QR Factorization

Projectors

- A projector is a square matrix P that satisfies

$$
P^{2}=P
$$

- Not necessarily an orthogonal projector (more later)
- If $v \in \operatorname{range}(P)$, then $P v=v$
- Since with $v=P x$,

$$
P v=P^{2} x=P x=v
$$

- Projection along the line

$$
\begin{aligned}
& P v-v \in \operatorname{null}(P) \\
& - \text { Since } P(P v-v)= \\
& P^{2} v-P v=0
\end{aligned}
$$

Complementary Projectors

- The matrix $I-P$ is the complementary projector to P
- $I-P$ projects on the nullspace of P :
- If $P v=0$, then $(I-P) v=v$, so $\operatorname{null}(P) \subseteq \operatorname{range}(I-P)$
- But for any $v,(I-P) v=v-P v \in \operatorname{null}(P)$, so range $(I-P) \subseteq \operatorname{null}(P)$
- Therefore

$$
\operatorname{range}(I-P)=\operatorname{null}(P)
$$

and

$$
\operatorname{null}(I-P)=\operatorname{range}(P)
$$

Complementary Subspaces

- For a projector P,

$$
\operatorname{null}(I-P) \cap \operatorname{null}(P)=\{0\}
$$

or

$$
\operatorname{range}(P) \cap \operatorname{null}(P)=\{0\}
$$

- A projector separates \mathbb{C}^{m} into two spaces S_{1}, S_{2}, with range $(P)=S_{1}$ and $\operatorname{null}(P)=S_{2}$
- P is the projector onto S_{1} along S_{2}

Orthogonal Projectors

- An orthogonal projector projects onto S_{1} along S_{2}, with S_{1}, S_{2} orthogonal
- A projector P is orthogonal $\Longleftrightarrow P=P^{*}$
- Proof. Textbook / Black board

Projection with Orthonormal Basis

- Reduced SVD gives projector for orthonormal columns \hat{Q} :

$$
P=\hat{Q} \hat{Q}^{*}
$$

- Complement $I-\hat{Q} \hat{Q}^{*}$ also orthogonal, projects onto space orthogonal to range (\hat{Q})
- Special case 1: Rank-1 Orthogonal Projector (gives component in direction q)

$$
P_{q}=q q^{*}
$$

- Special case 2: Rank m - 1 Orthogonal Projector (eliminates component in direction q)

$$
P_{\perp q}=I-q q^{*}
$$

Projection with Arbitrary Basis

- Project v to $y \in \operatorname{range}(A)$. Then

$$
y-v \perp \operatorname{range}(A), \text { or } a_{j}^{*}(y-v)=0, \forall j
$$

- Set $y=A x$:

$$
a_{j}^{*}(A x-v)=0, \forall j \Longleftrightarrow A^{*}(A x-v)=0 \Longleftrightarrow A^{*} A x=A^{*} v
$$

- $A^{*} A$ is nonsingular, so

$$
x=\left(A^{*} A\right)^{-1} A^{*} v
$$

- Finally, we are interested in the projection $y=A x=A\left(A^{*} A\right)^{-1} A^{*} v$, giving the orthogonal projector

$$
P=A\left(A^{*} A\right)^{-1} A^{*}
$$

The QR Factorization - Main Idea

- Find orthonormal vectors that span the successive spaces spanned by the columns of A :

$$
\left\langle a_{1}\right\rangle \subseteq\left\langle a_{1}, a_{2}\right\rangle \subseteq\left\langle a_{1}, a_{2}, a_{3}\right\rangle \subseteq \ldots
$$

- This means that (for full rank A),

$$
\left\langle q_{1}, q_{2}, \ldots, q_{j}\right\rangle=\left\langle a_{1}, a_{2}, \ldots, a_{j}\right\rangle, \quad \text { for } j=1, \ldots, n
$$

