Overview of Optimization Problems

slides credit: Steven Johnson
Why optimization?

• In some sense, *all engineering design* is optimization: choosing *design parameters* to improve some *objective*

• Much of *data analysis* is also optimization: extracting some model parameters from data while minimizing some error measure (e.g. fitting)

• Most *business decisions =* optimization: varying some *decision parameters* to maximize profit (e.g. investment portfolios, supply chains, etc.)
A general optimization problem

\[
\min_{x \in \mathbb{R}^n} f_0(x) \\
\text{subject to } m \text{ constraints }
\]

\[
f_i(x) \leq 0, \quad i = 1, 2, \ldots, m
\]

minimize an objective function \(f_0 \)
with respect to \(n \) design parameters \(x \)
(also called decision parameters, optimization variables, etc.)

— note that \textit{maximizing} \(g(x) \)
corresponds to \(f_0(x) = -g(x) \)

note that an \textit{equality constraint} \(h(x) = 0 \)
yields two inequality constraints
\[
f_i(x) = h(x) \text{ and } f_{i+1}(x) = -h(x)
\]
(although, in practical algorithms, equality constraints
typically require special handling)

\(x \) is a \textit{feasible point} if it
satisfies all the constraints

\textit{feasible region} = set of all feasible \(x \)
Important considerations

- *Global versus local* optimization
- *Convex* vs. non-convex optimization
- Unconstrained or box-constrained optimization, and other special-case constraints
- Special classes of functions (linear, etc.)
- Differentiable vs. non-differentiable functions
- Gradient-based vs. derivative-free algorithms
- ...
- Zillions of different algorithms, usually restricted to various special cases, each with strengths/weaknesses
Global vs. Local Optimization

- For general nonlinear functions, most algorithms only guarantee a local optimum
 - that is, a feasible x_0 such that $f_0(x_0) \leq f_0(x)$ for all feasible x within some neighborhood $\|x-x_0\| < R$ (for some small R)
- A much harder problem is to find a global optimum: the minimum of f_0 for all feasible x
 - exponentially increasing difficulty with increasing n, practically impossible to guarantee that you have found global minimum without knowing some special property of f_0
 - many available algorithms, problem-dependent efficiencies
 - not just genetic algorithms or simulated annealing (which are popular, easy to implement, and thought-provoking, but usually very slow!)
 - for example, non-random systematic search algorithms (e.g. DIRECT), partially randomized searches (e.g. CRS2), repeated local searches from different starting points (“multistart” algorithms, e.g. MLSL), …
Convex Optimization

[good reference: Convex Optimization by Boyd and Vandenberghe,
free online at www.stanford.edu/~boyd/cvxbook]

All the functions f_i ($i=0\ldots m$) are convex:

$$f_i(\alpha x + \beta y) \leq \alpha f_i(x) + \beta f_i(y)$$

where $\alpha + \beta = 1$, $\alpha, \beta \in [0,1]$

For a convex problem (convex objective & constraints)

any local optimum must be a global optimum

⇒ efficient, robust solution methods available
Important Convex Problems

- LP (linear programming): the objective and constraints are affine: \(f_i(x) = a_i^T x + \alpha_i \)
- QP (quadratic programming): affine constraints + convex quadratic objective \(x^T A x + b^T x \)
- SOCP (second-order cone program): LP + cone constraints \(\|Ax+b\|_2 \leq a^T x + \alpha \)
- SDP (semidefinite programming): constraints are that \(\Sigma A_k x_k \) is positive-semidefinite

all of these have very efficient, specialized solution methods
Important special constraints

• Simplest case is the *unconstrained* optimization problem: $m=0$
 - e.g., line-search methods like steepest-descent, nonlinear conjugate gradients, Newton methods …

• Next-simplest are *box constraints* (also called *bound constraints*): $x_k^{\text{min}} \leq x_k \leq x_k^{\text{max}}$
 - easily incorporated into line-search methods and many other algorithms
 - many algorithms/software *only* handle box constraints

