
QR Factorization

Projectors

•	 A projector is a square matrix P that satisfies

P 2 = P

•	 Not necessarily an orthogonal projector (more later)

•	 If v ⇒ range(P), then Pv = v

v

Pv = P 2x = Px = v Pv

–	Since with v = Px,

Pv−v

•	 Projection along the line

Pv − v ⇒ null(P) range(P)
–	Since P (Pv − v) =

P 2v − Pv = 0

2

Complementary Projectors

•	 The matrix I − P is the complementary projector to P

•	 I − P projects on the nullspace of P :

–	If Pv = 0, then (I − P)v = v, so null(P) ⇐ range(I − P)

–	But for any v, (I − P)v = v − Pv ⇒ null(P), so

range(I − P) ⇐ null(P)

–	Therefore

range(I − P) = null(P)

and

null(I − P) = range(P)

3

Complementary Subspaces

•	 For a projector P ,

null(I − P) ≥ null(P) = {0}

or

range(P) ≥ null(P) = {0}

•	 A projector separates Cm into two spaces S1, S2, with range(P) = S1

and null(P) = S2

•	 P is the projector onto S1 along S2

4

Orthogonal Projectors

• An orthogonal projector projects onto S1 along S2, with S1, S2 orthogonal

• A projector P is orthogonal ⊥∀ P = P �

• Proof. Textbook / Black board

v

Pv

Pv−vrange(P)

5

Projection with Orthonormal Basis

•	 Reduced SVD gives projector for orthonormal columns Q̂:

P = Q̂Q̂�

• Complement I − Q̂Q̂� also orthogonal, projects onto space orthogonal to

range(Q̂)

•	 Special case 1: Rank-1 Orthogonal Projector (gives component in

direction q)

Pq = qq �

•	 Special case 2: Rank m − 1 Orthogonal Projector (eliminates component

in direction q)

P�q = I − qq �

6

Projection with Arbitrary Basis

• Project v to y ⇒ range(A). Then

y − v � range(A), or a �
j (y − v) = 0, �j

• Set y = Ax:

a �
j (Ax − v) = 0, �j ⊥∀ A�(Ax − v) = 0 ⊥∀ A�Ax = A� v

• A�A is nonsingular, so

x = (A�A)−1A� v

• Finally, we are interested in the projection y = Ax = A(A�A)−1A�v,

giving the orthogonal projector

P = A(A�A)−1A�

7

The QR Factorization - Main Idea

•	 Find orthonormal vectors that span the successive spaces spanned by the

columns of A:

⊆a1∈ ⇐ ⊆a1, a2∈ ⇐ ⊆a1, a2, a3∈ ⇐ . . .

•	 This means that (for full rank A),

⊆q1, q2, . . . , qj ∈ = ⊆a1, a2, . . . , aj ∈ , for j = 1, . . . , n

8

The QR Factorization - Matrix Form

• In matrix form, ⊆q1, q2, . . . , qj ∈ = ⊆a1, a2, . . . , aj ∈ becomes

� ⎡
r11 r12 · · · r1n

⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � ⎢
⎥ ⎦ ⎥ ⎦ .

⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � . ⎢ .
⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � r22

⎢
a1 ⎤ a2 ⎤ · · · ⎤ an = q1 ⎤ q2 ⎤ · · · ⎤ qn � ⎢ . .

⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � . . ⎢. .
� ⎣

rnn

or

A = Q̂R̂

• This is the reduced QR factorization

• Add orthogonal extension to Q̂ and add rows to R̂ to obtain the full QR

factorization

9

The Full QR Factorization

•	 Let A be an m × n matrix. The full QR factorization of A is the

factorization A = QR, where

Q is m × m unitary

R is m × n upper-triangular

=

A	 Q R

10

The Reduced QR Factorization

•	 A more compact representation is the Reduced QR Factorization

A = Q̂R̂, where (for m � n)

