Eigenvalue Problems
The Eigenvalue Decomposition

- Eigenvalue problem for $m \times m$ matrix A:

$$Ax = \lambda x$$

with *eigenvalues* λ and *eigenvectors* x (nonzero)

- *Eigenvalue decomposition* of A:

$$A = X\Lambda X^{-1} \quad \text{or} \quad AX = X\Lambda$$

with eigenvectors as columns of X and eigenvalues on diagonal of Λ

- In “eigenvector coordinates”, A is diagonal:

$$Ax = b \quad \rightarrow \quad (X^{-1}b) = \Lambda (X^{-1}x)$$
Multiplicity

- The eigenvectors corresponding to a single eigenvalue \(\lambda \) (plus the zero vector) form an eigenspace

- Dimension of \(E_\lambda = \text{dim}(\text{null}(A - \lambda I)) = \text{geometric multiplicity} \) of \(\lambda \)

- The characteristic polynomial of \(A \) is

\[
p_A(z) = \det(zI - A) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_m)
\]

- \(\lambda \) is eigenvalue of \(A \) \iff \(p_A(\lambda) = 0 \)
 - Since if \(\lambda \) is eigenvalue, \(\lambda x - Ax = 0 \). Then \(\lambda I - A \) is singular, so
 \[
 \det(\lambda I - A) = 0
 \]

- Multiplicity of a root \(\lambda \) to \(p_A = \text{algebraic multiplicity} \) of \(\lambda \)

- Any matrix \(A \) has \(m \) eigenvalues, counted with algebraic multiplicity
Similarity Transformations

- The map $A \mapsto X^{-1}AX$ is a *similarity transformation* of A
- A and B are *similar* if there is a similarity transformation $B = X^{-1}AX$
- A and $X^{-1}AX$ have the same characteristic polynomials, eigenvalues, and multiplicities:
 - The characteristic polynomials are the same:

\[
p_{X^{-1}AX}(z) = \det(zI - X^{-1}AX) = \det(X^{-1}(zI - A)X) = \det(X^{-1})\det(zI - A)\det(X) = \det(zI - A) = p_A(z)
\]
 - Therefore, the algebraic multiplicities are the same
 - If E_λ is eigenspace for A, then $X^{-1}E_\lambda$ is eigenspace for $X^{-1}AX$, so geometric multiplicities are the same
Algebraic Multiplicity \geq Geometric Multiplicity

• Let n first columns of \hat{V} be orthonormal basis of the eigenspace for λ

• Extend \hat{V} to square unitary V, and form

$$B = V^*AV = \begin{bmatrix} \lambda I & C \\ 0 & D \end{bmatrix}$$

• Since

$$\det(zI - B) = \det(zI - \lambda I)\det(zI - D) = (z - \lambda)^n \det(zI - D)$$

the algebraic multiplicity of λ (as eigenvalue of B) is $\geq n$

• A and B are similar; so the same is true for λ of A
Defective and Diagonalizable Matrices

- If the algebraic multiplicity for an eigenvalue $> \text{ its geometric multiplicity, it is a defective eigenvalue}$

- If a matrix has any defective eigenvalues, it is a defective matrix

- A nondefective or diagonalizable matrix has equal algebraic and geometric multiplicities for all eigenvalues

- The matrix A is nondefective $\iff A = X \Lambda X^{-1}$

 - (\iff) If $A = X \Lambda X^{-1}$, A is similar to Λ and has the same eigenvalues and multiplicities. But Λ is diagonal and thus nondefective.

 - (\implies) Nondefective A has m linearly independent eigenvectors. Take these as the columns of X, then $A = X \Lambda X^{-1}$.
Determinant and Trace

- The trace of A is $\text{tr}(A) = \sum_{j=1}^{m} a_{jj}$

- The determinant and the trace are given by the eigenvalues:

\[
\begin{align*}
\det(A) &= \prod_{j=1}^{m} \lambda_j, \\
\text{tr}(A) &= \sum_{j=1}^{m} \lambda_j
\end{align*}
\]

since $\det(A) = (-1)^m \det(-A) = (-1)^m p_A(0) = \prod_{j=1}^{m} \lambda_j$ and

\[
\begin{align*}
p_A(z) &= \det(zI - A) = z^m - \sum_{j=1}^{m} a_{jj} z^{m-1} + \cdots \\
p_A(z) &= (z - \lambda_1) \cdots (z - \lambda_m) = z^m - \sum_{j=1}^{m} \lambda_j z^{m-1} + \cdots
\end{align*}
\]
Unitary Diagonalization and Schur Factorization

