QR Factorization

Projectors

e A projector is a square matrix /° that satisfies
P?=P

e Not necessarily an orthogonal projector (more later)
e If v € range(P), then Pv = v

— Since with v = Pz,

Pv= P?z=Pr=v -~ _ Py

e Projection along the line
Pv —v € null(P)

— Since P(Pv —v) =
P?y — Puv =0

Complementary Projectors

e The matrix [— P is the complementary projector to P

e [/ — P projects on the nullspace of P:
— If Pv =0, then (I — P)v = v, so null(P) C range(/ — P)

— Butforany v, (I — P)v = v — Pv € null(P), so
range(l — P) C null(P)

— Therefore

range(l — P) = null(P)
and

null(/ — P) = range(P)

Complementary Subspaces
e For a projector P,
null(I — P) N null(P) = {0}
or
range(P) N null(P) = {0}

e A projector separates C™ into two spaces 57, So, with range(P) = 5
and null(P) = S,

e P is the projector onto S; along S5

Orthogonal Projectors

e An orthogonal projector projects onto 57 along S2, with S7, S5 orthogonal
e A projector P is orthogonal <—=- P = P~

e Proof. Textbook / Black board

Projection with Orthonormal Basis

Reduced SVD gives projector for orthonormal columns Q:
P = QQ’

Complement [— @@* also orthogonal, projects onto space orthogonal to
range(@)
Special case 1: Rank-1 Orthogonal Projector (gives component in

direction q)
Py =4qq

Special case 2: Rank m — 1 Orthogonal Projector (eliminates component

In direction q)

P,=1-qq

Projection with Arbitrary Basis

Project v to y € range(A). Then

y —v L range(A), or a;(y —v) =0,V

Sety = Ax:

a:(Ax —v) =0,Vj <= A" (Ax —v) =0 <= A" Az = A"

J

A* A is nonsingular, so
= (A*A)"1 A%

Finally, we are interested in the projection y = Ax = A(A*A)~1 A*v,

giving the orthogonal projector
P = A(A*A)~t A

7

The QR Factorization - Main ldea

e Find orthonormal vectors that span the successive spaces spanned by the

columns of A:

e This means that (for full rank A),

(41,92, ---,q;) = (a1,a9,...,a;), forj=1,...,n

The QR Factorization - Matrix Form

e In matrix form, (¢1, g2, ..., q;) = (a1, as,...,a;) becomes
iy Ti2 - Tin
722
ai | az Ap | — | 41 | 42 4n
] T
or
A=0R

e This is the reduced QR factorization

e Add orthogonal extension to @ and add rows to 12 to obtain the full QR

factorization

The Full QR Factorization

e Let A be an m X n matrix. The full QR factorization of A is the

factorization A = ()R, where

() is m X m unitary

R is m X n upper-triangular

10

The Reduced QR Factorization

e A more compact representation is the Reduced QR Factorization
A= QR where (for m > n)

A

Qism Xnand Rism X n

11

Gram-Schmidt Orthogonalization

e Find new g; orthogonal to q1, . .., qj—1 by subtracting components along

previous vectors
v = a; — (¢1a;)q — (4205)q2 — -+ — (¢5_105)qj—
e Normalize to get ¢; = v, /||v||
e We then obtain a reduced QR factorization A = Q R, with
rij = q; a5, (i #j)

and

7—1

7551 = lla; — Zﬁj%!b

1=1

12

Classical Gram-Schmidt

e Straight-forward application of Gram-Schmidt orthogonalization

e Numerically unstable

Algorithm: Classical Gram-Schmidt

for)=1ton
Uj:(lj

forr =1toy) — 1

Tij = q; 4y
U] — ?}] Tijqz
rii = |lvjll2

13

Existence and Uniqueness

Every A € C™*"™ (m > n) has a full QR factorization and a reduced QR

factorization

Proof. For full rank A, Gram-Schmidt proves existence of A = QR
Otherwise, when v; = (0 choose arbitrary vector orthogonal to previous g;.