Q̂	is m × n and R̂ is m × n

=

A	 Q̂ R̂

11

�

Gram-Schmidt Orthogonalization

•	 Find new qj orthogonal to q1, . . . , qj−1 by subtracting components along

previous vectors

vj = aj − (q
1
� aj)q1 − (q

2
� aj)q2 − · · · − (qj

�

−1
aj)qj−1

•	 Normalize to get qj = vj /�vj �

• We then obtain a reduced QR factorization A = Q̂R̂, with

rij = qi
� aj , (i =∩ j)

and

j−1

|rjj | = �aj − rij qi�2

i=1

12

�

Classical Gram-Schmidt

• Straight-forward application of Gram-Schmidt orthogonalization

• Numerically unstable

Algorithm: Classical Gram-Schmidt

for j = 1 to n

vj = aj

for i = 1 to j − 1

rij = qi aj

vj = vj − rij qi

rjj = �vj �2

qj = vj /rjj

13

Existence and Uniqueness

• Every A ⇒ Cm×n (m � n) has a full QR factorization and a reduced QR

factorization

• Proof. For full rank A, Gram-Schmidt proves existence of A = Q̂R̂.

Otherwise, when vj = 0 choose arbitrary vector orthogonal to previous qi.

For full QR, add orthogonal extension to Q and zero rows to R.

• Each A ⇒ Cm×n (m � n) of full rank has unique A = Q̂R̂ with rjj > 0

• Proof. Again Gram-Schmidt, rjj > 0 determines the sign

14

Gram-Schmidt Orthogonalization

� � �
� � �

Gram-Schmidt Projections

•	 The orthogonal vectors produced by Gram-Schmidt can be written in

terms of projectors

P1a1 P2a2	 Pnan
q1 = , q2 = , . . . , qn =

√P1a1√ √P2a2√ √Pnan√

where
� � � � �

Pj = I − Q̂j−1Q̂
� with Q̂j−1 = q1 � q2 � � qj−1j−1

� �
· · ·

�

•	 Pj projects orthogonally onto the space orthogonal to ∗q1, . . . , qj−1∞,

and rank(Pj) = m − (j − 1)

2

The Modified Gram-Schmidt Algorithm

•	 The projection Pj can equivalently be written as

Pj P�q2 P�q1 = P�qj−1 · · ·

where (last lecture)

P�q = I − qq �

•	 P�q projects orthogonally onto the space orthogonal to q, and

rank(P�q) = m − 1

•	 The Classical Gram-Schmidt algorithm computes an orthogonal vector by

vj = Pj aj

while the Modified Gram-Schmidt algorithm uses

vj P�q2 P�q1 aj = P�qj−1 · · ·

3

�

Classical vs. Modified Gram-Schmidt

• Small modification of classical G-S gives modified G-S (but see next slide)

• Modified G-S is numerically stable (less sensitive to rounding errors)

Classical/Modified Gram-Schmidt

for j = 1 to n

vj = aj

for i = 1 to j − 1
� (CGS)r = q aij ji

�rij = qi vj (MGS)