The QR Factorization - Matrix Form

- In matrix form, $\left\langle q_{1}, q_{2}, \ldots, q_{j}\right\rangle=\left\langle a_{1}, a_{2}, \ldots, a_{j}\right\rangle$ becomes

$$
\left[a_{1}\left|a_{2}\right| \cdots \mid a_{n}\right]=\left[q_{1}\left|q_{2}\right| \cdots \mid q_{n}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
& r_{22} & & \vdots \\
& & \ddots & \vdots \\
& & & \\
& & & r_{n n}
\end{array}\right]
$$

or

$$
A=\hat{Q} \hat{R}
$$

- This is the reduced QR factorization
- Add orthogonal extension to \hat{Q} and add rows to \hat{R} to obtain the full $Q R$ factorization

The Full QR Factorization

- Let A be an $m \times n$ matrix. The full QR factorization of A is the factorization $A=Q R$, where
Q is $m \times m$ unitary
R is $m \times n$ upper-triangular

The Reduced QR Factorization

- A more compact representation is the Reduced QR Factorization $A=\hat{Q} \hat{R}$, where (for $m \geq n$)

$$
\hat{Q} \text { is } m \times n \text { and } \hat{R} \text { is } m \times n
$$

Gram-Schmidt Orthogonalization

- Find new q_{j} orthogonal to q_{1}, \ldots, q_{j-1} by subtracting components along previous vectors

$$
v_{j}=a_{j}-\left(q_{1}^{*} a_{j}\right) q_{1}-\left(q_{2}^{*} a_{j}\right) q_{2}-\cdots-\left(q_{j-1}^{*} a_{j}\right) q_{j-1}
$$

- Normalize to get $q_{j}=v_{j} /\left\|v_{j}\right\|$
- We then obtain a reduced QR factorization $A=\hat{Q} \hat{R}$, with

$$
r_{i j}=q_{i}^{*} a_{j}, \quad(i \neq j)
$$

and

$$
\left|r_{j j}\right|=\left\|a_{j}-\sum_{i=1}^{j-1} r_{i j} q_{i}\right\|_{2}
$$

Classical Gram-Schmidt

- Straight-forward application of Gram-Schmidt orthogonalization
- Numerically unstable

$$
\begin{aligned}
& \hline \text { Algorithm: Classical Gram-Schmidt } \\
& \text { for } j=1 \text { to } n \\
& v_{j}=a_{j} \\
& \text { for } i=1 \text { to } j-1 \\
& r_{i j}=q_{i}^{*} a_{j} \\
& v_{j}=v_{j}-r_{i j} q_{i} \\
& r_{j j}=\left\|v_{j}\right\|_{2} \\
& q_{j}=v_{j} / r_{j j}
\end{aligned}
$$

Existence and Uniqueness

- Every $A \in \mathbb{C}^{m \times n}(m \geq n)$ has a full QR factorization and a reduced QR factorization
- Proof. For full rank A, Gram-Schmidt proves existence of $A=\hat{Q} \hat{R}$. Otherwise, when $v_{j}=0$ choose arbitrary vector orthogonal to previous q_{i}. For full QR, add orthogonal extension to Q and zero rows to R.
- Each $A \in \mathbb{C}^{m \times n}(m \geq n)$ of full rank has unique $A=\hat{Q} \hat{R}$ with $r_{j j}>0$
- Proof. Again Gram-Schmidt, $r_{j j}>0$ determines the sign

Gram-Schmidt Orthogonalization

Gram-Schmidt Projections

- The orthogonal vectors produced by Gram-Schmidt can be written in terms of projectors

$$
q_{1}=\frac{P_{1} a_{1}}{\left\|P_{1} a_{1}\right\|}, \quad q_{2}=\frac{P_{2} a_{2}}{\left\|P_{2} a_{2}\right\|}, \quad \ldots, \quad q_{n}=\frac{P_{n} a_{n}}{\left\|P_{n} a_{n}\right\|}
$$

where

$$
P_{j}=I-\hat{Q}_{j-1} \hat{Q}_{j-1}^{*} \text { with } \hat{Q}_{j-1}=\left[\begin{array}{l|l|l|l}
q_{1} & q_{2} & \cdots & q_{j-1}
\end{array}\right]
$$

- P_{j} projects orthogonally onto the space orthogonal to $\left\langle q_{1}, \ldots, q_{j-1}\right\rangle$, and $\operatorname{rank}\left(P_{j}\right)=m-(j-1)$