- A matrix A is *unitary diagonalizable* if, for a unitary matrix Q, $A = Q\Lambda Q^*$
- A hermitian matrix is unitarily diagonalizable, with real eigenvalues (because of the Schur factorization, see below)
- A is unitarily diagonalizable \iff A is normal ($A^*A = AA^*$)
- Every square matrix A has a Schur factorization $A = QTQ^*$ with unitary Q and upper-triangular T
- Summary, Eigenvalue-Revealing Factorizations
 - Diagonalization $A = XX^{-1} \Lambda$ (nondefective A)
 - Unitary diagonalization $A = Q\Lambda Q^*$ (normal A)
 - Unitary triangularization (Schur factorization) $A = QTQ^*$ (any A)
Eigenvalue Algorithms

- The most obvious method is ill-conditioned: Find roots of $p_A(\lambda)$
- Instead, compute Schur factorization $A = QTQ^*$ by introducing zeros
- However, this can not be done in a finite number of steps:

 Any eigenvalue solver must be iterative

- To see this, consider a general polynomial of degree m

 $$p(z) = z^m + a_{m-1}z^{m-1} + \cdots + a_1z + a_0$$

- There is no closed-form expression for the roots of p: (Abel, 1842)

 In general, the roots of polynomial equations higher than fourth degree cannot be written in terms of a finite number of operations
(continued) However, the roots of p are the eigenvalues of the companion matrix

$$A = \begin{bmatrix} 0 & 0 & \cdots & -a_0 \\ 1 & 0 & \cdots & -a_1 \\ 1 & 0 & \cdots & -a_2 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ 1 & & \cdots & -a_{m-2} \\ 1 & 0 & \cdots & -a_{m-1} \end{bmatrix}$$

Therefore, in general we cannot find the eigenvalues of a matrix in a finite number of steps (even in exact arithmetic).

In practice, algorithms available converge in just a few iterations.
Schur Factorization and Diagonalization

- Compute Schur factorization \(A = QTQ^* \) by transforming \(A \) with similarity transformations

\[
Q_j^* \cdots Q_2^* Q_1^* A Q_1 Q_2 \cdots Q_j
\]

which converge to a \(T \) as \(j \to \infty \)

- Note: Real matrices might need complex Schur forms and eigenvalues (or a real Schur factorization with \(2 \times 2 \) blocks on diagonal)

- For hermitian \(A \), the sequence converges to a diagonal matrix
Two Phases of Eigenvalues Computations

- **General** A: First to *upper-Hessenberg* form, then to upper-triangular

 $A \neq A^*$

 - Phase 1
 - Phase 2

- **Hermitian** A: First to *tridiagonal* form, then to diagonal

 $A \neq A^*$

 - Phase 1
 - Phase 2
Hessenberg/Tridiagonal Reduction
Introducing Zeros by Similarity Transformations

- Try computing the Schur factorization $A = QTQ^*$ by applying Householder reflectors from left and right that introduce zeros:

\[
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\hline
A
\end{bmatrix} \rightarrow \begin{bmatrix}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\hline
Q_1^*A
\end{bmatrix} \rightarrow \begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\hline
Q_1^*AQ_1
\end{bmatrix}
\]

- The right multiplication destroys the zeros previously introduced.

- We already knew this would not work, because of Abel’s theorem.

- However, the subdiagonal entries typically decrease in magnitude.
The Hessenberg Form

- Instead, try computing an upper Hessenberg matrix H similar to A:

$$
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix}
\xrightarrow{Q_1^*}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\end{bmatrix}
\xrightarrow{Q_1}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\end{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\end{bmatrix}
$$

- This time the zeros we introduce are not destroyed

- Continue in a similar way with column 2:

$$
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix}
\xrightarrow{Q_1^*}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\end{bmatrix}
\xrightarrow{Q_1}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
\end{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix}
\begin{bmatrix}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\end{bmatrix}
$$
The Hessenberg Form

- After \(m - 2 \) steps, we obtain the Hessenberg form:

\[
Q^*_{m-2} \cdots Q^*_2 Q^*_1 A Q_1 Q_2 \cdots Q_{m-2} = H =
\]

\[
\begin{bmatrix}
\times \times \times \\
\times \times \times \
\end{bmatrix}
\]