For full QR, add orthogonal extension to () and zero rows to K.
Each A € C™*™ (m > n) of full rank has unique A = @}% with 75, > 0

Proof. Again Gram-Schmidt, 7;; > 0 determines the sign

14

Gram-Schmidt Orthogonalization

Gram-Schmidt Projections

e The orthogonal vectors produced by Gram-Schmidt can be written in

terms of projectors

PlCLl P2a2 Pnan
41 = 42 = sy Gn =
o lPall” T ([Pl T Paanl]
where
Pp=1-— Qj—lQ;_1 with Qj—l = | Q1 |q| | -1
o Pj projects orthogonally onto the space orthogonal to (ql, Ceey qj_1>,

and rank(P;) =m — (j — 1)

The Modified Gram-Schmidt Algorithm

® The projection Pj can equivalently be written as
Pj — PJ-C]j—1 T PJ—QQPJ-CM
where (last lecture)
Py=1-qq

O qu projects orthogonally onto the space orthogonal to ¢, and
rank(P,) =m —1

e The Classical Gram-Schmidt algorithm computes an orthogonal vector by
vj = Pja;
while the Modified Gram-Schmidt algorithm uses

vj = Prg,_, PrgPlga;

3

Classical vs. Modified Gram-Schmidt

e Small modification of classical G-S gives modified G-S (but see next slide)

e Modified G-S is numerically stable (less sensitive to rounding errors)

Classical/Modified Gram-Schmidt
for)=1ton
vj = aj
forr =1to) — 1
rii = q;a; (CGS)
{ rii = q;v; (MGS)

ri; = ||vjll2

Implementation of Modified Gram-Schmidt

e |In modified G-S, Pqu. can be applied to all v; as soon as g; is known

e Makes the inner loop iterations independent (like in classical G-S)

Classical Gram-Schmidt

for)=1ton
vj = ay

forr =1to) — 1

rii = qra;
U] - Uj frijQZ

ri; = l|vjll2

q; = vj/Tj;

Modified Gram-Schmidt

forr =1ton
Uy = Gy

forr =1ton

ri = ||vil

G = vi/Tii

for)=1+1ton
Tij = q; V;

Uj = Uj — T4,

Example: Classical vs. Modified Gram-Schmidt

e Compare classical and modified G-S for the vectors
ar = (1,6,0,0)", ay =(1,0,¢,0)", as=(1,0,0,¢)"
making the approximation 1 + € ~ 1
e Classical:
v — (1,6,0,007, ru=vV1i+e~1, ¢ =uv/1=(1¢007
vy — (1,0,6,0)", Ta=gqias =1, vy vy —1q = (0, —¢,¢0)"
oo = V26, (9 = V9 /T99 = (0, —1, 1,O)T/\/§
v3 «— (1,0,0,6)", m3=qiag=1, w3 v3—1q = (0,—¢,0,¢)

T

T23:C]2TG3=0, v3 < v3 — Ogy = (O,—e,O,e)T

33 =— \/567 q3 — 7)3/T33 — (07 _17 07 1)T/\/§

6

Example: Classical vs. Modified Gram-Schmidt

e Modified:
v — (1,6,0,007, rqi=vVi+e~1, ¢=v1/1=(1,¢0,0)7
vy — (1,0,6,0)", 1o =qiva =1, vy vy —1q = (0, —¢,¢,0)"
roo = V26, o =2/ = (0,—1,1,0)T//2
vy« (1,0,0,6)", r3=qlvs =1, w3 v3—1q = (0,—¢,0,¢)"
ros = @l g = €/V2, w3 — v3 — ro3qs = (0, —€/2, —¢/2, €)1

33 — \/66/27 q3 — U3/7“33 — (07 _17 _172)T/\/6

e Check Orthogonality:
— Classical: g1 g3 = (0, —1,1,0)(0,—1,0, 1)1 /2 =1/2
— Modified: ¢4 g3 = (0,—1,1,0)(0,—1,—-1,2)" /v/12 =0