The Modified Gram-Schmidt Algorithm

- The projection P_{j} can equivalently be written as

$$
P_{j}=P_{\perp q_{j-1}} \cdots P_{\perp q_{2}} P_{\perp q_{1}}
$$

where (last lecture)

$$
P_{\perp q}=I-q q^{*}
$$

- $P_{\perp_{q}}$ projects orthogonally onto the space orthogonal to q, and $\operatorname{rank}\left(P_{\perp q}\right)=m-1$
- The Classical Gram-Schmidt algorithm computes an orthogonal vector by

$$
v_{j}=P_{j} a_{j}
$$

while the Modified Gram-Schmidt algorithm uses

$$
v_{j}=P_{\perp q_{j-1}} \cdots P_{\perp q_{2}} P_{\perp q_{1}} a_{j}
$$

Classical vs. Modified Gram-Schmidt

- Small modification of classical G-S gives modified G-S (but see next slide)
- Modified G-S is numerically stable (less sensitive to rounding errors)

$$
\begin{aligned}
& \text { Classical/Modifi ed Gram-Schmidt } \\
& \text { for } j=1 \text { to } n \\
& \quad v_{j}=a_{j} \\
& \text { for } i=1 \text { to } j-1 \\
& \qquad \begin{cases}r_{i j}=q_{i}^{*} a_{j} & \text { (CGS) } \\
r_{i j}=q_{i}^{*} v_{j} \quad \text { (MGS) } \\
v_{j}=v_{j}-r_{i j} q_{i} \\
r_{j j}=\left\|v_{j}\right\|_{2} \\
q_{j}=v_{j} / r_{j j} \\
\hline\end{cases}
\end{aligned}
$$

Implementation of Modified Gram-Schmidt

- In modified G-S, $P_{\perp q_{i}}$ can be applied to all v_{j} as soon as q_{i} is known
- Makes the inner loop iterations independent (like in classical G-S)

$$
\begin{aligned}
& \text { Classical Gram-Schmidt } \\
& \text { for } j=1 \text { to } n \\
& v_{j}=a_{j} \\
& \text { for } i=1 \text { to } j-1 \\
& r_{i j}=q_{i}^{*} a_{j} \\
& v_{j}=v_{j}-r_{i j} q_{i} \\
& r_{j j}=\left\|v_{j}\right\|_{2} \\
& q_{j}=v_{j} / r_{j j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Modifi ed Gram-Schmidt } \\
& \text { for } i=1 \text { to } n \\
& \quad v_{i}=a_{i} \\
& \text { for } i=1 \text { to } n \\
& \quad r_{i i}=\left\|v_{i}\right\| \\
& q_{i}=v_{i} / r_{i i} \\
& \text { for } j=i+1 \text { to } n \\
& \quad r_{i j}=q_{i}^{*} v_{j} \\
& v_{j}=v_{j}-r_{i j} q_{i} \\
& \hline
\end{aligned}
$$

Example: Classical vs. Modified Gram-Schmidt

- Compare classical and modified G-S for the vectors

$$
a_{1}=(1, \epsilon, 0,0)^{T}, \quad a_{2}=(1,0, \epsilon, 0)^{T}, \quad a_{3}=(1,0,0, \epsilon)^{T}
$$

making the approximation $1+\epsilon^{2} \approx 1$

- Classical:

$$
\begin{aligned}
& v_{1} \leftarrow(1, \epsilon, 0,0)^{T}, \quad r_{11}=\sqrt{1+\epsilon^{2}} \approx 1, \quad q_{1}=v_{1} / 1=(1, \epsilon, 0,0)^{T} \\
& v_{2} \leftarrow(1,0, \epsilon, 0)^{T}, \quad r_{12}=q_{1}^{T} a_{2}=1, \quad v_{2} \leftarrow v_{2}-1 q_{1}=(0,-\epsilon, \epsilon, 0)^{T} \\
& \quad r_{22}=\sqrt{2} \epsilon, \quad q_{2}=v_{2} / r_{22}=(0,-1,1,0)^{T} / \sqrt{2} \\
& v_{3} \leftarrow(1,0,0, \epsilon)^{T}, \quad r_{13}=q_{1}^{T} a_{3}=1, \quad v_{3} \leftarrow v_{3}-1 q_{1}=(0,-\epsilon, 0, \epsilon)^{T} \\
& \quad r_{23}=q_{2}^{T} a_{3}=0, \quad v_{3} \leftarrow v_{3}-0 q_{2}=(0,-\epsilon, 0, \epsilon)^{T} \\
& \quad r_{33}=\sqrt{2} \epsilon, \quad q_{3}=v_{3} / r_{33}=(0,-1,0,1)^{T} / \sqrt{2}
\end{aligned}
$$