- For hermitian \(A \), zeros are also introduced above diagonals

\[
A \rightarrow Q_1^* A Q_1 \rightarrow Q_1^* A Q_1
\]

producing a tridiagonal matrix \(T \) after \(m - 2 \) steps
Householder Reduction to Hessenberg

Algorithm: Householder Hessenberg

\[
\text{for } k = 1 \text{ to } m - 2
\]
\[
x = A_{k+1:m,k}
\]
\[
v_k = \text{sign}(x_1)\|x\|_2 e_1 + x
\]
\[
v_k = v_k/\|v_k\|_2
\]
\[
A_{k+1:m,k:m} = A_{k+1:m,k:m} - 2v_k(v_k^*A_{k+1:m,k:m})
\]
\[
A_{1:m,k+1:m} = A_{1:m,k+1:m} - 2(A_{1:m,k+1:m}v_k)v_k^*
\]

- Operation count (not twice Householder QR):

\[
\sum_{k=1}^{m} 4(m - k)^2 + 4m(m - k) = \frac{4m^3}{3} + 4m^3 - \frac{4m^3}{2} = 10m^3/3
\]

- For hermitian \(A\), operation count is twice QR divided by two = \(4m^3/3\)
Power Iteration
Real Symmetric Matrices

- We will only consider eigenvalue problems for real symmetric matrices

- Then \(A = A^T \in \mathbb{R}^{m \times m}, x \in \mathbb{R}^m, x^* = x^T \), and \(\|x\| = \sqrt{x^T x} \)

- \(A \) then also has

 real eigenvalues: \(\lambda_1, \ldots, \lambda_m \)

 orthonormal eigenvectors: \(q_1, \ldots, q_m \)

- Eigenvectors are normalized \(\|q_j\| = 1 \), and sometimes the eigenvalues are ordered in a particular way

- Initial reduction to tridiagonal form assumed

 - Brings cost for typical steps down from \(O(m^3) \) to \(O(m) \)
Rayleigh Quotient

- The Rayleigh quotient of $x \in \mathbb{R}^m$:

 $$r(x) = \frac{x^T Ax}{x^T x}$$

- For an eigenvector x, the corresponding eigenvalue is $r(x) = \lambda$

- For general x, $r(x) = \alpha$ that minimizes $\|Ax - \alpha x\|_2$

- x eigenvector of $A \iff \nabla r(x) = 0$ with $x \neq 0$

- $r(x)$ is smooth and $\nabla r(q_J) = 0$, therefore quadratically accurate:

 $$r(x) - r(q_J) = O(\|x - q_J\|^2) \quad \text{as} \quad x \to q_J$$
Power Iteration

• Simple power iteration for largest eigenvalue:

Algorithm: Power Iteration

\[v^{(0)} = \text{some vector with } \| v^{(0)} \| = 1 \]

for \(k = 1, 2, \ldots \)

\[w = A v^{(k-1)} \quad \text{apply } A \]

\[v^{(k)} = w / \| w \| \quad \text{normalize} \]

\[\lambda^{(k)} = (v^{(k)})^T A v^{(k)} \quad \text{Rayleigh quotient} \]

• Termination conditions usually omitted
Convergence of Power Iteration

- Expand initial $v^{(0)}$ in orthonormal eigenvectors q_i, and apply A^k:
 \[v^{(0)} = a_1 q_1 + a_2 q_2 + \cdots + a_m q_m \]
 \[v^{(k)} = c_k A^k v^{(0)} \]
 \[= c_k (a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + \cdots + a_m \lambda_m^k q_m) \]
 \[= c_k \lambda_1^k (a_1 q_1 + a_2 (\lambda_2/\lambda_1)^k q_2 + \cdots + a_m (\lambda_m/\lambda_1)^k q_m) \]

- If $|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_m| \geq 0$ and $q_1^T v^{(0)} \neq 0$, this gives:
 \[\|v^{(k)} - (\pm q_1)\| = O \left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right), \quad |\lambda^{(k)} - \lambda_1| = O \left(\left| \frac{\lambda_2}{\lambda_1} \right|^{2k} \right) \]

- Finds the largest eigenvalue (unless eigenvector orthogonal to $v^{(0)}$)

