Overview of Optimization Problems

slides credit: Steven Johnson
Why optimization?

• In some sense, *all engineering design* is optimization: choosing *design parameters* to improve some *objective*

• Much of *data analysis* is also optimization: extracting some model parameters from data while minimizing some error measure (e.g. fitting)

• Most *business decisions* = optimization: varying some *decision parameters* to maximize profit (e.g. investment portfolios, supply chains, etc.)
A general optimization problem

\[
\min_{x \in \mathbb{R}^n} f_0(x)
\]

subject to \(m\) constraints

\[f_i(x) \leq 0\]

\(i = 1, 2, \ldots, m\)

x is a \textit{feasible point} if it satisfies all the constraints

\textit{feasible region} = \text{set of all feasible} x

minimize an \textbf{objective function} \(f_0\)

with respect to \(n\) design parameters \(x\)

(also called \textit{decision parameters, optimization variables}, etc.)

— note that \textbf{maximizing} \(g(x)\)

corresponds to \(f_0(x) = -g(x)\)

note that an \textit{equality constraint}

\(h(x) = 0\)

yields two \textit{inequality constraints}

\(f_i(x) = h(x)\) and \(f_{i+1}(x) = -h(x)\)

(although, in practical algorithms, equality constraints typically require special handling)
Important considerations

• *Global versus local* optimization
• *Convex* vs. non-convex optimization
• Unconstrained or *box-constrained* optimization, and other special-case constraints
• Special classes of functions (linear, etc.)
• *Differentiable* vs. non-differentiable functions
• Gradient-based vs. *derivative-free* algorithms
• …
• Zillions of different algorithms, usually restricted to various special cases, each with strengths/weaknesses
Global vs. Local Optimization

• For general nonlinear functions, most algorithms only guarantee a local optimum
 – that is, a feasible x_0 such that $f_0(x_0) \leq f_0(x)$ for all feasible x within some neighborhood $\|x - x_0\| < R$ (for some small R)

• A much harder problem is to find a global optimum: the minimum of f_0 for all feasible x
 – exponentially increasing difficulty with increasing n, practically impossible to guarantee that you have found global minimum without knowing some special property of f_0
 – many available algorithms, problem-dependent efficiencies
 • not just genetic algorithms or simulated annealing (which are popular, easy to implement, and thought-provoking, but usually very slow!)
 • for example, non-random systematic search algorithms (e.g. DIRECT), partially randomized searches (e.g. CRS2), repeated local searches from different starting points (“multistart” algorithms, e.g. MLSL), …
Convex Optimization

[good reference: Convex Optimization by Boyd and Vandenberghe, free online at www.stanford.edu/~boyd/cvxbook]

All the functions f_i ($i=0\ldots m$) are convex:

$$f_i(\alpha x + \beta y) \leq \alpha f_i(x) + \beta f_i(y)$$

where $\alpha + \beta = 1$

$\alpha, \beta \in [0,1]$

For a convex problem (convex objective & constraints) any local optimum must be a global optimum

\Rightarrow efficient, robust solution methods available
Important Convex Problems

• LP (linear programming): the objective and constraints are affine: \(f_i(x) = a_i^T x + \alpha_i \)

• QP (quadratic programming): affine constraints + convex quadratic objective \(x^T A x + b^T x \)

• SOCP (second-order cone program): LP + cone constraints \(\|Ax + b\|_2 \leq a^T x + \alpha \)

• SDP (semidefinite programming): constraints are that \(\sum A_k x_k \) is positive-semidefinite

all of these have very efficient, specialized solution methods
Important special constraints

• Simplest case is the *unconstrained* optimization problem: \(m=0 \)
 – e.g., line-search methods like steepest-descent, nonlinear conjugate gradients, Newton methods …

• Next-simplest are *box constraints* (also called *bound constraints*): \(x_k^{\text{min}} \leq x_k \leq x_k^{\text{max}} \)
 – easily incorporated into line-search methods and many other algorithms
 – many algorithms/software *only* handle box constraints