Example: Classical vs. Modified Gram-Schmidt

- Modified:

$$
\begin{aligned}
& v_{1} \leftarrow(1, \epsilon, 0,0)^{T}, \quad r_{11}=\sqrt{1+\epsilon^{2}} \approx 1, \quad q_{1}=v_{1} / 1=(1, \epsilon, 0,0)^{T} \\
& v_{2} \leftarrow(1,0, \epsilon, 0)^{T}, \quad r_{12}=q_{1}^{T} v_{2}=1, \quad v_{2} \leftarrow v_{2}-1 q_{1}=(0,-\epsilon, \epsilon, 0)^{T} \\
& \quad r_{22}=\sqrt{2} \epsilon, \quad q_{2}=v_{2} / r_{22}=(0,-1,1,0)^{T} / \sqrt{2} \\
& v_{3} \leftarrow(1,0,0, \epsilon)^{T}, \quad r_{13}=q_{1}^{T} v_{3}=1, \quad v_{3} \leftarrow v_{3}-1 q_{1}=(0,-\epsilon, 0, \epsilon)^{T} \\
& r_{23}=q_{2}^{T} v_{3}=\epsilon / \sqrt{2}, \quad v_{3} \leftarrow v_{3}-r_{23} q_{2}=(0,-\epsilon / 2,-\epsilon / 2, \epsilon)^{T} \\
& \quad r_{33}=\sqrt{6} \epsilon / 2, \quad q_{3}=v_{3} / r_{33}=(0,-1,-1,2)^{T} / \sqrt{6}
\end{aligned}
$$

- Check Orthogonality:
- Classical: $q_{2}^{T} q_{3}=(0,-1,1,0)(0,-1,0,1)^{T} / 2=1 / 2$
- Modified: $q_{2}^{T} q_{3}=(0,-1,1,0)(0,-1,-1,2)^{T} / \sqrt{12}=0$

Operation Count

- Count number of floating points operations - "flops" - in an algorithm
- Each $+,-, *, /$, or $\sqrt{ }$ counts as one flop
- No distinction between real and complex
- No consideration of memory accesses or other performance aspects

Operation Count - Modified G-S

- Example: Count all $+,-, *, /$ in the Modified Gram-Schmidt algorithm (not just the leading term)
(1) for $i=1$ to n

$$
\begin{equation*}
v_{i}=a_{i} \tag{2}
\end{equation*}
$$

(3) for $i=1$ to n
(4) $\quad r_{i i}=\left\|v_{i}\right\|$
(5) $\quad q_{i}=v_{i} / r_{i i}$
(6) \quad for $j=i+1$ to n
(7) $\quad r_{i j}=q_{i}^{*} v_{j}$
(8)

$$
v_{j}=v_{j}-r_{i j} q_{i}
$$

m multiplications, $m-1$ additions m divisions
m multiplications, $m-1$ additions
m multiplications, m subtractions

Operation Count - Modified G-S

- The total for each operation is

$$
\begin{aligned}
& \begin{aligned}
\# A & =\sum_{i=1}^{n}\left(m-1+\sum_{j=i+1}^{n} m-1\right)=n(m-1)+\sum_{i=1}^{n}(m-1)(n-i)= \\
& =n(m-1)+\frac{n(n-1)(m-1)}{2}=\frac{1}{2} n(n+1)(m-1) \\
\# S & =\sum_{i=1}^{n} \sum_{j=i+1}^{n} m=\sum_{i=1}^{n} m(n-i)=\frac{1}{2} m n(n-1) \\
\# M & =\sum_{i=1}^{n}\left(m+\sum_{j=i+1}^{n} 2 m\right)=m n+\sum_{i=1}^{n} 2 m(n-i)= \\
& =m n+\frac{2 m n(n-1)}{2}=m n^{2} \\
\# D & =\sum_{i=1}^{n} m=m n
\end{aligned}
\end{aligned}
$$

