Student's t-test

A t-test is any statistical hypothesis test in which the *test statistic* follows a Student's t distribution if the null hypothesis is true.

Student's t-distribution

Suppose X_1 , X_2 , ..., X_n are independent random variables that are normally distributed with mean μ and variance σ^2 .

sample mean:
$$\overline{X}_n = (X_1 + \dots + X_n) / n$$

sample variance: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$
 $T = \frac{\overline{X}_n - \mu}{S_n / \sqrt{n}}$
 $Z = \frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}}$

Z is normally distributed with mean 0 and variance 1 *T* has a Student's *t*-distribution with *n*-1 degrees of freedom.

The t-distribution looks like the standard normal distribution (exact with $n \rightarrow +\infty$) with fatter tails.

Independent one-sample t-test

Independent one-sample t-test:

Null hypothesis: the population mean is equal to a specified value μ_0 .

Test static:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

s: the sample standard deviationn: sample sizeDegree of freedom (d.o.f) = n-1

Independent two-sample t-test

1): Equal sample size, equal variance

Null hypothesis: the population mean is equal.

Test static:

$$t = \frac{\overline{X}_1 - \overline{X}_2}{S_{X_1 X_2} \sqrt{\frac{2}{n}}}$$

where
$$S_{X_1X_2} = \sqrt{\frac{S_{X_1}^2 + S_{X_2}^2}{2}}$$

- $S_{\chi_{1}}, S_{\chi_{2}}$: the sample standard deviation from each group.
- *n*: participants of *each* group
- Degree of freedom (d.o.f) = 2n-2

Independent two-sample t-test

2): Unequal sample size, equal variance

Null hypothesis: the population mean is equal.

Test static:

$$t = \frac{\overline{X}_{1} - \overline{X}_{2}}{S_{X_{1}X_{2}}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$$

where $S_{X_{1}X_{2}} = \sqrt{\frac{(n_{1} - 1)S_{X_{1}}^{2} + (n_{2} - 2)S_{X_{2}}^{2}}{n_{1} + n_{2} - 2}}$

- $S_{\chi_1\nu}S_{\chi_2}$: the sample standard deviation from each group.
- *n*: participants of *each* group
- Degree of freedom (d.o.f) = 2n-2