Eigenvalue Problems

The Eigenvalue Decomposition

• Eigenvalue problem for $m \times m$ matrix A:

$$Ax = \lambda x$$

with eigenvalues λ and eigenvectors x (nonzero)

• Eigenvalue decomposition of *A*:

$$A = X\Lambda X^{-1} \quad \text{or} \quad AX = X\Lambda$$

with eigenvectors as columns of X and eigenvalues on diagonal of Λ

• In "eigenvector coordinates", A is diagonal:

$$Ax = b \rightarrow (X^{-1}b) = \Lambda(X^{-1}x)$$

Multiplicity

- ullet The eigenvectors corresponding to a single eigenvalue λ (plus the zero vector) form an eigenspace
- Dimension of $E_{\lambda} = \dim(\operatorname{null}(A \lambda I)) = \operatorname{geometric}$ multiplicity of λ
- ullet The characteristic polynomial of A is

$$p_A(z) = \det(zI - A) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)$$

- λ is eigenvalue of $A \Longleftrightarrow p_A(\lambda) = 0$
 - Since if λ is eigenvalue, $\lambda x Ax = 0$. Then $\lambda I A$ is singular, so $\det(\lambda I A) = 0$
- Multiplicity of a root λ to p_A = algebraic multiplicity of λ
- ullet Any matrix A has m eigenvalues, counted with algebraic multiplicity

Similarity Transformations

- The map $A \mapsto X^{-1}AX$ is a *similarity transformation* of A
- ullet A and B are similar if there is a similarity transformation $B=X^{-1}AX$
- A and $X^{-1}AX$ have the same characteristic polynomials, eigenvalues, and multiplicities:
 - The characteristic polynomials are the same:

$$p_{X^{-1}AX}(z) = \det(zI - X^{-1}AX) = \det(X^{-1}(zI - A)X)$$
$$= \det(X^{-1})\det(zI - A)\det(X) = \det(zI - A) = p_A(z)$$

- Therefore, the algebraic multiplicities are the same
- If E_{λ} is eigenspace for A, then $X^{-1}E_{\lambda}$ is eigenspace for $X^{-1}AX$, so geometric multiplicities are the same

Algebraic Multiplicity \geq Geometric Multiplicity

- \bullet Let n first columns of \hat{V} be orthonormal basis of the eigenspace for λ
- ullet Extend \hat{V} to square unitary V, and form

$$B = V^*AV = \begin{bmatrix} \lambda I & C \\ 0 & D \end{bmatrix}$$

Since

$$\det(zI-B)=\det(zI-\lambda I)\det(zI-D)=(z-\lambda)^n\det(zI-D)$$
 the algebraic multiplicity of λ (as eigenvalue of B) is $\geq n$

ullet A and B are similar; so the same is true for λ of A

Defective and Diagonalizable Matrices

- If the algebraic multiplicity for an eigenvalue > its geometric multiplicity, it
 is a defective eigenvalue
- If a matrix has any defective eigenvalues, it is a *defective matrix*
- A nondefective or diagonalizable matrix has equal algebraic and geometric multiplicities for all eigenvalues
- The matrix A is nondefective $\Longleftrightarrow A = X\Lambda X^{-1}$
 - (\iff) If $A=X\Lambda X^{-1}$, A is similar to Λ and has the same eigenvalues and multiplicities. But Λ is diagonal and thus nondefective.
 - (\Longrightarrow) Nondefective A has m linearly independent eigenvectors. Take these as the columns of X, then $A=X\Lambda X^{-1}$.