7

Operation Count

Count number of floating points operations — “flops” — in an algorithm
Each +, —, *, /,or 4/ counts as one flop
No distinction between real and complex

No consideration of memory accesses or other performance aspects

Operation Count - Modified G-S

e Example: Count all 4, —, *, / In the Modified Gram-Schmidt algorithm

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(not just the leading term)

foro =1ton
U; = 4y

forr =1ton

rii = ||vi]

(]7;:%'/7”@'@

for) =1+ 1ton
rij = q; V;

Uj = Uj — T4,

m multiplications, m — 1 additions

m divisions

m multiplications, m — 1 additions

m multiplications, m subtractions

Operation Count - Modified G-S

e The total for each operation is

#AZ(ml—l— Z ml) :n(m—l)—l—Z(m — 1)(n — 1)

n(n—1)(m—1)

=n(m—1)+ :%n(n—l—l)(m—l)

#S = Z Z Zmn—z 1mn(n—l)

1=1 7=14+1

H#M = Z m + Z 2m —mn—l—ZZmn—z
J=1+1
2 —1
= mn + mn(n):mn2

2

H#D = zn:m:mn
i=1

10

Operation Count - Modified G-S

and the total flop count is

1 1
—n(n+1)(m—1) + imn(n — 1) +mn® +mn =

2
2 1, 1 2
2mn +mn—§n —§n~2mn

e The symbol ~ indicates asymptotic value as m, n — o< (leading term)

e Easier to find just the leading term:
— Most work done in lines (7) and (8), with 4m flops per iteration

— Including the loops, the total becomes

Y Y 4m—4mz n—1) ~4m22—2mn

1=1 j=1+1

11

Householder Retlectors

Gram-Schmidt as Triangular Orthogonalization

e Gram-Schmidt multiplies with triangular matrices to make columns

orthogonal, for example at the first step:

1

—T12

r11

r11

1

—T13
r11

di1

e After all the steps we get a product of triangular matrices

Aﬁle---R@

e “Triangular orthogonalization”

R—1

A

Q

Householder Triangularization

e The Householder method multiplies by unitary matrices to make columns

triangular, for example at the first step:

M1 X - X

e After all the steps we get a product of orthogonal matrices

Q

e “Orthogonal triangularization”

Introducing Zeros

e (); introduces zeros below the diagonal in column k

e Preserves all the zeros previously introduced

><><— _xxx— —><><><_ _><><><
X X 0 X X X X X X
x x| @10 x x| @ 0 x | % X
X X 0 X X 0 X 0
X X 0 X X 0 X 0

o 020, A 0402014

Householder Reflectors

e Let () be of the form

Qi =

where [is (k — 1) x (k—1)and Flis(m —k+1) x (m—k+ 1)

e Create Householder reflector [that introduces zeros:

x ||

X 0
L= | Fx = . = ||z||es

Householder Reflectors

e |dea: Reflect across hyperplane H orthogonal to v = ||x||e; — x, by the

unitary matrix

*

F=1-92"
v*U

e Compare with projector

*

(X0,

PJ_’U:]_

V*V

Choice of Reflector

e We can choose to reflect to any multiple z of ||x||e; with [z| = 1

e Better numerical properties with large ||v||, for example

v = sign(xy)||x|le; +

e Note: sign(0) = 1, butin
MATLAB, sign(0)==

The Householder Algorithm

e Compute the factor R of a () R factorization of m X n matrix A (m > n)

e Leave result in place of A, store reflection vectors vy, for later use

Algorithm: Householder QR Factorization

fork=1ton
T = Agmk
v = sign(xq)||x||2e1 + @
vk = Ok/ || vk |2

Ak:m,k:n — Ak:m,k:n — ka (UZ;Ak:m,k:n>

Applying or Forming ()

e Compute Q*b = (@), - - - Q2QQ1band Qzr = Q1 ()2 - - -), x implicitly

e To create () explicitly, applyto x = [

Algorithm: Implicit Calculation of ()*b

fork=1ton

bk = bk — 20k (V5 bk

Algorithm: Implicit Calculation of (Qx

for kK = n downto 1

T = Thom — 20k (VF Tl

Operation Count - Householder QR

e Most work done by
Akmten = Akmken — 205 (Ve Akm ki)

e Operations per iteration:
— 2(m — k)(n — k) for the dot products v}, Ag.m k:n
- (m—k)
— (m — k)(n — k) for the subtraction Ag., km —
— 4(m — k)(n — k) total