Operation Count - Modified G-S

and the total flop count is

$$
\begin{aligned}
& \frac{1}{2} n(n+1)(m-1)+\frac{1}{2} m n(n-1)+m n^{2}+m n= \\
& 2 m n^{2}+m n-\frac{1}{2} n^{2}-\frac{1}{2} n \sim 2 m n^{2}
\end{aligned}
$$

- The symbol \sim indicates asymptotic value as $m, n \rightarrow \infty$ (leading term)
- Easier to find just the leading term:
- Most work done in lines (7) and (8), with $4 m$ flops per iteration
- Including the loops, the total becomes

$$
\sum_{i=1}^{n} \sum_{j=i+1}^{n} 4 m=4 m \sum_{i=1}^{n}(n-i) \sim 4 m \sum_{i=1}^{n} i=2 m n^{2}
$$

Householder Reflectors

Gram-Schmidt as Triangular Orthogonalization

- Gram-Schmidt multiplies with triangular matrices to make columns orthogonal, for example at the first step:

$$
\left[v_{1}\left|v_{2}\right| \cdots \left\lvert\, v_{n}\left[\begin{array}{cccc}
\frac{1}{r_{11}} & \frac{-r_{12}}{r_{11}} & \frac{-r_{13}}{r_{11}} & \cdots \\
& 1 & & \\
& & 1 & \\
& & & \ddots
\end{array}\right]=\left[q_{1}\left|v_{2}^{(2)}\right| \cdots \mid v_{n}^{(2)}\right]\right.\right.
$$

- After all the steps we get a product of triangular matrices

$$
A \underbrace{R_{1} R_{2} \cdots R_{n}}_{\hat{R}^{-1}}=\hat{Q}
$$

- "Triangular orthogonalization"

Householder Triangularization

- The Householder method multiplies by unitary matrices to make columns triangular, for example at the first step:

$$
Q_{1} A=\left[\begin{array}{cccc}
r_{11} & \mathbf{x} & \cdots & \mathbf{x} \\
\mathbf{0} & \mathbf{x} & \cdots & \mathbf{x} \\
\mathbf{0} & \mathbf{x} & \cdots & \mathbf{x} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{x} & \cdots & \mathbf{x}
\end{array}\right]
$$

- After all the steps we get a product of orthogonal matrices

$$
\underbrace{Q_{n} \cdots Q_{2} Q_{1}}_{Q^{*}} A=R
$$

- "Orthogonal triangularization"

Introducing Zeros

- Q_{k} introduces zeros below the diagonal in column k
- Preserves all the zeros previously introduced

$$
\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times
\end{array}\right] \xrightarrow{Q_{1}}\left[\begin{array}{ccc}
\mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{x} & \mathbf{x}
\end{array}\right] \stackrel{Q_{2}}{ }\left[\begin{array}{ccc}
\times & \times & \times \\
\mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{x} \\
\mathbf{0} & \mathbf{x} \\
\mathbf{0} & \mathbf{x}
\end{array}\right] \xrightarrow{Q_{1} A}\left[\begin{array} { c }
{ \times } \\
{ Q _ { 2 } Q _ { 1 } A }
\end{array} \left[\begin{array}{cc}
\times \\
\times & \times \\
& \mathbf{0} \\
& \mathbf{0} \\
& {\left[\begin{array}{c}
\times \\
Q_{3} Q_{2} Q_{1} A
\end{array}\right]}
\end{array}\right.\right.
$$

Householder Reflectors

- Let Q_{k} be of the form

$$
Q_{k}=\left[\begin{array}{ll}
I & 0 \\
0 & F
\end{array}\right]
$$

where I is $(k-1) \times(k-1)$ and F is $(m-k+1) \times(m-k+1)$

- Create Householder reflector F that introduces zeros:

$$
x=\left[\begin{array}{c}
\times \\
\times \\
\vdots \\
\times
\end{array}\right] \quad F x=\left[\begin{array}{c}
\|x\| \\
0 \\
\vdots \\
0
\end{array}\right]=\|x\| e_{1}
$$