Determinant and Trace

- The *trace* of A is $tr(A) = \sum_{j=1}^{m} a_{jj}$
- The determinant and the trace are given by the eigenvalues:

$$\det(A) = \prod_{j=1}^{m} \lambda_j, \qquad \operatorname{tr}(A) = \sum_{j=1}^{m} \lambda_j$$

since
$$\det(A)=(-1)^m\det(-A)=(-1)^mp_A(0)=\prod_{j=1}^m\lambda_j$$
 and

$$p_A(z) = \det(zI - A) = z^m - \sum_{j=1}^m a_{jj}z^{m-1} + \cdots$$

$$p_A(z) = (z - \lambda_1) \cdots (z - \lambda_m) = z^m - \sum_{j=1}^m \lambda_j z^{m-1} + \cdots$$

Unitary Diagonalization and Schur Factorization

- ullet A matrix A is *unitary diagonalizable* if, for a unitary matrix Q, $A=Q\Lambda Q^*$
- A hermitian matrix is unitarily diagonalizable, with real eigenvalues (because of the Schur factorization, see below)
- A is unitarily diagonalizable \iff A is normal ($A^*A = AA^*$)
- \bullet Every square matrix A has a Schur factorization $A=QTQ^*$ with unitary Q and upper-triangular T
- Summary, Eigenvalue-Revealing Factorizations
 - Diagonalization $A = X\Lambda X^{-1}$ (nondefective A)
 - Unitary diagonalization $A=Q\Lambda Q^*$ (normal A)
 - Unitary triangularization (Schur factorization) $A=QTQ^{\ast}$ (any A)

Eigenvalue Algorithms

- The most obvious method is ill-conditioned: Find roots of $p_A(\lambda)$
- ullet Instead, compute Schur factorization $A=QTQ^{st}$ by introducing zeros
- However, this can not be done in a finite number of steps:

Any eigenvalue solver must be iterative

ullet To see this, consider a general polynomial of degree m

$$p(z) = z^m + a_{m-1}z^{m-1} + \dots + a_1z + a_0$$

• There is no closed-form expression for the roots of p: (Abel, 1842)

In general, the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations

Eigenvalue Algorithms

ullet (continued) However, the roots of p are the eigenvalues of the *companion* matrix

$$A = \begin{bmatrix} 0 & & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & 0 & & -a_2 \\ & & 1 & \ddots & \vdots \\ & & \ddots & 0 & -a_{m-2} \\ & & 1 & -a_{m-1} \end{bmatrix}$$

- Therefore, in general we cannot find the eigenvalues of a matrix in a finite number of steps (even in exact arithmetic)
- In practice, algorithms available converge in just a few iterations

Schur Factorization and Diagonalization

 \bullet Compute Schur factorization $A=QTQ^{\ast}$ by transforming A with similarity transformations

$$\underbrace{Q_j^* \cdots Q_2^* Q_1^*}_{Q^*} A \underbrace{Q_1 Q_2 \cdots Q_j}_{Q}$$

which converge to a T as $j \to \infty$

- Note: Real matrices might need complex Schur forms and eigenvalues (or a *real Schur factorization* with 2×2 blocks on diagonal)
- ullet For hermitian A, the sequence converges to a diagonal matrix

Two Phases of Eigenvalues Computations

• General A: First to *upper-Hessenberg* form, then to upper-triangular

ullet Hermitian A: First to *tridiagonal* form, then to diagonal

Hessenberg/Tridiagonal Reduction

Introducing Zeros by Similarity Transformations

• Try computing the Schur factorization $A=QTQ^*$ by applying Householder reflectors from left and right that introduce zeros:

$$\begin{bmatrix} \times \times \times \times \times \times \times \\ A \end{bmatrix} \xrightarrow{Q_1^*} \begin{bmatrix} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0} \\ \mathbf{0} \mathbf{0$$

- The right multiplication destroys the zeros previously introduced
- We already knew this would not work, because of Abel's theorem
- However, the subdiagonal entries typically decrease in magnitude

The Hessenberg Form

• Instead, try computing an upper Hessenberg matrix H similar to A:

- This time the zeros we introduce are not destroyed
- Continue in a similar way with column 2:

The Hessenberg Form

 \bullet After m-2 steps, we obtain the Hessenberg form:

ullet For hermitian A, zeros are also introduced above diagonals

producing a tridiagonal matrix T after m-2 steps

Householder Reduction to Hessenberg

Algorithm: Householder Hessenberg

for
$$k = 1$$
 to $m - 2$
$$x = A_{k+1:m,k}$$

$$v_k = \text{sign}(x_1) ||x||_2 e_1 + x$$

$$v_k = v_k / ||v_k||_2$$

$$A_{k+1:m,k:m} = A_{k+1:m,k:m} - 2v_k (v_k^* A_{k+1:m,k:m})$$

$$A_{1:m,k+1:m} = A_{1:m,k+1:m} - 2(A_{1:m,k+1:m} v_k) v_k^*$$

Operation count (not twice Householder QR):

$$\sum_{k=1}^{m} 4(m-k)^2 + 4m(m-k) = \underbrace{4m^3/3}_{QR} + 4m^3 - 4m^3/2 = 10m^3/3$$

• For hermitian A, operation count is twice QR divided by two $=4m^3/3$

Power Iteration

Real Symmetric Matrices

- We will only consider eigenvalue problems for real symmetric matrices
- Then $A=A^T\in\mathbb{R}^{m\times m}$, $x\in\mathbb{R}^m$, $x^*=x^T$, and $\|x\|=\sqrt{x^Tx}$
- A then also has

real eigenvalues: $\lambda_1, \ldots, \lambda_m$ orthonormal eigenvectors: q_1, \ldots, q_m

- ullet Eigenvectors are normalized $\|q_j\|=1$, and sometimes the eigenvalues are ordered in a particular way
- Initial reduction to tridiagonal form assumed
 - Brings cost for typical steps down from ${\cal O}(m^3)$ to ${\cal O}(m)$

Rayleigh Quotient

• The Rayleigh quotient of $x \in \mathbb{R}^m$:

$$r(x) = \frac{x^T A x}{x^T x}$$

- ullet For an eigenvector x, the corresponding eigenvalue is $r(x)=\lambda$
- \bullet For general x , $r(x) = \alpha$ that minimizes $\|Ax \alpha x\|_2$
- x eigenvector of $A \Longleftrightarrow \nabla r(x) = 0$ with $x \neq 0$
- r(x) is smooth and $\nabla r(q_j) = 0$, therefore quadratically accurate:

$$r(x) - r(q_J) = O(\|x - q_J\|^2) \text{ as } x \to q_J$$

Power Iteration

Simple power iteration for largest eigenvalue:

Algorithm: Power Iteration

$$v^{(0)} = \text{some vector with } ||v^{(0)}|| = 1$$

for
$$k = 1, 2, ...$$

$$w = Av^{(k-1)}$$

$$v^{(k)} = w/\|w\|$$

$$\lambda^{(k)} = (v^{(k)})^T A v^{(k)}$$

apply A

normalize

Rayleigh quotient

Termination conditions usually omitted

Convergence of Power Iteration

• Expand initial $v^{(0)}$ in orthonormal eigenvectors q_i , and apply A^k :

$$v^{(0)} = a_1 q_1 + a_2 q_2 + \dots + a_m q_m$$

$$v^{(k)} = c_k A^k v^{(0)}$$

$$= c_k (a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + \dots + a_m \lambda_m^k q_m)$$

$$= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2 / \lambda_1)^k q_2 + \dots + a_m (\lambda_m / \lambda_1)^k q_m)$$

• If $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_m| \ge 0$ and $q_1^T v^{(0)} \ne 0$, this gives:

$$||v^{(k)} - (\pm q_1)|| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right), \qquad |\lambda^{(k)} - \lambda_1| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

- ullet Finds the largest eigenvalue (unless eigenvector orthogonal to $v^{(0)}$)
- ullet Linear convergence, factor $pprox \lambda_2/\lambda_1$ at each iteration

Inverse Iteration

• Apply power iteration on $(A - \mu I)^{-1}$, with eigenvalues $(\lambda_j - \mu)^{-1}$

Algorithm: Inverse Iteration

$$v^{(0)} = \text{some vector with } \|v^{(0)}\| = 1$$

for
$$k = 1, 2, ...$$

Solve
$$(A - \mu I)w = v^{(k-1)}$$
 for w

$$v^{(k)} = w/\|w\|$$

$$\lambda^{(k)} = (v^{(k)})^T A v^{(k)}$$

apply
$$(A - \mu I)^{-1}$$

normalize

Rayleigh quotient

• Converges to eigenvector q_J if the parameter μ is close to λ_J :

$$||v^{(k)} - (\pm q_j)|| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^k\right), \qquad |\lambda^{(k)} - \lambda_J| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^{2k}\right)$$

