open
Software Foundation (OSF).

Field [74, 75] provides an integration framework very similar to the BMS using a communication
mechanism called selective broadcasting. Field has extended the HP Softbench approach by passing
all data through the message server rather than relying on a common database. Additionally, Field
supplies an editor which provides consistent access to source code in multiple contexts and a set of
analysis tools.

Forest [35] has extended the Field communication mechanism with an additional decision mech-
anism based on policies. Policies are rules that determine how and when tools are invoked. This
approach represents a hybrid between process modeling mechanisms and frameworks.

The Common Lisp Framework (CLF') [4] is an incremental integration, development, and evo-
lution environment. Tools and applications are programs written in an extension of Common Lisp
called AP5. AP5H provides a persistent virtual database of relations, objects, and rules. The rules
connect tools through triggering upon detection of changes to data or calling procedures.

The Scorpion Meta-Environment [80] uses a specification of tool topology using a module in-
terconnection language and a specification of the level of trade-off between evolution support and
efficiency. This approach is different from the previous approaches in that it primarily addresses
the use of a tool integration technology based on the module interconnection language rather than
addressing the integration technology itself.

Last, the Matisse team programming environment [32] builds upon concepts previously demon-
strated in the CLF and Odin. Matisse provides a multiuser programming support environment
where user functionality and data object representation are managed by an intepreted, rule-based,
persistent programming language. In this manner, shared objects or software components can
be cached into a user’s local address space from a networked object repository, to realize a user-
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configurable or user-extended workspace.

Overall, tool integration construction methods address the important problems of integrating
externally developed tools into an environment. However, because tool integration construction is
usually based on a limited control policy, they represent only a partial solution to the problem of
environment construction. Generally, tool integration methods must be used in conjunction with
other environment construction methods in order to support the construction of a full environment.
Thus, it should be no surprise to find that many of these tool integration mechanisms are being
extended or combined with environment frameworks or process support technologies.

2.6 Summary of meta-environment research

In Table 1, we briefly summarize the categories of meta-environments in terms of their models
and transformations. For some of the categories, we have shown subcategories which arise based
on differing approaches. Given these various approaches, we will now consider the more general
question of what requirements must a meta-environment address.

3 The Meta-Environment Problem

In the previous section, we presented a variety of approaches to lowering the cost and improving
the efficiency of environment construction. While we have found that the approaches taken are not
similar, the problems they address are. In particular, the common thread among these efforts is
that all attempt to address problems associated with environment construction. Thus, to present
this trend, we will attempt to give further insight into the problem area and, in particular, to the
functional requirements which form the common thread.

Considerable work has been done in the area of defining the requirements for software production
environments [66, 82, 83]. That is, a meta-environment must be capable of producing environments
which satisfy these requirements. In this section, we will first present the kinds of roles environment
builders must play and the processes they must perform which are the basis for meta-environment
technology. These roles, processes, and related research are used as the basis of the requirements
presented in the next section.

3.1 Meta-environment roles

One of the best ways to understand the problems which are to be addressed by meta-environment
technology is to look at the various roles played by environment builders. A complete meta-
environment process must account for the roles of the environment integrator, component builder,
and component model manager among others.

The environment integrator is responsible for creating an environment specification and control-
ling the associated construction of an environment. This role has been the focus of this paper so far.
In particular, developers acting in this role utilize meta-environment technology for environment
construction, build a specification of the environment in terms of the meta-environment’s construc-
tion model, and then generate and refine the specified environment. In general, the generation part
of the process is an automated, or at least semi-automated, task. However, the task of specifying
the environment’s characteristics in terms of the construction model is a demand often requiring
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‘ Category ‘ Model ‘ Transformation ‘ Eramples
Frameworks ERA data model, Used directly PCTE, CAIS, SLCSE,
Process-based ALMA, DHT, ESF K/2r
Control model
Object-oriented Used directly Atherton, Gaia, RDPE3
data and control
model
Customizable Grammar-based Language-oriented Mentor, GANDALF,
environment generated Synthesizer Generator
TRIAD, GEM, EDGE,
TGE, VSF, GEDL
Life-cycle objects Generates environment Softman, ISHYS,
which is specific to the META/GA, MetaView
information domain
Process Process meta-model Executed directly ESF, Genesis, Marvel,
modeling Merlin, PRISM,
IPSE 2.5, PSS, MELMAC,
SDA,
Articulator, PBI-Softman,
SPADE, SMART
Process Process-oriented pro- | Compiled to  generate | Arcadia, Adele-2, OIKOS,
programming gramming language environment OPM, Process WEAVER,
SynerVision
Tool Standards and tool Tools used directly ATIS, IRDS, IRDS/1SO,
integration interface according to tool CDIF, P1175, OMG,