vj = vj − rij qi

rjj = √vj √2

qj = vj /rjj

4

�

�

Implementation of Modified Gram-Schmidt

•	 In modified G-S, P�qi can be applied to all vj as soon as qi is known

Makes the inner loop iterations independent (like in classical G-S) •

Classical Gram-Schmidt Modified Gram-Schmidt

for	j = 1 to n for i = 1 to n

vj = aj
 vi = ai

for i = 1 to j − 1
 for	i = 1 to n

rij	 = qi aj rii = √vi√

vj = vj − rij qi qi = vi/rii

for j = i + 1 to nrjj = √vj √2

qj	 = vj /rjj rij = qi vj

vj = vj − rij qi

5

Example: Classical vs. Modified Gram-Schmidt

• Compare classical and modified G-S for the vectors

a1 = (1, �, 0, 0)T , a2 = (1, 0, �, 0)T , a3 = (1, 0, 0, �)T

making the approximation 1 + �2 � 1

Classical:
•

v1 � (1, �, 0, 0)T , r11 =
→

1 + �2 � 1, q1 = v1/1 = (1, �, 0, 0)T

v2 � (1, 0, �, 0)T , r12 = q
1
T a2 = 1, v2 � v2 − 1q1 = (0, −�, �, 0)T

r22 =
→

2�, q2 = v2/r22 = (0, −1, 1, 0)T /
→

2

v3 � (1, 0, 0, �)T , r13 = q T a3 = 1, v3 � v3 − 1q1 = (0, −�, 0, �)T
1

r23 = q T a3 = 0, v3 � v3 − 0q2 = (0, −�, 0, �)T

2

r33 =
→

2�, q3 = v3/r33 = (0, −1, 0, 1)T /
→

2

6

Example: Classical vs. Modified Gram-Schmidt

Modified:•

v1 � (1, �, 0, 0)T , r11 =
→

1 + �2 � 1, q1 = v1/1 = (1, �, 0, 0)T

v2 � (1, 0, �, 0)T , r12 = q T v2 = 1, v2 � v2 − 1q1 = (0, −�, �, 0)T
1

r22 =
→

2�, q2 = v2/r22 = (0, −1, 1, 0)T /
→

2

v3 � (1, 0, 0, �)T , r13 = q
1
T v3 = 1, v3 � v3 − 1q1 = (0, −�, 0, �)T

T r23 = q v3 = �/
→

2, v3 � v3 − r23q2 = (0, −�/2, −�/2, �)T
2

r33 =
→

6�/2, q3 = v3/r33 = (0, −1, −1, 2)T /
→

6

• Check Orthogonality:

– Classical: qT q3 = (0, −1, 1, 0)(0, −1, 0, 1)T /2 = 1/2
2

T– Modified: q q3 = (0, −1, 1, 0)(0, −1, −1, 2)T /
→

12 = 0
2

7

Operation Count

• Count number of floating points operations – “flops” – in an algorithm

• Each +, −, ←, /, or
→

counts as one flop

• No distinction between real and complex

• No consideration of memory accesses or other performance aspects

8

Operation Count - Modified G-S

• Example: Count all +, −, ←, / in the Modified Gram-Schmidt algorithm

(not just the leading term)

(1) for i = 1 to n

(2) vi = ai

(3) for i = 1 to n

(4) rii = √vi√ m multiplications, m − 1 additions

(5) qi = vi/rii m divisions

(6) for j = i + 1 to n

(7) rij = q�
i vj m multiplications, m − 1 additions

(8) vj = vj − rij qi m multiplications, m subtractions

9

Operation Count - Modified G-S

• The total for each operation is
⎝ �

n n n
⎞ ⎞ ⎞

#A = �m − 1 + m − 1� = n(m − 1) + (m − 1)(n − i) =
i=1 j=i+1 i=1

= n(m − 1) +
n(n − 1)(m − 1)

=
1
n(n + 1)(m − 1)

2 2

n n n

⎞ ⎞ ⎞ 1

#S = m = m(n − i) = mn(n − 1)

2
i=1 j=i+1 i=1

⎝ �
n n n

⎞ ⎞ ⎞

#M = �m + 2m� = mn + 2m(n − i) =

i=1 j=i+1 i=1

2mn(n − 1) 2 = mn + = mn
2

n
⎞

#D = m = mn
i=1

10

� � � �

Operation Count - Modified G-S

and the total flop count is

1 1
n(n + 1)(m − 1) + mn(n − 1) + mn 2 + mn =

2 2

1 1

2mn 2 + mn −
2
n 2 −

2
n � 2mn 2

• The symbol � indicates asymptotic value as m, n ≈∼ (leading term)

• Easier to find just the leading term:

– Most work done in lines (7) and (8), with 4m flops per iteration

– Including the loops, the total becomes

n n n n

4m = 4m (n − i) � 4m i = 2mn 2

i=1 j=i+1 i=1 i=1

11

Householder Reflectors

�
 �
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
 �
 �
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�

�
 ��
 �

Gram-Schmidt as Triangular Orthogonalization

•	 Gram-Schmidt multiplies with triangular matrices to make columns

orthogonal, for example at the first step:

1 −r12 −r13 · · ·

r11 r11 r11

1

1
. . .

v1
 v2
 · · ·
 vn

= q1
 v

(2)

2
 · · ·
 v

(2)

n

• After all the steps we get a product of triangular matrices

A R1R2 · · · Rn = Q̂

R̂−1

•	 “Triangular orthogonalization”

2

�
 ��
 �

Householder Triangularization

•	 The Householder method multiplies by unitary matrices to make columns

triangular, for example at the first step:

Q1A =

r11 ××××× · · · ×
××××

0 ××××× · · · ×
××××

0 ××××× · · · ×××××

. . .
. . .