Rayleigh Quotient Iteration

- ullet Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- ullet Improvement: At each iteration, set μ to last computed Rayleigh quotient

Algorithm: Rayleigh Quotient Iteration

$$\begin{split} v^{(0)} &= \text{some vector with } \|v^{(0)}\| = 1 \\ \lambda^{(0)} &= (v^{(0)})^T A v^{(0)} = \text{corresponding Rayleigh quotient} \\ \text{for } k = 1, 2, \dots \\ & \text{Solve } (A - \lambda^{(k-1)} I) w = v^{(k-1)} \text{ for } w \quad \text{apply matrix} \\ v^{(k)} &= w/\|w\| \quad \text{normalize} \\ \lambda^{(k)} &= (v^{(k)})^T A v^{(k)} \quad \text{Rayleigh quotient} \end{split}$$

Convergence of Rayleigh Quotient Iteration

Cubic convergence in Rayleigh quotient iteration:

$$||v^{(k+1)} - (\pm q_J)|| = O(||v^{(k)} - (\pm q_J)||^3)$$

and

$$|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)} - \lambda_J|^3)$$

• Proof idea: If $v^{(k)}$ is close to an eigenvector, $||v^{(k)} - q_J|| \le \epsilon$, then the accurate of the Rayleigh quotient estimate $\lambda^{(k)}$ is $|\lambda^{(k)} - \lambda_J| = O(\epsilon^2)$. One step of inverse iteration then gives

$$||v^{(k+1)} - q_J|| = O(|\lambda^{(k)} - \lambda_J| ||v^{(k)} - q_J||) = O(\epsilon^3)$$

QR Algorithm

The QR Algorithm

Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: "Pure" QR Algorithm

$$A^{(0)} = A$$

for $k=1,2,\ldots$

$$Q^{(k)}R^{(k)} = A^{(k-1)}$$

 $A^{(k)} = R^{(k)}Q^{(k)}$

QR factorization of $A^{(k-1)}$

Recombine factors in reverse order

- \bullet With some assumptions, $A^{(k)}$ converge to a Schur form for A (diagonal if A symmetric)
- Similarity transformations of A:

$$A^{(k)} = R^{(k)}Q^{(k)} = (Q^{(k)})^T A^{(k-1)}Q^{(k)}$$

Unnormalized Simultaneous Iteration

- To understand the QR algorithm, first consider a simpler algorithm
- Simultaneous Iteration is power iteration applied to several vectors
- Start with linearly independent $v_1^{(0)}, \ldots, v_n^{(0)}$
- ullet We know from power iteration that $A^k v_1^{(0)}$ converges to q_1
- With some assumptions, the space $\langle A^k v_1^{(0)}, \dots, A^k v_n^{(0)} \rangle$ should converge to q_1, \dots, q_n
- Notation: Define initial matrix $V^{(0)}$ and matrix $V^{(k)}$ at step k:

$$V^{(0)} = \left[\begin{array}{c|c} v_1^{(0)} & \cdots & v_n^{(0)} \end{array} \right], \quad V^{(k)} = A^k V^{(0)} = \left[\begin{array}{c|c} v_1^{(k)} & \cdots & v_n^{(k)} \end{array} \right]$$

Unnormalized Simultaneous Iteration

- ullet Define well-behaved basis for column space of $V^{(k)}$ by $\hat{Q}^{(k)}\hat{R}^{(k)}=V^{(k)}$
- Make the assumptions:
 - The leading n+1 eigenvalues are distinct
 - All principal leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where columns of \hat{Q} are q_1,\ldots,q_n

We then have that the columns of $\hat{Q}^{(k)}$ converge to eigenvectors of A:

$$||q_j^{(k)} - \pm q_j|| = O(C^k)$$

where
$$C = \max_{1 \le k \le n} |\lambda_{k+1}|/|\lambda_k|$$

Proof. Textbook / Black board

Simultaneous Iteration

- ullet The matrices $V^{(k)}=A^kV^{(0)}$ are highly ill-conditioned
- Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous Iteration