interface

PDES, EIS

Tool integration
technology and tool
interface

Tools used directly
according to tool
interface

Unix, DRACO, Toolpack,
Odin, HP SoftBench,
Field, Forest, CLF,
Scorpion, PBI, Matisse

Table 1: Summary of meta-environment research
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the environment integrator to be a software process architect, tool integrator, data modeler, control
modeler, etc.

The component builder is responsible for creating, providing, or automatically generating new
components which will be used in SPEs. This role has not been considered to this point. In
general, the environment integrator does not create all of the environment components from scratch.
Instead, the environment integrator relies on existing frameworks, process execution mechanisms,
tool integration technology, generated or acquired tools, and schemata. The component builder is
responsible for creating this technology, as well as the other software components which may be
incorporated into them. This may entail selecting from existing components available within some
reusable component repository, or extracting (and restructuring if necessary) candidate components
from existing software systems [15, 59]. Note that there can be many component builders building
products which are completely incompatible. The fact that they assume the same role does not
imply that they work together. Nonetheless, once the component builder has created or acquired
a new component, that component is potentially available for use in an environment or meta-
environment.

The component model manager is responsible for the creation and evolution of models of com-
ponent characteristics. Presently, the models are very simple and the description of characteristics
is in natural language. However, as meta-environment technology becomes more prevalent and
sophisticated, there will be a need for more sophisticated models to allow for automated and semi-
automated selection of environment components as part of the environment integrator’s role. An
emerging line of research has begun to explore and develop such models using module/component
interconnection formalisms and interaction protocols. Thus, the component model manager can
be seen as a mediator between the component builder and the environment integrator, where the
model is the language of discourse between these two roles.

Given these roles, we will now present a set of requirements which meta-environments must
attempt to satisfy.

3.2 Meta-environment requirements

Environment specification: The fundamental requirement that a meta-environment must satisfy
is that it should be able to support the construction of software production environments in ac-
cord with their specifications. This implies that a constructed environment must support desired
software production methods and the process which controls the application of these methods.
Furthermore, a constructed environment must have the characteristics of a “good” environment:
it must be fast, provide a high level of functionality in a consistent and coherent manner, provide
a consistent “look and feel” graphical user interface, etc. [66, 82, 83]. A meta-environment should
provide a construction model able to express policies or methods for dealing with security, integrity,
reuse, process, etc. Furthermore, the construction model should be general enough to express any
of the mechanisms which can be chosen within any of these categories. This includes the ability to
specify data models, data repositories, tool bindings and control message invocations, graphic and
textual presentation displays, and multiple process model descriptions or notations, while accommo-
dating one or more operating systems, computing hardware platforms and network communication
protocols. Finally, either an (i) empirically tested, (ii) experience-based, or (iii) analytically robust
process (or meta-model) should define the procedures for creating an environment.