Householder Reflectors

- Idea: Reflect across hyperplane H orthogonal to $v=\|x\| e_{1}-x$, by the unitary matrix

$$
F=I-2 \frac{v v^{*}}{v^{*} v}
$$

- Compare with projector

$$
P_{\perp v}=I-\frac{v v^{*}}{v^{*} v}
$$

Choice of Reflector

- We can choose to reflect to any multiple z of $\|x\| e_{1}$ with $|z|=1$
- Better numerical properties with large $\|v\|$, for example

$$
v=\operatorname{sign}\left(x_{1}\right)\|x\| e_{1}+x
$$

- Note: $\operatorname{sign}(0)=1$, but in MATLAB, sign (0) ==0

The Householder Algorithm

- Compute the factor R of a $Q R$ factorization of $m \times n$ matrix $A(m \geq n)$
- Leave result in place of A, store reflection vectors v_{k} for later use

$$
\begin{aligned}
& \text { Algorithm: Householder QR Factorization } \\
& \text { for } k=1 \text { to } n \\
& \quad x=A_{k: m, k} \\
& \quad v_{k}=\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}+x \\
& v_{k}=v_{k} /\left\|v_{k}\right\|_{2} \\
& \quad A_{k: m, k: n}=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{*} A_{k: m, k: n}\right)
\end{aligned}
$$

Applying or Forming Q

- Compute $Q^{*} b=Q_{n} \cdots Q_{2} Q_{1} b$ and $Q x=Q_{1} Q_{2} \cdots Q_{n} x$ implicitly
- To create Q explicitly, apply to $x=I$

Algorithm: Implicit Calculation of $Q^{*} b$

for $k=1$ to n

$$
b_{k: m}=b_{k: m}-2 v_{k}\left(v_{k}^{*} b_{k: m}\right)
$$

Algorithm: Implicit Calculation of $Q x$
for $k=n$ downto 1

$$
x_{k: m}=x_{k: m}-2 v_{k}\left(v_{k}^{*} x_{k: m}\right)
$$

Operation Count - Householder QR

- Most work done by

$$
A_{k: m, k: n}=A_{k: m, k: n}-2 v_{k}\left(v_{k}^{*} A_{k: m, k: n}\right)
$$

- Operations per iteration:
$-2(m-k)(n-k)$ for the dot products $v_{k}^{*} A_{k: m, k: n}$
- $\quad(m-k)(n-k)$ for the outer product $2 v_{k}(\cdots)$
- $(m-k)(n-k)$ for the subtraction $A_{k: m, k: n}-\cdots$
- $4(m-k)(n-k)$ total
- Including the outer loop, the total becomes

$$
\begin{aligned}
& \sum_{k=1}^{n} 4(m-k)(n-k)=4 \sum_{k=1}^{n}\left(m n-k(m+n)+k^{2}\right) \\
& \sim 4 m n^{2}-4(m+n) n^{2} / 2+4 n^{3} / 3=2 m n^{2}-2 n^{3} / 3
\end{aligned}
$$

Givens Rotations

- Alternative to Householder reflectors
- A Givens rotation $R=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ rotates $x \in \mathbb{R}^{2}$ by θ
- To set an element to zero, choose $\cos \theta$ and $\sin \theta$ so that

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
x_{j}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{x_{i}^{2}+x_{j}^{2}} \\
0
\end{array}\right]
$$

or

$$
\cos \theta=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{j}^{2}}}, \quad \sin \theta=\frac{-x_{j}}{\sqrt{x_{i}^{2}+x_{j}^{2}}}
$$