Pick
$$\hat{Q}^{(0)} \in \mathbb{R}^{m \times n}$$
 for $k=1,2,\ldots$
$$Z = A\hat{Q}^{(k-1)}$$

$$\hat{Q}^{(k)}\hat{R}^{(k)} = Z$$

Reduced QR factorization of Z

• The column spaces of $\hat{Q}^{(k)}$ and $Z^{(k)}$ are both equal to the column space of $A^k\hat{Q}^{(0)}$, therefore same convergence as before

Simultaneous Iteration \iff QR Algorithm

- $\bullet\,$ The QR algorithm is equivalent to simultaneous iteration with $\hat{Q}^{(0)}=I$
- \bullet Notation: Replace $\hat{R}^{(k)}$ by $R^{(k)}$, and $\hat{Q}^{(k)}$ by $\underline{Q}^{(k)}$

Simultaneous Iteration:

$$\underline{Q}^{(0)} = I$$

$$Z = \underline{A}\underline{Q}^{(k-1)}$$

$$Z = \underline{Q}^{(k)}R^{(k)}$$

$$A^{(k)} = (Q^{(k)})^T A Q^{(k)}$$

Unshifted QR Algorithm:

$$A^{(0)} = A$$

$$A^{(k-1)} = Q^{(k)} R^{(k)}$$

$$A^{(k)} = R^{(k)} Q^{(k)}$$

$$\underline{Q}^{(k)} = Q^{(1)} Q^{(2)} \cdots Q^{(k)}$$

- Also define $\underline{R}^{(k)} = R^{(k)} R^{(k-1)} \cdots R^{(1)}$
- Now show that the two processes generate same sequences of matrices

Simultaneous Iteration \iff QR Algorithm

- \bullet Both schemes generate the QR factorization $A^k=\underline{Q}^{(k)}\underline{R}^{(k)}$ and the projection $A^{(k)}=(Q^{(k)})^TAQ^{(k)}$
- *Proof.* k = 0 trivial for both algorithms.

For $k \geq 1$ with simultaneous iteration, $A^{(k)}$ is given by definition, and

$$A^{k} = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}R^{(k)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)}$$

For $k \geq 1$ with unshifted QR, we have

$$A^{k} = A\underline{Q}^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k-1)}A^{(k-1)}\underline{R}^{(k-1)} = \underline{Q}^{(k)}\underline{R}^{(k)}$$

and

$$A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

Simultaneous *Inverse* Iteration \iff QR Algorithm

- Last lecture we showed that "pure" QR \iff simultaneous iteration applied to I, and the first column evolves as in power iteration
- ullet But it is also equivalent to simultaneous *inverse* iteration applied to a "flipped" I, and the last column evolves as in inverse iteration
- \bullet To see this, recall that $A^k = \underline{Q}^{(k)}\underline{R}^{(k)}$ with

$$\underline{Q}^{(k)} = \prod_{j=1}^{k} Q^{(j)} = \left[\begin{array}{c|c} q_1^{(k)} & q_2^{(k)} \\ \end{array} \right] \cdots \left[\begin{array}{c|c} q_m^{(k)} \\ \end{array} \right]$$

• Invert and use that A^{-1} is symmetric:

$$A^{-k} = (\underline{R}^{(k)})^{-1}\underline{Q}^{(k)T} = \underline{Q}^{(k)}(\underline{R}^{(k)})^{-T}$$

Simultaneous *Inverse* Iteration \iff QR Algorithm

Introduce the "flipping" permutation matrix

$$P = \begin{bmatrix} & & & 1 \\ & & 1 \\ & \dots & \\ 1 & & \end{bmatrix}$$

and rewrite that last expression as

$$A^{-k}P = [\underline{Q}^{(k)}P][P(\underline{R}^{(k)})^{-T}P]$$

- This is a QR factorization of $A^{-k}P$, and the algorithm is equivalent to simultaneous iteration on A^{-1}
- $\bullet\,$ In particular, the last column of $\underline{Q}^{(k)}$ evolves as in inverse iteration

