
QR Factorization



Projectors


•	 A projector is a square matrix P that satisfies 

P 2 = P 

•	 Not necessarily an orthogonal projector (more later) 

•	 If v ⇒ range(P ), then Pv = v 

v 

Pv = P 2x = Px = v Pv 

–	Since with v = Px, 

Pv−v 

•	 Projection along the line 

Pv − v ⇒ null(P ) range(P) 
–	Since P (Pv − v) =


P 2v − Pv = 0
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Complementary Projectors


•	 The matrix I − P is the complementary projector to P 

•	 I − P projects on the nullspace of P : 

–	If Pv = 0, then (I − P )v = v, so null(P ) ⇐ range(I − P ) 

–	But for any v, (I − P )v = v − Pv ⇒ null(P ), so


range(I − P ) ⇐ null(P )


–	Therefore 

range(I − P ) = null(P ) 

and 

null(I − P ) = range(P ) 
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Complementary Subspaces


•	 For a projector P , 

null(I − P ) ≥ null(P ) = {0} 

or 

range(P ) ≥ null(P ) = {0} 

•	 A projector separates Cm into two spaces S1, S2, with range(P ) = S1 

and null(P ) = S2 

•	 P is the projector onto S1 along S2 
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Orthogonal Projectors


• An orthogonal projector projects onto S1 along S2, with S1, S2 orthogonal 

• A projector P is orthogonal ⊥∀ P = P � 

• Proof. Textbook / Black board 

v 

Pv 

Pv−vrange(P) 
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Projection with Orthonormal Basis


•	 Reduced SVD gives projector for orthonormal columns Q̂: 

P = Q̂Q̂� 

• Complement I − Q̂Q̂� also orthogonal, projects onto space orthogonal to 

range( Q̂) 

•	 Special case 1: Rank-1 Orthogonal Projector (gives component in 

direction q) 

Pq = qq � 

•	 Special case 2: Rank m − 1 Orthogonal Projector (eliminates component 

in direction q) 

P�q = I − qq � 

6




Projection with Arbitrary Basis


• Project v to y ⇒ range(A). Then


y − v � range(A), or a � 
j (y − v) = 0, �j 

• Set y = Ax: 

a � 
j (Ax − v) = 0, �j ⊥∀ A�(Ax − v) = 0 ⊥∀ A�Ax = A� v 

• A�A is nonsingular, so 

x = (A�A)−1A� v 

• Finally, we are interested in the projection y = Ax = A(A�A)−1A�v, 

giving the orthogonal projector 

P = A(A�A)−1A� 
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The QR Factorization - Main Idea


•	 Find orthonormal vectors that span the successive spaces spanned by the 

columns of A: 

⊆a1∈ ⇐ ⊆a1, a2∈ ⇐ ⊆a1, a2, a3∈ ⇐ . . . 

•	 This means that (for full rank A), 

⊆q1, q2, . . . , qj ∈ = ⊆a1, a2, . . . , aj ∈ , for j = 1, . . . , n 
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The QR Factorization - Matrix Form


• In matrix form, ⊆q1, q2, . . . , qj ∈ = ⊆a1, a2, . . . , aj ∈ becomes 

� ⎡ 
r11 r12 · · · r1n 

⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � ⎢
⎥ ⎦ ⎥ ⎦ . 

⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � . ⎢ . 
⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � r22 

⎢ 
a1 ⎤ a2 ⎤ · · · ⎤ an = q1 ⎤ q2 ⎤ · · · ⎤ qn � ⎢ . . 

⎤ ⎤ ⎤ ⎤ ⎤ ⎤ � . . ⎢. . 
� ⎣ 

rnn 

or 

A = Q̂R̂

• This is the reduced QR factorization 

• Add orthogonal extension to Q̂ and add rows to R̂ to obtain the full QR 

factorization 
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The Full QR Factorization


•	 Let A be an m × n matrix. The full QR factorization of A is the 

factorization A = QR, where 

Q is m × m unitary 

R is m × n upper-triangular 

= 

A	 Q R
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The Reduced QR Factorization


•	 A more compact representation is the Reduced QR Factorization 

A = Q̂R̂, where (for m � n) 