. . .
. . .

0 ××××× · · · ×××××

• After all the steps we get a product of orthogonal matrices

Qn · · · Q2Q1 A = R

Q∗

•	 “Orthogonal triangularization”

3

Introducing Zeros

• Qk introduces zeros below the diagonal in column k

• Preserves all the zeros previously introduced

× × × ××××× ××××× ××××× × × × × × ×

0 ×××××

0 ×××××

× × ×
 × ×
×
×××× ××××× ×
××××

Q1
 Q2
 Q3
0
× × ×
 ×
×××× ×
×××× ×
××××
−→
 −→
 −→

0 ×××××

× × × 0 ××××× ××××× 0 ×××××

A Q1A Q2Q1A Q3Q2Q1A

0
× × ×
 ×
×××× ×
××××

4

0

0

Householder Reflectors

• Let Qk be of the form

I 0

Qk =

0 F

where I is (k − 1) × (k − 1) and F is (m − k + 1) × (m − k + 1)

• Create Householder reflector F that introduces zeros:

× �x�

x =

×

.
.
.

Fx
 =

0

.
.
.

= �x�e1

× 0

5

Householder Reflectors

• Idea: Reflect across hyperplane H orthogonal to v = �x�e1 − x, by the

unitary matrix

F = I − 2
vv ∗

v ∗ v

• Compare with projector
x

∗ vv
P⊥v = I −

v ∗ v

F x = �x�e1

v

H

6

Choice of Reflector

• We can choose to reflect to any multiple z of �x�e1 with |z| = 1

•	 Better numerical properties with large �v�, for example

v = sign(x1)�x�e1 + x

• Note: sign(0) = 1, but in

MATLAB, sign(0)==0

x

+�x�e1

+�x�e1 −x

H+

−�x�e1

−�x�e1 −x

H−

7

The Householder Algorithm

• Compute the factor R of a QR factorization of m × n matrix A (m ≥ n)

• Leave result in place of A, store reflection vectors vk for later use

Algorithm: Householder QR Factorization

for k = 1 to n

x = Ak:m,k

vk = sign(x1)�x�2e1 + x

vk = vk/�vk�2

Ak:m,k:n = Ak:m,k:n − 2vk(vk
∗Ak:m,k:n)

8

Applying or Forming Q

• Compute Q∗b = Qn · · · Q2Q1b and Qx = Q1Q2 · · · Qnx implicitly

• To create Q explicitly, apply to x = I

Algorithm: Implicit Calculation of Q∗b

for k	 = 1 to n

bk:m = bk:m − 2vk(vk
∗bk:m)

Algorithm: Implicit Calculation of Qx

for k	 = n downto 1

xk:m = xk:m − 2vk(vk
∗ xk:m)

9

� �

Operation Count - Householder QR

• Most work done by

∗Ak:m,k:n = Ak:m,k:n − 2vk(vkAk:m,k:n)

• Operations per iteration:

– 2(m − k)(n − k) for the dot products vk
∗Ak:m,k:n

– (m − k)(n − k) for the outer product 2vk(· · ·)