• …

• Linear equality constraints $Ax=b$
 - for example, can be explicitly eliminated from the problem by writing $x=Ny+\xi$, where ξ is a solution to $A\xi=b$ and N is a basis for the nullspace of A
Derivatives of f_i

- Most-efficient algorithms typically **require user to supply the gradients** $\nabla_x f_i$ of objective/constraints
 - you should *always* compute these analytically
 - rather than use finite-difference approximations, better to just use a derivative-free optimization algorithm
 - in principle, one can always compute $\nabla_x f_i$ with about the same cost as f_i, using **adjoint methods**
 - gradient-based methods can find (local) optima of problems with millions of design parameters

- **Derivative-free** methods: only require f_i values
 - easier to use, can work with complicated “black-box” functions where computing gradients is inconvenient
 - *may* be only possibility for nondifferentiable problems
 - need $> n$ function evaluations, bad for large n
Removable non-differentiability

consider the non-differentiable unconstrained problem:

$$\min_{x \in \mathbb{R}^n} |f_0(x)|$$

equivalent to minimax problem:

$$\min_{x \in \mathbb{R}^n} (\max\{f_0(x), -f_0(x)\})$$

...still nondifferentiable...

...equivalent to constrained problem with a “temporary” variable t:

$$\min_{x \in \mathbb{R}^n, t \in \mathbb{R}} t \quad \text{subject to:} \quad t \geq f_0(x)$$

$$t \geq -f_0(x)$$

i.e. $f_1(x, t) = f_0(x) - t$

$f_2(x, t) = -f_0(x) - t$
Example: Chebyshev linear fitting

find the fit that minimizes
the *maximum error*:

\[
\min_{x_1, x_2} \left(\max_i \left| x_1 a_i + x_2 - b_i \right| \right) = \min_{x \in \mathbb{R}^2} \| Ax - b \|_\infty
\]

… nondifferentiable *minimax* problem

equivalent to a *linear programming* problem (LP):

\[
\min_{x_1, x_2, t} \ t \\
\text{subject to } 2N \text{ constraints:}
\begin{align*}
t & \geq x_1 a_i + x_2 - b_i \\
t & \geq -x_1 a_i - x_2 + b_i
\end{align*}
\]
equivalently:

\[
t \geq |x_1 a_i + x_2 - b_i|
\]
Relaxations of Integer Programming

If x is integer-valued rather than real-valued (e.g. $x \in \{0,1\}^n$), the resulting integer programming or combinatorial optimization problem becomes much harder in general.

However, useful results can often be obtained by a continuous relaxation of the problem — e.g., going from $x \in \{0,1\}^n$ to $x \in [0,1]^n$ … at the very least, this gives an lower bound on the optimum f_0

“Penalty terms” or “projection filters” (SIMP, RAMP, etc.) can be used to obtain x that ≈ 0 or ≈ 1 almost everywhere.

Stochastic Optimization

\[\min_{x \in \mathbb{R}^n} E[f(x, \xi)] \]

where \(E[\cdots] \) is expected value averaging over random vars \(\xi \)

Deep-learning example:
Fitting (“learning”) to a huge “training set” by sampling a random subset \(\xi \):
\[f(x, \xi) = \sum_{k \in \xi} f_k(x) \]

\(\nabla_x f \) often exists, but typically can’t use standard gradient-descent because of randomness.

Some Sources of Software

• **NLopt**: implements many nonlinear optimization algorithms callable from many languages (C, Python, R, Matlab, …) (global/local, constrained/unconstrained, derivative/no-derivative)

 http://github.com/stevengj/nlopt

• Python: `scipy.optimize`, `pyOpt`, …; Julia: `JuMP`, `Optim`, …

• Decision tree for optimization software:

 http://plato.asu.edu/guide.html

 — lists many (somewhat older) packages for many problems

• **CVX**: general convex-optimization package http://cvxr.com

 … also Python **CVXOPT**, R **CVXR**, Julia **Convex**