Q̂	is m × n and R̂ is m × n 

= 

A	 Q̂ R̂
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Gram-Schmidt Orthogonalization


•	 Find new qj orthogonal to q1, . . . , qj−1 by subtracting components along 

previous vectors 

vj = aj − (q
1 
� aj )q1 − (q

2 
� aj )q2 − · · · − (qj

�

−1
aj )qj−1 

•	 Normalize to get qj = vj /�vj � 

• We then obtain a reduced QR factorization A = Q̂R̂, with 

rij = qi 
� aj , (i =∩ j) 

and 

j−1 

|rjj | = �aj − rij qi�2 

i=1 
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Classical Gram-Schmidt 

• Straight-forward application of Gram-Schmidt orthogonalization 

• Numerically unstable 

Algorithm: Classical Gram-Schmidt


for j = 1 to n 

vj = aj 

for i = 1 to j − 1 

rij = qi aj 

vj = vj − rij qi 

rjj = �vj �2 

qj = vj /rjj 
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Existence and Uniqueness


• Every A ⇒ Cm×n (m � n) has a full QR factorization and a reduced QR 

factorization 

• Proof. For full rank A, Gram-Schmidt proves existence of A = Q̂R̂. 

Otherwise, when vj = 0 choose arbitrary vector orthogonal to previous qi. 

For full QR, add orthogonal extension to Q and zero rows to R. 

• Each A ⇒ Cm×n (m � n) of full rank has unique A = Q̂R̂ with rjj > 0 

• Proof. Again Gram-Schmidt, rjj > 0 determines the sign 
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Gram-Schmidt Orthogonalization



� � � 
� � � 

Gram-Schmidt Projections


•	 The orthogonal vectors produced by Gram-Schmidt can be written in 

terms of projectors 

P1a1 P2a2	 Pnan 
q1 = , q2 = , . . . , qn = 

√P1a1√ √P2a2√ √Pnan√ 

where 
� � � � � 

Pj = I − Q̂j−1Q̂
� with Q̂j−1 = q1 � q2 � � qj−1j−1 

� � 
· · · 

� 

•	 Pj projects orthogonally onto the space orthogonal to ∗q1, . . . , qj−1∞, 

and rank(Pj ) = m − (j − 1) 
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The Modified Gram-Schmidt Algorithm


•	 The projection Pj can equivalently be written as 

Pj P�q2 P�q1 = P�qj−1 · · · 

where (last lecture) 

P�q = I − qq � 

•	 P�q projects orthogonally onto the space orthogonal to q, and 

rank(P�q) = m − 1 

•	 The Classical Gram-Schmidt algorithm computes an orthogonal vector by 

vj = Pj aj 

while the Modified Gram-Schmidt algorithm uses 

vj P�q2 P�q1 aj = P�qj−1 · · · 
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Classical vs. Modified Gram-Schmidt


• Small modification of classical G-S gives modified G-S (but see next slide) 

• Modified G-S is numerically stable (less sensitive to rounding errors) 

Classical/Modified Gram-Schmidt


for j = 1 to n 

vj = aj 

for i = 1 to j − 1 
� (CGS)r = q aij ji 

�rij = qi vj (MGS) 

vj = vj − rij qi 

rjj = √vj √2 

qj = vj /rjj 
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Implementation of Modified Gram-Schmidt


•	 In modified G-S, P�qi can be applied to all vj as soon as qi is known 

Makes the inner loop iterations independent (like in classical G-S) • 

Classical Gram-Schmidt Modified Gram-Schmidt 

for	j = 1 to n for i = 1 to n


vj = aj
 vi = ai


for i = 1 to j − 1
 for	i = 1 to n 

rij	 = qi aj rii = √vi√ 

vj = vj − rij qi qi = vi/rii 

for j = i + 1 to nrjj = √vj √2 

qj	 = vj /rjj rij = qi vj 

vj = vj − rij qi 
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Example: Classical vs. Modified Gram-Schmidt 