(n — k) for the outer product 2v(- -)

e Including the outer loop, the total becomes

Y Am —k)(n—k)=4) (mn—k(m+n)+ k)

— k=1
~ 4mn® — 4(m +n)n*/2 + 4n’ /3 = 2mn* — 2n°/3

10

Givens Rotations

e A Givens rotation R =

cos 6

sin 6

e Alternative to Householder reflectors

—sin 6

cos 6

rotates © € R? by

e To set an element to zero, choose cos ¢ and sin @ so that

cos) —sinf| |x; \/ T+ x?
sin@ cos6 T; 0
or
X :
cosf = sin 0 =

2 2
\/fl/’z' T

11

Givens QR

e [ntroduce zeros in column from bottom and up

X X X X

(3,4)

(3,4)

(2,3)

(2,3)

)

X X X X

X

X

X X X X

X X X X

e Flop count 3mn? — n? (or 50% more than Householder QR)

12

(1,2)

(34) p

Least Square Problems

The Linear Least Squares Problem

e In general, Ax = b with m > n has no solution
e Instead, try to minimize the residual r = b — Ax

e With the 2-norm we obtain the linear least squares problem (LSP):

Given A € C"™*" m > n,b e C™,

find x € C" such that ||b — Azx||2 is minimized

e The minimizer x is the solution to the normal equations
A*Ax = A™b
or, in terms of the pseudoinverse A™:

r = A"b, where AT = (A*A)—lA* c Cnm

2

Geometric Interpretation

e Find the point Az in range(A) closest to b
e This 2 will minimize the 2-normofr = b — Az

e Ax = Pbwhere P is an orthogonal projector onto range(A), so the
residual must be orthogonal to range(A)

~
~
~
~
~

_ - range(A)

-~

Solving the LSP — 1. Normal Equations

e If A has full rank, A* A is square, hermitian positive definite system

e Solve by Cholesky factorization (Gaussian elimination)

Algorithm: Least Squares via Normal Equations

1. Form the matrix A* A and the vector A*b
2. Compute the Cholesky factorization A*A = R*R
3. Solve the lower-triangular system R*w = A*b for w

4. Solve the upper-triangular system Rx = w for «

e Work ~ Forming A* A + Cholesky ~ mn? + n”/3 flops

e Fast, but sensitive to rounding errors

4

Solving the LSP — 2. QR Factorization

e Using A = QR, b can be projected onto range(A) by P = QQ*

e Insertinto Az = b to get Q}?x = QQ*b or R = Q*b

Algorithm: Least Squares via QR Factorization

1. Compute the reduced QR factorization A = Q}é{

A

2. Compute the vector (*b

A

QQ*b for x

3. Solve the upper-triangular system }A%x

e Work ~ QR Factorization ~ 2mn? — 2n? /3 flops

e (Good stability, relatively fast, used in MATLAB's “backslash” \

Solving the LSP — 3. SVD

e Using A = UXV*, b can be projected onto range(A) by P = UU*

e Insertinto Az = bto get USV*x = UU*b, or SV *z = U*b

Algorithm: Least Squares via SVD

1. Compute the reduced SVD A = Usv*
2. Compute the vector U*b
3. Solve the diagonal system f]w — U*b for w

4. Setx = Vw

® Work ~ SVD ~ 2mn? 4 11n? flops

e Very good stability properties, use if A is close to rank-deficient

6

	lec4
	lec5
	lec6
	lec7
	Blank Page
	Blank Page
	Blank Page
	Blank Page