- Linear convergence, factor $\approx \lambda_2/\lambda_1$ at each iteration
Inverse Iteration

- Apply power iteration on \((A - \mu I)^{-1}\), with eigenvalues \((\lambda_j - \mu)^{-1}\)

Algorithm: Inverse Iteration

\[
v^{(0)} = \text{some vector with } \|v^{(0)}\| = 1
\]

for \(k = 1, 2, \ldots\)

Solve \((A - \mu I)w = v^{(k-1)}\) for \(w\)

\[
v^{(k)} = w/\|w\|
\]

\[
\lambda^{(k)} = (v^{(k)})^T Av^{(k)}
\]

- Converges to eigenvector \(q_J\) if the parameter \(\mu\) is close to \(\lambda_J\):

\[
\|v^{(k)} - (\pm q_J)\| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^k\right), \quad |\lambda^{(k)} - \lambda_J| = O\left(\left|\frac{\mu - \lambda_J}{\mu - \lambda_K}\right|^{2k}\right)
\]
Rayleigh Quotient Iteration

- Parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue.

- Improvement: At each iteration, set μ to last computed Rayleigh quotient.

Algorithm: Rayleigh Quotient Iteration

\[v^{(0)} = \text{some vector with } \|v^{(0)}\| = 1 \]
\[\lambda^{(0)} = (v^{(0)})^T A v^{(0)} = \text{corresponding Rayleigh quotient} \]

\[\text{for } k = 1, 2, \ldots \]
\[\text{Solve } (A - \lambda^{(k-1)}I)w = v^{(k-1)} \text{ for } w \]
\[v^{(k)} = w/\|w\| \]
\[\lambda^{(k)} = (v^{(k)})^T A v^{(k)} \]

Rayleigh quotient
Convergence of Rayleigh Quotient Iteration

- Cubic convergence in Rayleigh quotient iteration:

\[\| v^{(k+1)} - (\pm q_J) \| = O(\| v^{(k)} - (\pm q_J) \|^3) \]

and

\[|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)} - \lambda_J|^3) \]

- Proof idea: If \(v^{(k)} \) is close to an eigenvector, \(\| v^{(k)} - q_J \| \leq \epsilon \), then the accurate of the Rayleigh quotient estimate \(\lambda^{(k)} \) is \(|\lambda^{(k)} - \lambda_J| = O(\epsilon^2) \). One step of inverse iteration then gives

\[\| v^{(k+1)} - q_J \| = O(|\lambda^{(k)} - \lambda_J| \| v^{(k)} - q_J \|) = O(\epsilon^3) \]
QR Algorithm
The QR Algorithm

- Remarkably simple algorithm: QR factorize and multiply in reverse order:

Algorithm: “Pure” QR Algorithm

\[
A^{(0)} = A \\
\text{for } k = 1, 2, \ldots \\
Q^{(k)} R^{(k)} = A^{(k-1)} \quad \text{QR factorization of } A^{(k-1)} \\
A^{(k)} = R^{(k)} Q^{(k)} \quad \text{Recombine factors in reverse order}
\]

- With some assumptions, \(A^{(k)}\) converge to a Schur form for \(A\) (diagonal if \(A\) symmetric)

- Similarity transformations of \(A\):

\[
A^{(k)} = R^{(k)} Q^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)}
\]
Unnormalized Simultaneous Iteration

- To understand the QR algorithm, first consider a simpler algorithm
- *Simultaneous Iteration* is power iteration applied to several vectors
- Start with linearly independent $v_1^{(0)}, \ldots, v_n^{(0)}$
- We know from power iteration that $A^k v_1^{(0)}$ converges to q_1
- With some assumptions, the space $\langle A^k v_1^{(0)}, \ldots, A^k v_n^{(0)} \rangle$ should converge to q_1, \ldots, q_n
- Notation: Define initial matrix $V^{(0)}$ and matrix $V^{(k)}$ at step k:

$$V^{(0)} = \begin{bmatrix} v_1^{(0)} & \cdots & v_n^{(0)} \end{bmatrix}, \quad V^{(k)} = A^k V^{(0)} = \begin{bmatrix} v_1^{(k)} & \cdots & v_n^{(k)} \end{bmatrix}$$
Unnormalized Simultaneous Iteration

- Define well-behaved basis for column space of $V^{(k)}$ by $\hat{Q}^{(k)} \hat{R}^{(k)} = V^{(k)}$