• Compare classical and modified G-S for the vectors 

a1 = (1, �, 0, 0)T , a2 = (1, 0, �, 0)T , a3 = (1, 0, 0, �)T


making the approximation 1 + �2 � 1


Classical:
• 

v1 � (1, �, 0, 0)T , r11 = 
→

1 + �2 � 1, q1 = v1/1 = (1, �, 0, 0)T 

v2 � (1, 0, �, 0)T , r12 = q
1 
T a2 = 1, v2 � v2 − 1q1 = (0, −�, �, 0)T 

r22 = 
→

2�, q2 = v2/r22 = (0, −1, 1, 0)T /
→

2 

v3 � (1, 0, 0, �)T , r13 = q T a3 = 1, v3 � v3 − 1q1 = (0, −�, 0, �)T 
1


r23 = q T a3 = 0, v3 � v3 − 0q2 = (0, −�, 0, �)T

2


r33 = 
→

2�, q3 = v3/r33 = (0, −1, 0, 1)T /
→

2
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Example: Classical vs. Modified Gram-Schmidt 

Modified:• 

v1 � (1, �, 0, 0)T , r11 = 
→

1 + �2 � 1, q1 = v1/1 = (1, �, 0, 0)T 

v2 � (1, 0, �, 0)T , r12 = q T v2 = 1, v2 � v2 − 1q1 = (0, −�, �, 0)T 
1 

r22 = 
→

2�, q2 = v2/r22 = (0, −1, 1, 0)T /
→

2 

v3 � (1, 0, 0, �)T , r13 = q
1 
T v3 = 1, v3 � v3 − 1q1 = (0, −�, 0, �)T 

T r23 = q v3 = �/
→

2, v3 � v3 − r23q2 = (0, −�/2, −�/2, �)T 
2


r33 = 
→

6�/2, q3 = v3/r33 = (0, −1, −1, 2)T /
→

6


• Check Orthogonality: 

– Classical: qT q3 = (0, −1, 1, 0)(0, −1, 0, 1)T /2 = 1/2
2 

T– Modified: q q3 = (0, −1, 1, 0)(0, −1, −1, 2)T /
→

12 = 0 
2 
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Operation Count


• Count number of floating points operations – “flops” – in an algorithm 

• Each +, −, ←, /, or 
→ 

counts as one flop 

• No distinction between real and complex 

• No consideration of memory accesses or other performance aspects 
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Operation Count - Modified G-S


• Example: Count all +, −, ←, / in the Modified Gram-Schmidt algorithm 

(not just the leading term) 

(1) for i = 1 to n 

(2) vi = ai 

(3) for i = 1 to n 

(4) rii = √vi√ m multiplications, m − 1 additions 

(5) qi = vi/rii m divisions 

(6) for j = i + 1 to n 

(7) rij = q� 
i vj m multiplications, m − 1 additions 

(8) vj = vj − rij qi m multiplications, m subtractions 
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Operation Count - Modified G-S


• The total for each operation is 
⎝ � 

n n n 
⎞ ⎞ ⎞ 

#A = �m − 1 + m − 1� = n(m − 1) + (m − 1)(n − i) = 
i=1 j=i+1 i=1 

= n(m − 1) + 
n(n − 1)(m − 1) 

= 
1 
n(n + 1)(m − 1)

2 2

n n n 

⎞ ⎞ ⎞ 1

#S = m = m(n − i) = mn(n − 1)


2 
i=1 j=i+1 i=1 

⎝ � 
n n n 

⎞ ⎞ ⎞

#M = �m + 2m� = mn + 2m(n − i) =


i=1 j=i+1 i=1 

2mn(n − 1) 2 = mn + = mn 
2 

n 
⎞ 

#D = m = mn 
i=1 
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Operation Count - Modified G-S


and the total flop count is


1 1 
n(n + 1)(m − 1) + mn(n − 1) + mn 2 + mn = 

2 2

1 1


2mn 2 + mn − 
2 
n 2 − 

2 
n � 2mn 2 

• The symbol � indicates asymptotic value as m, n ≈∼ (leading term) 

• Easier to find just the leading term: 

– Most work done in lines (7) and (8), with 4m flops per iteration 

– Including the loops, the total becomes 

n n n n 

4m = 4m (n − i) � 4m i = 2mn 2 

i=1 j=i+1 i=1 i=1 
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Householder Reflectors
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Gram-Schmidt as Triangular Orthogonalization


•	 Gram-Schmidt multiplies with triangular matrices to make columns 

orthogonal, for example at the first step: 