– (m − k)(n − k) for the subtraction Ak:m,k:n − · · ·

– 4(m − k)(n − k) total

• Including the outer loop, the total becomes

n n

4(m − k)(n − k) = 4 (mn − k(m + n) + k2)
k=1 k=1

∼ 4mn 2 − 4(m + n)n 2/2 + 4n 3/3 = 2mn 2 − 2n 3/3

10

Givens Rotations

• Alternative to Householder reflectors
	

cos θ − sin θ
•	 A Givens rotation R = rotates x ∈ R2 by θ

sin θ cos θ

• To set an element to zero, choose cos θ and sin θ so that
	 �

cos θ − sin θ
 xi	 x
2
i
 + x
2

j

sin θ cos θ

xj

 =

0

or

cos θ = �
xi

, sin θ =
−xj

�

x
2
i
 + x
2

j
 x
2
i
 + x
2

j

11

Givens QR

• Introduce zeros in column from bottom and up

× × × × × × × × ×

× × ×

× × ×

(3,4)

−→

× × ×

××××× ××××× ×
××××

(2,3)

−→

××××× ××××× ×
×××× (1,2)

−→

0
 ××××× ×
××××

× × × 0 ××××× ××××× × ×

××××× ××××× ××××× × × × × × ×

0
 ××××× ×
××××

× ×

(3,4)

−→

× ×

××××× ×
××××

(2,3)

−→

××××× ×
×××× (3,4)
−→ R

0
 ×
××××

× × 0 ××××× ×

• Flop count 3mn2 − n3 (or 50% more than Householder QR)

12

Least Square Problems

The Linear Least Squares Problem

• In general, Ax = b with m > n has no solution

• Instead, try to minimize the residual r = b − Ax

• With the 2-norm we obtain the linear least squares problem (LSP):

Given A ∈ Cm×n,m ≥ n, b ∈ Cm ,

find x ∈ Cn such that �b − Ax�2 is minimized

• The minimizer x is the solution to the normal equations

A∗Ax = A∗b

or, in terms of the pseudoinverse A+:

∈ C
n,m x = A+b, where A+ = (A∗A)−1A∗

2

Geometric Interpretation

•	 Find the point Ax in range(A) closest to b

•	 This x will minimize the 2-norm of r = b − Ax

•	 Ax = Pb where P is an orthogonal projector onto range(A), so the

residual must be orthogonal to range(A)

y = Ax = P b

r = b −Ax

b

range(A)

3

Solving the LSP – 1. Normal Equations

• If A has full rank, A∗A is square, hermitian positive definite system

• Solve by Cholesky factorization (Gaussian elimination)

Algorithm: Least Squares via Normal Equations

1. Form the matrix A∗A and the vector A∗b

2. Compute the Cholesky factorization A∗A = R∗R

3. Solve the lower-triangular system R∗ w = A∗b for w

4. Solve the upper-triangular system Rx = w for x

• Work ∼ Forming A∗A + Cholesky ∼ mn2 + n3/3 flops

• Fast, but sensitive to rounding errors

4

Solving the LSP – 2. QR Factorization

• Using A = Q̂R̂, b can be projected onto range(A) by P = Q̂Q̂∗

• Insert into Ax = b to get ˆRx = ˆ Rx = ˆQ ˆ QQ̂∗b, or ˆ Q∗b

Algorithm: Least Squares via QR Factorization

1. Compute the reduced QR factorization A = Q̂R̂

2. Compute the vector Q̂∗b

3. Solve the upper-triangular system ˆ Q̂∗b for xRx =

• Work ∼ QR Factorization ∼ 2mn2 − 2n3/3 flops

• Good stability, relatively fast, used in MATLAB’s “backslash” \

5

Solving the LSP – 3. SVD

• Using A = ÛΣ̂V ∗ , b can be projected onto range(A) by P = Û Û∗

• Insert into Ax = b to get ÛΣ̂V ∗ x = Û Û∗b, or Σ̂V ∗ x = Û∗b

Algorithm: Least Squares via SVD

1. Compute the reduced SVD A = ÛΣ̂V ∗

2. Compute the vector Û∗b

3. Solve the diagonal system Σ̂w = Û∗b for w

4. Set x = V w

• Work ∼ SVD ∼ 2mn2 + 11n3 flops

• Very good stability properties, use if A is close to rank-deficient

6

	lec4
	lec5
	lec6
	lec7
	Blank Page
	Blank Page
	Blank Page
	Blank Page