- Make the assumptions:
 - The leading $n + 1$ eigenvalues are distinct
 - All principal leading principal submatrices of $\hat{Q}^T V^{(0)}$ are nonsingular, where columns of \hat{Q} are q_1, \ldots, q_n

We then have that the columns of $\hat{Q}^{(k)}$ converge to eigenvectors of A:

$$\|q_j^{(k)} - \pm q_j\| = O(C^k)$$

where $C = \max_{1 \leq k \leq n} |\lambda_{k+1}|/|\lambda_k|$

- **Proof.** Textbook / Black board
Simultaneous Iteration

- The matrices $V^{(k)} = A^k V^{(0)}$ are highly ill-conditioned
- Orthonormalize at each step rather than at the end:

Algorithm: Simultaneous Iteration

Pick $\hat{Q}^{(0)} \in \mathbb{R}^{m \times n}$

for $k = 1, 2, \ldots$

\[Z = A\hat{Q}^{(k-1)} \]

\[\hat{Q}^{(k)} \hat{R}^{(k)} = Z \]

Reduced QR factorization of Z

- The column spaces of $\hat{Q}^{(k)}$ and $Z^{(k)}$ are both equal to the column space of $A^k \hat{Q}^{(0)}$, therefore same convergence as before
Simultaneous Iteration \iff QR Algorithm

- The QR algorithm is equivalent to simultaneous iteration with $\hat{Q}^{(0)} = I$
- Notation: Replace $\hat{R}^{(k)}$ by $R^{(k)}$, and $\hat{Q}^{(k)}$ by $Q^{(k)}$

Simultaneous Iteration:

\[
\begin{align*}
Q^{(0)} &= I \\
Z &= AQ^{(k-1)} \\
Z &= Q^{(k)}R^{(k)} \\
A^{(k)} &= (Q^{(k)})^T AQ^{(k)}
\end{align*}
\]

Unshifted QR Algorithm:

\[
\begin{align*}
A^{(0)} &= A \\
A^{(k-1)} &= Q^{(k)}R^{(k)} \\
A^{(k)} &= R^{(k)}Q^{(k)} \\
Q^{(k)} &= Q^{(1)}Q^{(2)} \cdots Q^{(k)}
\end{align*}
\]

- Also define $\underline{R}^{(k)} = R^{(k)}R^{(k-1)} \cdots R^{(1)}$

- Now show that the two processes generate same sequences of matrices
Simultaneous Iteration \iff QR Algorithm

- Both schemes generate the QR factorization $A^k = Q^{(k)} R^{(k)}$ and the projection $A^{(k)} = (Q^{(k)})^T A Q^{(k)}$

- **Proof.** $k = 0$ trivial for both algorithms.

For $k \geq 1$ with simultaneous iteration, $A^{(k)}$ is given by definition, and

$$A^k = A Q^{(k-1)} R^{(k-1)} = Q^{(k)} R^{(k)} R^{(k-1)} = Q^{(k)} R^{(k)}$$

For $k \geq 1$ with unshifted QR, we have

$$A^k = A Q^{(k-1)} R^{(k-1)} = Q^{(k-1)} A^{(k-1)} R^{(k-1)} = Q^{(k)} R^{(k)}$$

and

$$A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (Q^{(k)})^T A Q^{(k)}$$
Simultaneous \textit{Inverse} Iteration \iff QR Algorithm

- Last lecture we showed that “pure” QR \iff simultaneous iteration applied to I, and the first column evolves as in power iteration.

- But it is also equivalent to simultaneous \textit{inverse} iteration applied to a “flipped” I, and the last column evolves as in inverse iteration.

- To see this, recall that $A^k = Q^{(k)} R^{(k)}$ with

$$Q^{(k)} = \prod_{j=1}^{k} Q^{(j)} = \begin{bmatrix} q_1^{(k)} & q_2^{(k)} & \cdots & q_m^{(k)} \end{bmatrix}$$

- Invert and use that A^{-1} is symmetric:

$$A^{-k} = (R^{(k)})^{-1} Q^{(k)T} = Q^{(k)} (R^{(k)})^{-T}$$
Simultaneous Inverse Iteration ⇐⇒ QR Algorithm

- Introduce the “flipping” permutation matrix

\[P = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \]

and rewrite that last expression as

\[A^{-k}P = [Q^{(k)}P][P(R^{(k)})^{-T}P] \]