 

1 −r12 −r13 · · · 

r11 r11 r11 

1 

1 
. . . 

v1
 v2
 · · ·
 vn


















= q1
 v

(2)

2
 · · ·
 v


(2)

n


• After all the steps we get a product of triangular matrices 

A R1R2 · · · Rn = Q̂

R̂−1 

•	 “Triangular orthogonalization” 
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Householder Triangularization


•	 The Householder method multiplies by unitary matrices to make columns 

triangular, for example at the first step: 




Q1A =













r11 ××××× · · · ×
××××

0 ××××× · · · ×
××××

0 ××××× · · · ×××××

. . . 
. . . 

. . . 
. . . 

0 ××××× · · · ×××××












• After all the steps we get a product of orthogonal matrices 

Qn · · · Q2Q1 A = R 

Q∗ 

•	 “Orthogonal triangularization” 
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Introducing Zeros 

• Qk introduces zeros below the diagonal in column k 

• Preserves all the zeros previously introduced 











× × × ××××× ××××× ××××× × × × × × × 

0 ×××××

0 ×××××



































































× × ×
 × ×
×
×××× ××××× ×
××××

Q1
 Q2
 Q3
0
× × ×
 ×
×××× ×
×××× ×
××××
−→
 −→
 −→


0 ×××××

× × × 0 ××××× ××××× 0 ×××××

A Q1A Q2Q1A Q3Q2Q1A 

0
× × ×
 ×
×××× ×
××××
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Householder Reflectors 

• Let Qk be of the form 




I 0

Qk =
 



0 F 

where I is (k − 1) × (k − 1) and F is (m − k + 1) × (m − k + 1) 

• Create Householder reflector F that introduces zeros: 






× �x�


x =










×


.
.
.










Fx
 =










0

.
.
.










= �x�e1


× 0


5




Householder Reflectors


• Idea: Reflect across hyperplane H orthogonal to v = �x�e1 − x, by the 

unitary matrix 

F = I − 2 
vv ∗ 

v ∗ v 

• Compare with projector 
x 

∗ vv 
P⊥v = I − 

v ∗ v 

F x = �x�e1 

v 

H 
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Choice of Reflector


• We can choose to reflect to any multiple z of �x�e1 with |z| = 1 

•	 Better numerical properties with large �v�, for example 

v = sign(x1)�x�e1 + x 

• Note: sign(0) = 1, but in


MATLAB, sign(0)==0


x 

+�x�e1 

+�x�e1 −x 

H+ 

−�x�e1 

−�x�e1 −x 

H− 
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The Householder Algorithm


• Compute the factor R of a QR factorization of m × n matrix A (m ≥ n) 

• Leave result in place of A, store reflection vectors vk for later use 

Algorithm: Householder QR Factorization


for k = 1 to n 

x = Ak:m,k


vk = sign(x1)�x�2e1 + x


vk = vk/�vk�2


Ak:m,k:n = Ak:m,k:n − 2vk(vk
∗Ak:m,k:n) 
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Applying or Forming Q


• Compute Q∗b = Qn · · · Q2Q1b and Qx = Q1Q2 · · · Qnx implicitly 

• To create Q explicitly, apply to x = I 

Algorithm: Implicit Calculation of Q∗b


for k	 = 1 to n 

bk:m = bk:m − 2vk(vk
∗bk:m) 

Algorithm: Implicit Calculation of Qx


for k	 = n downto 1 

xk:m = xk:m − 2vk(vk
∗ xk:m) 
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Operation Count - Householder QR


• Most work done by 

∗Ak:m,k:n = Ak:m,k:n − 2vk(vkAk:m,k:n) 

• Operations per iteration: 

– 2(m − k)(n − k) for the dot products vk
∗Ak:m,k:n 

– (m − k)(n − k) for the outer product 2vk(· · · ) 

– (m − k)(n − k) for the subtraction Ak:m,k:n − · · · 

– 4(m − k)(n − k) total 

• Including the outer loop, the total becomes 

n n 

4(m − k)(n − k) = 4 (mn − k(m + n) + k2) 
k=1 k=1 

∼ 4mn 2 − 4(m + n)n 2/2 + 4n 3/3 = 2mn 2 − 2n 3/3 
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Givens Rotations