The Shifted QR Algorithm

• Since the QR algorithm behaves like inverse iteration, introduce shifts $\mu^{(k)}$ to accelerate the convergence:

$$A^{(k-1)} - \mu^{(k)}I = Q^{(k)}R^{(k)}$$
$$A^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$$

We then get (same as before):

$$A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$$

and (different from before):

$$(A - \mu^{(k)}I)(A - \mu^{(k-1)}I) \cdots (A - \mu^{(1)}I) = \underline{Q}^{(k)}\underline{R}^{(k)}$$

 \bullet Shifted simultaneous iteration – last column of $\underline{Q}^{(k)}$ converges quickly

Choosing $\mu^{(k)}$: The Rayleigh Quotient Shift

• Natural choice of $\mu^{(k)}$: Rayleigh quotient for last column of $\underline{Q}^{(k)}$

$$\mu^{(k)} = \frac{(q_m^{(k)})^T A q_m^{(k)}}{(q_m^{(k)})^T q_m^{(k)}} = (q_m^{(k)})^T A q_m^{(k)}$$

- ullet Rayleigh quotient iteration, last column $q_m^{(k)}$ converges cubically
- \bullet Convenient fact: This Rayleigh quotient appears as m,m entry of $A^{(k)}$ since $A^{(k)}=(Q^{(k)})^TAQ^{(k)}$
- The Rayleigh quotient shift corresponds to setting $\mu^{(k)} = A_{mm}^{(k)}$

Choosing $\mu^{(k)}$: The Wilkinson Shift

- The QR algorithm with Rayleigh quotient shift might fail, e.g. with two symmetric eigenvalues
- Break symmetry by the Wilkinson shift

$$\mu = a_m - \operatorname{sign}(\delta) b_{m-1}^2 / \left(|\delta| + \sqrt{\delta^2 + b_{m-1}^2} \right)$$

where
$$\delta=(a_{m-1}-a_m)/2$$
 and $B=\begin{bmatrix}a_{m-1}&b_{m-1}\\b_{m-1}&a_m\end{bmatrix}$ is the lower-right submatrix of $A^{(k)}$

Always convergence with this shift, in worst case quadratically

A Practical Shifted QR Algorithm

Algorithm: "Practical" QR Algorithm

$$(Q^{(0)})^T A^{(0)} Q^{(0)} = A$$

 $A^{(0)}$ is a tridiagonalization of A

for
$$k = 1, 2, ...$$

Pick a shift
$$\mu^{(k)}$$

e.g., choose
$$\mu^{(k)}=A_{mm}^{(k-1)}$$

$$Q^{(k)}R^{(k)} = A^{(k-1)} - \mu^{(k)}I$$

$$Q^{(k)}R^{(k)}=A^{(k-1)}-\mu^{(k)}I \quad \text{ QR factorization of } A^{(k-1)}-\mu^{(k)}I$$

$$A^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I$$

Recombine factors in reverse order

If any off-diagonal element $A_{i,i+1}^{(k)}$ is sufficiently close to zero,

set
$$A_{j,j+1} = A_{j+1,j} = 0$$
 to obtain

$$\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} = A^{(k)}$$

and now apply the QR algorithm to A_1 and A_2

Stability and Accuracy

The QR algorithm is backward stable:

$$\tilde{Q}\tilde{\Lambda}\tilde{Q}^T = A + \delta A, \qquad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{machine}})$$

where $\tilde{\Lambda}$ is the computed Λ and \tilde{Q} is an exactly orthogonal matrix

- The combination with Hessenberg reduction is also backward stable
- Can be shown (for normal matrices) that $|\tilde{\lambda}_j \lambda_j| \leq \|\delta A\|_2$, which gives

$$\frac{|\tilde{\lambda}_j - \lambda_j|}{\|A\|} = O(\epsilon_{\text{machine}})$$

where $\widetilde{\lambda}_j$ are the computed eigenvalues