- This is a QR factorization of \(A^{-k}P \), and the algorithm is equivalent to simultaneous iteration on \(A^{-1} \)

- In particular, the last column of \(Q^{(k)} \) evolves as in inverse iteration
The Shifted QR Algorithm

- Since the QR algorithm behaves like inverse iteration, introduce shifts $\mu^{(k)}$ to accelerate the convergence:

\[
A^{(k-1)} - \mu^{(k)} I = Q^{(k)} R^{(k)}
\]

\[
A^{(k)} = R^{(k)} Q^{(k)} + \mu^{(k)} I
\]

- We then get (same as before):

\[
A^{(k)} = (Q^{(k)})^T A^{(k-1)} Q^{(k)} = (Q^{(k)})^T A Q^{(k)}
\]

and (different from before):

\[
(A - \mu^{(k)} I)(A - \mu^{(k-1)} I) \cdots (A - \mu^{(1)} I) = Q^{(k)} R^{(k)}
\]

- Shifted simultaneous iteration – last column of $Q^{(k)}$ converges quickly.
Choosing $\mu^{(k)}$: The Rayleigh Quotient Shift

- Natural choice of $\mu^{(k)}$: Rayleigh quotient for last column of $Q^{(k)}$

 $$\mu^{(k)} = \frac{(q^{(k)}_m)^T A q^{(k)}_m}{(q^{(k)}_m)^T q^{(k)}_m} = (q^{(k)}_m)^T A q^{(k)}_m$$

- Rayleigh quotient iteration, last column $q^{(k)}_m$ converges cubically

- Convenient fact: This Rayleigh quotient appears as m, m entry of $A^{(k)}$
 since $A^{(k)} = (Q^{(k)})^T A Q^{(k)}$

- The Rayleigh quotient shift corresponds to setting $\mu^{(k)} = A^{(k)}_{mm}$
Choosing $\mu^{(k)}$: The Wilkinson Shift

- The QR algorithm with Rayleigh quotient shift might fail, e.g. with two symmetric eigenvalues

- Break symmetry by the *Wilkinson shift*

\[
\mu = a_m - \text{sign}(\delta)b_{m-1}^2 \div \left(|\delta| + \sqrt{\delta^2 + b_{m-1}^2} \right)
\]

where $\delta = (a_{m-1} - a_m) / 2$ and $B = \begin{bmatrix} a_{m-1} & b_{m-1} \\ b_{m-1} & a_m \end{bmatrix}$ is the lower-right submatrix of $A^{(k)}$

- Always convergence with this shift, in worst case quadratically
A Practical Shifted QR Algorithm

Algorithm: “Practical” QR Algorithm

\[(Q^{(0)})^T A^{(0)} Q^{(0)} = A\]

for \(k = 1, 2, \ldots\)

Pick a shift \(\mu^{(k)}\)

\[Q^{(k)} R^{(k)} = A^{(k-1)} - \mu^{(k)} I\]

\[A^{(k)} = R^{(k)} Q^{(k)} + \mu^{(k)} I\]

QR factorization of \(A^{(k-1)} - \mu^{(k)} I\)

Recombine factors in reverse order

If any off-diagonal element \(A_{j,j+1}\) is sufficiently close to zero,

set \(A_{j,j+1} = A_{j+1,j} = 0\) to obtain

\[
\begin{bmatrix}
A_1 & 0 \\
0 & A_2
\end{bmatrix} = A^{(k)}
\]

and now apply the QR algorithm to \(A_1\) and \(A_2\)
Stability and Accuracy

- The QR algorithm is backward stable:

\[
\tilde{Q}\tilde{\Lambda}\tilde{Q}^T = A + \delta A, \quad \frac{\|\delta A\|}{\|A\|} = O(\epsilon_{\text{machine}})
\]

where \(\tilde{\Lambda} \) is the computed \(\Lambda \) and \(\tilde{Q} \) is an exactly orthogonal matrix.

- The combination with Hessenberg reduction is also backward stable.

- Can be shown (for normal matrices) that \(|\tilde{\lambda}_j - \lambda_j| \leq \|\delta A\|_2 \), which gives

\[
\frac{|\tilde{\lambda}_j - \lambda_j|}{\|A\|} = O(\epsilon_{\text{machine}})
\]

where \(\tilde{\lambda}_j \) are the computed eigenvalues.