• Alternative to Householder reflectors 
	  

cos θ − sin θ 
•	 A Givens rotation R =   rotates x ∈ R2 by θ 

sin θ cos θ 

• To set an element to zero, choose cos θ and sin θ so that 
	   �  

cos θ − sin θ
 xi	 x
2 
i
 + x
2 

j

 

sin θ cos θ 
 

xj 

 =  

0 
 

or 

cos θ = � 
xi 

, sin θ = 
−xj 

� 

x
2 
i
 + x
2 

j
 x
2 
i
 + x
2 

j
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Givens QR 

• Introduce zeros in column from bottom and up 








× × × × × × × × ×









× × ×


× × ×










(3,4)

−→










× × ×


××××× ××××× ×
××××









(2,3)

−→










××××× ××××× ×
×××× (1,2)

−→


0
 ××××× ×
××××

× × × 0 ××××× ××××× × ×









××××× ××××× ××××× × × × × × ×









0
 ××××× ×
××××

× ×










(3,4)

−→










× ×


××××× ×
××××









(2,3)

−→










××××× ×
×××× (3,4) 
−→ R 

0
 ×
××××

× × 0 ××××× × 

• Flop count 3mn2 − n3 (or 50% more than Householder QR) 
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Least Square Problems



The Linear Least Squares Problem


• In general, Ax = b with m > n has no solution 

• Instead, try to minimize the residual r = b − Ax 

• With the 2-norm we obtain the linear least squares problem (LSP): 

Given A ∈ Cm×n,m ≥ n, b ∈ Cm ,


find x ∈ Cn such that �b − Ax�2 is minimized


• The minimizer x is the solution to the normal equations 

A∗Ax = A∗b


or, in terms of the pseudoinverse A+:


∈ C
n,m x = A+b, where A+ = (A∗A)−1A∗ 

2




Geometric Interpretation


•	 Find the point Ax in range(A) closest to b 

•	 This x will minimize the 2-norm of r = b − Ax 

•	 Ax = Pb where P is an orthogonal projector onto range(A), so the 

residual must be orthogonal to range(A) 

y = Ax = P b 

r = b −Ax 

b 

range(A) 
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Solving the LSP – 1. Normal Equations 

• If A has full rank, A∗A is square, hermitian positive definite system 

• Solve by Cholesky factorization (Gaussian elimination) 

Algorithm: Least Squares via Normal Equations


1. Form the matrix A∗A and the vector A∗b 

2. Compute the Cholesky factorization A∗A = R∗R 

3. Solve the lower-triangular system R∗ w = A∗b for w 

4. Solve the upper-triangular system Rx = w for x 

• Work ∼ Forming A∗A + Cholesky ∼ mn2 + n3/3 flops 

• Fast, but sensitive to rounding errors 
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Solving the LSP – 2. QR Factorization 

• Using A = Q̂R̂, b can be projected onto range(A) by P = Q̂Q̂∗ 

• Insert into Ax = b to get ˆRx = ˆ Rx = ˆQ ˆ QQ̂∗b, or ˆ Q∗b 

Algorithm: Least Squares via QR Factorization


1. Compute the reduced QR factorization A = Q̂R̂

2. Compute the vector Q̂∗b 

3. Solve the upper-triangular system ˆ Q̂∗b for xRx = 

• Work ∼ QR Factorization ∼ 2mn2 − 2n3/3 flops 

• Good stability, relatively fast, used in MATLAB’s “backslash” \ 

5




Solving the LSP – 3. SVD 

• Using A = ÛΣ̂V ∗ , b can be projected onto range(A) by P = Û Û∗ 

• Insert into Ax = b to get ÛΣ̂V ∗ x = Û Û∗b, or Σ̂V ∗ x = Û∗b 

Algorithm: Least Squares via SVD 

1. Compute the reduced SVD A = ÛΣ̂V ∗ 

2. Compute the vector Û∗b 

3. Solve the diagonal system Σ̂w = Û∗b for w 

4. Set x = V w 

• Work ∼ SVD ∼ 2mn2 + 11n3 flops 

• Very good stability properties, use if A is close to rank-deficient 
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