Givens QR

- Introduce zeros in column from bottom and up

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right] \xrightarrow{(3,4)}\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{x} & \mathbf{x}
\end{array}\right] \xrightarrow{(2,3)}\left[\begin{array}{ccc}
\times & \times & \times \\
\mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{x} & \mathbf{x} \\
& \times & \times
\end{array}\right] \xrightarrow{(1,2)}} \\
& {\left[\begin{array}{ccc}
\mathbf{x} & \mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{x} & \mathbf{x} \\
& \times & \times \\
& \times & \times
\end{array}\right] \xrightarrow{(3,4)}\left[\begin{array}{ccc}
\times & \times & \times \\
& \times & \times \\
\mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{x}
\end{array}\right] \xrightarrow{(2,3)}\left[\begin{array}{ccc}
\times & \times & \times \\
\mathbf{x} & \mathbf{x} \\
\mathbf{0} & \mathbf{x} \\
& & \times
\end{array}\right]}
\end{aligned}
$$

- Flop count $3 m n^{2}-n^{3}$ (or 50% more than Householder QR)

Least Square Problems

The Linear Least Squares Problem

- In general, $A x=b$ with $m>n$ has no solution
- Instead, try to minimize the residual $r=b-A x$
- With the 2-norm we obtain the linear least squares problem (LSP):

$$
\begin{gathered}
\text { Given } A \in \mathbb{C}^{m \times n}, m \geq n, b \in \mathbb{C}^{m} \\
\text { find } x \in \mathbb{C}^{n} \text { such that }\|b-A x\|_{2} \text { is minimized }
\end{gathered}
$$

- The minimizer x is the solution to the normal equations

$$
A^{*} A x=A^{*} b
$$

or, in terms of the pseudoinverse A^{+}:

$$
x=A^{+} b, \quad \text { where } A^{+}=\left(A^{*} A\right)^{-1} A^{*} \in \mathbb{C}^{n, m}
$$

Geometric Interpretation

- Find the point $A x$ in range (A) closest to b
- This x will minimize the 2 -norm of $r=b-A x$
- $A x=P b$ where P is an orthogonal projector onto range (A), so the residual must be orthogonal to range (A)

Solving the LSP - 1. Normal Equations

- If A has full rank, $A^{*} A$ is square, hermitian positive definite system
- Solve by Cholesky factorization (Gaussian elimination)

Algorithm: Least Squares via Normal Equations

1. Form the matrix $A^{*} A$ and the vector $A^{*} b$
2. Compute the Cholesky factorization $A^{*} A=R^{*} R$
3. Solve the lower-triangular system $R^{*} w=A^{*} b$ for w
4. Solve the upper-triangular system $R x=w$ for x

- Work \sim Forming $A^{*} A+$ Cholesky $\sim m n^{2}+n^{3} / 3$ flops
- Fast, but sensitive to rounding errors

Solving the LSP - 2. QR Factorization

- Using $A=\hat{Q} \hat{R}, b$ can be projected onto range (A) by $P=\hat{Q} \hat{Q}^{*}$
- Insert into $A x=b$ to get $\hat{Q} \hat{R} x=\hat{Q} \hat{Q}^{*} b$, or $\hat{R} x=\hat{Q}^{*} b$

Algorithm: Least Squares via QR Factorization

1. Compute the reduced QR factorization $A=\hat{Q} \hat{R}$
2. Compute the vector $\hat{Q}^{*} b$
3. Solve the upper-triangular system $\hat{R} x=\hat{Q}^{*} b$ for x

- Work \sim QR Factorization $\sim 2 m n^{2}-2 n^{3} / 3$ flops
- Good stability, relatively fast, used in MATLAB's "backslash" \}

Solving the LSP - 3. SVD

- Using $A=\hat{U} \hat{\Sigma} V^{*}, b$ can be projected onto range (A) by $P=\hat{U} \hat{U}^{*}$
- Insert into $A x=b$ to get $\hat{U} \hat{\Sigma} V^{*} x=\hat{U} \hat{U}^{*} b$, or $\hat{\Sigma} V^{*} x=\hat{U}^{*} b$

Algorithm: Least Squares via SVD

1. Compute the reduced SVD $A=\hat{U} \hat{\Sigma} V^{*}$
2. Compute the vector $\hat{U}^{*} b$
3. Solve the diagonal system $\hat{\Sigma} w=\hat{U}^{*} b$ for w
4. Set $x=V w$

- Work \sim SVD $\sim 2 m n^{2}+11 n^{3}$ flops
- Very good stability properties, use if A is close to rank-deficient