• …

• Linear equality constraints \(Ax=b \)
 – for example, can be explicitly eliminated from the problem by writing \(x=Ny+\xi \), where \(\xi \) is a solution to \(A\xi=b \) and \(N \) is a basis for the nullspace of \(A \)
Derivatives of f_i

• Most-efficient algorithms typically require user to supply the gradients $\nabla_x f_i$ of objective/constraints
 – you should always compute these analytically
 • rather than use finite-difference approximations, better to just use a derivative-free optimization algorithm
 • in principle, one can always compute $\nabla_x f_i$ with about the same cost as f_i, using adjoint methods
 – gradient-based methods can find (local) optima of problems with millions of design parameters

• Derivative-free methods: only require f_i values
 – easier to use, can work with complicated “black-box” functions where computing gradients is inconvenient
 – may be only possibility for nondifferentiable problems
 – need $> n$ function evaluations, bad for large n
Removable non-differentiability

consider the non-differentiable unconstrained problem:

$$\min_{x \in \mathbb{R}^n} |f_0(x)|$$

equivalent to minimax problem:

$$\min_{x \in \mathbb{R}^n} (\max\{f_0(x), -f_0(x)\})$$

...still nondifferentiable...

...equivalent to constrained problem with a “temporary” variable t:

$$\min_{x \in \mathbb{R}^n, t \in \mathbb{R}} t \quad \text{subject to:} \quad t \geq f_0(x)$$

$$t \geq -f_0(x)$$

i.e. $f_1(x, t) = f_0(x) - t$

$$f_2(x, t) = -f_0(x) - t$$
Example: Chebyshev linear fitting

find the fit that minimizes the maximum error:

$$
\min_{x_1, x_2} \left(\max_i |a_i x_1 + x_2 - b_i| \right)
= \min_{x \in \mathbb{R}^2} \|Ax - b\|_\infty
$$

... nondifferentiable minimax problem

equivalent to a linear programming problem (LP):

$$
\min_{x_1, x_2, t} t
\quad \text{subject to } 2N \text{ constraints:}
\begin{align*}
 t &\geq x_1 a_i + x_2 - b_i \\
 t &\geq -x_1 a_i - x_2 + b_i
\end{align*}
$$

equivalently:

$$
\min_{x_1, x_2, t} t
\quad \text{subject to } 2N \text{ constraints:}
\begin{align*}
 t &\geq |x_1 a_i + x_2 - b_i|
\end{align*}
$$
Relaxations of Integer Programming

If \(x \) is integer-valued rather than real-valued (e.g. \(x \in \{0,1\}^n \)), the resulting integer programming or combinatorial optimization problem becomes much harder in general.

However, useful results can often be obtained by a continuous relaxation of the problem — e.g., going from \(x \in \{0,1\}^n \) to \(x \in [0,1]^n \) … at the very least, this gives an lower bound on the optimum \(f_0 \)

“Penalty terms” or “projection filters” (SIMP, RAMP, etc.) can be used to obtain \(x \) that \(\approx 0 \) or \(\approx 1 \) almost everywhere.

Stochastic Optimization

\[
\min_{x \in \mathbb{R}^n} E[f(x, \xi)]
\]

where \(E[\cdots] \) is expected value averaging over random vars \(\xi \)

Deep-learning example:
Fitting ("learning") to a huge "training set" by sampling a random subset \(\xi \):
\[
f(x, \xi) = \sum_{k \in \xi} f_k(x)
\]

\(\nabla_x f \) often exists, but typically can’t use standard gradient-descent because of randomness.

Some Sources of Software

• **NLopt**: implements many nonlinear optimization algorithms callable from many languages (C, Python, R, Matlab, …) (global/local, constrained/unconstrained, derivative/no-derivative)

 http://github.com/stevengj/nlopt

• Python: `scipy.optimize`, `pyOpt`, …; Julia: `JuMP`, `Optim`,…

• Decision tree for optimization software:

 http://plato.asu.edu/guide.html
 — lists many (somewhat older) packages for many problems

• **CVX**: general convex-optimization package http://cvxr.com

 … also Python **CVXOPT**, R **CVXR**, Julia **Convex**