Fase of use: The construction method supported by a meta-environment should be easy to use in
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the following ways:

o Multiple levels of support. The users of a meta-environment are likely to have different levels
of expertise in dealing with the meta-environment. For this reason, a meta-environment
should support multiple levels of interaction which give greater power to expert environment
constructors, e.g., via process programming, and easier interaction for nonexpert environment
constructors, e.g., by specifying parameter values in a process model.

o Understandable. A meta-environment should provide support in understanding the construc-
tion model through visualization, query, and browsing of process, control, and data model
representations that will be embodied in the resulting environment. In addition, the pro-
cess by which a specific environment is constructed should be able to be recorded, analyzed,
replayed, simulated, reconfigured, and reused.

e Selection assistance. The number of possible software production methods and environment
specifications which provide support for these methods is likely to be very large. A meta-
environment should assist users in the selection of desired software production methods and
corresponding environment specifications. Meta-environments might include reusable or ex-
tensible “starter kits” [40], or complete working examples of the kinds of environments that
can be readily produced.

o Automatic error checking. A meta-environment should support automatic error checking in
order to prevent the creation of environments with significant bugs in compilation, execution,
or execution semantics. Language-directed text or graphic editors that can detect and prevent
the entry of syntactically or semantically incorrect descriptions are typical tools to support
this. In addition, mechanisms for analyzing, simulating, replaying, or repairing environment
specifications or process models will be helpful.

FEvolution support. Alterations are likely to occur in response to evolution in both the needs of
a project and available technology. Both the environments created by a meta-environment and
the meta-environments themselves must be capable of supporting evolution. A meta-environment
should support evolution in the following ways:

o Data continuity. Changes to environments are likely to be required during the lifetime of the
project which an environment supports. Therefore, a meta-environment should prevent the
loss of project data during the evolution of environment specifications and the corresponding
software production environment.

e Incremental specification. 1t is likely that only part of the complete environment specification
will be available or known at the start of a project. A meta-environment should support the
incremental construction of an environment based on partial specifications.

e Fnuvironment versions. As the environment evolves, it is important to control its evolution in a
systematic manner. Therefore, a meta-environment should support version and configuration
control over environment specifications.

o Open for new technology. When new technology such as better tools, frameworks, user inter-
faces, or methods becomes available, the meta-environment and the environments constructed
by the meta-environment should be able to take advantage of this new technology. This re-
quirement affects both the form of the environments and the meta-environment itself. The
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environment should be open such that new technology can be included. A meta-environment
should be able to make the new technology available to environment specifications, and thus
integrate and interoperate heterogeneous software data objects, components, tools, reposito-
ries, and process modeling notations.

Adopt Fxisting Capabilities. One of the primary means for making significant gains in environment
construction capabilities is to adopt existing technology, such as currently available tools, frame-
works, and user interfaces. A meta-environment should support the use of existing technology,
where appropriate, in order to leverage the power of the construction method and correspondingly,
the constructed environments. A meta-environment should also support, where possible, the use of
environment capability generators or tool-building tools, such as editor generators or other appli-
cation generators. Environment capability generators do not have the same characteristics as the
capabilities themselves, but meta-environments should provide an effective means of utilizing this
power.

4 Conclusions

Research on meta-environments for software production is following a number of alternative paths,
representing a focus on either environment frameworks, customizable environments, process mod-
eling, process programming, or tool integration. These paths represent both competing and com-
plementary alternatives to the challenging problem of how to rapidly produce standardized or cus-
tomized environments for engineering software applications. Clearly, no one path, nor any single
meta-environment architecture, represents the best choice in all circumstances.

While we have examined dozens of efforts aimed at developing meta-environments, it should be
clear that most of these efforts combine techniques and mechanisms employed in other categories.
Further, we may expect to see a trend toward new or increased combination of techniques and
mechanisms across these efforts. Accordingly, we think that further study in this field and fur-
ther development of meta-environments is an important stepping stone in the creation of effective
software production environments.

Finally, we have attempted to summarize and synthesize an emerging set of requirements that
should be satisfied or addressed by meta-environments in the time ahead. These requirements
outline a bold agenda for research and development in the area of meta-environments. Meta-
environments have emerged as a key strategy for reducing the cost, time, and effort of constructing
software production environments. If these requirements can be met, researchers will be able to use
meta-environments to learn a great deal more about the requirements for environments themselves.
Furthermore, meta-environments will enable the production of a new generation of large-scale
software applications that are engineered using domain-specific environments constructed from
meta-environments. Thus, the ultimate payoff from meta-environments will lie in the domain-
specific environments and applications that can most readily be produced and supported.
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