Linear Regression

PROF XIAOHUI XIE SPRING 2019

CS 273P Machine Learning and Data Mining

Machine Learning

Linear Regression via Least Squares

Gradient Descent Algorithms

Direct Minimization of Squared Error

Regression with Non-linear Features

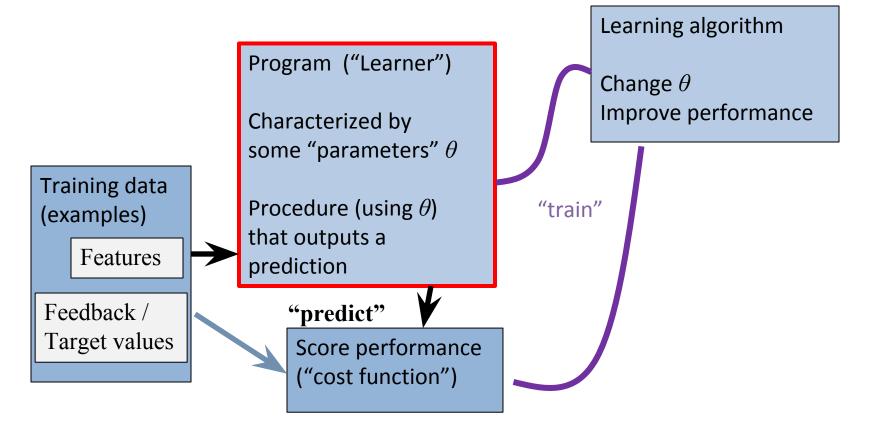
Bias, Variance, & Validation

Regularized Linear Regression

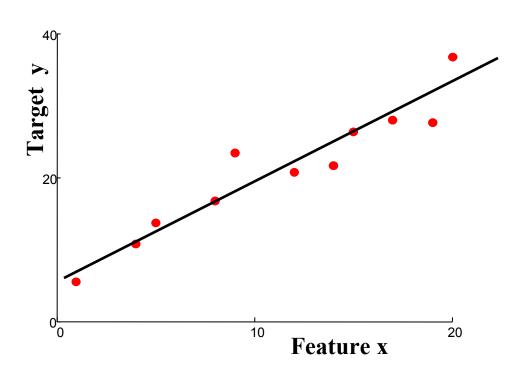
Supervised learning

Notation

- Features x
- Targets y
- Predictions $\hat{y} = f(x; \theta)$
- Parameters θ



Linear regression



"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Define form of function f(x) explicitly
- Find a good f(x) within that family

Notation

$$\hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$

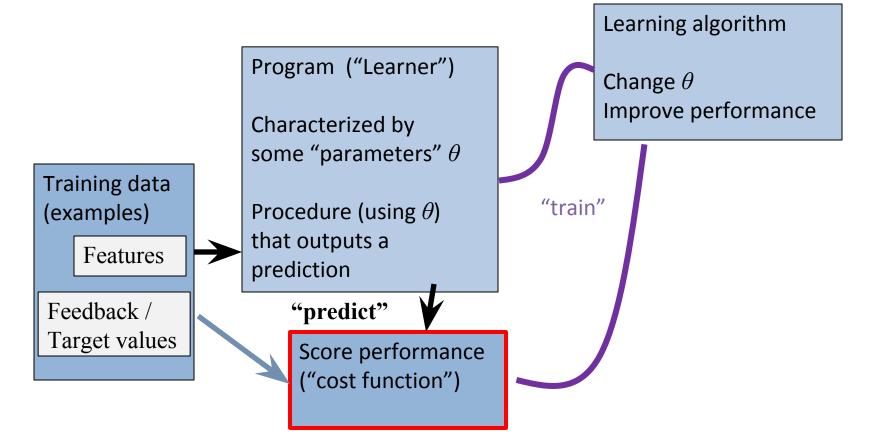
Define "feature" $x_0 = 1$ (constant) Then

$$\hat{y}(x) = \theta x^T \qquad \frac{\underline{\theta} = [\theta_0, \dots, \theta_n]}{\underline{x} = [1, x_1, \dots, x_n]}$$

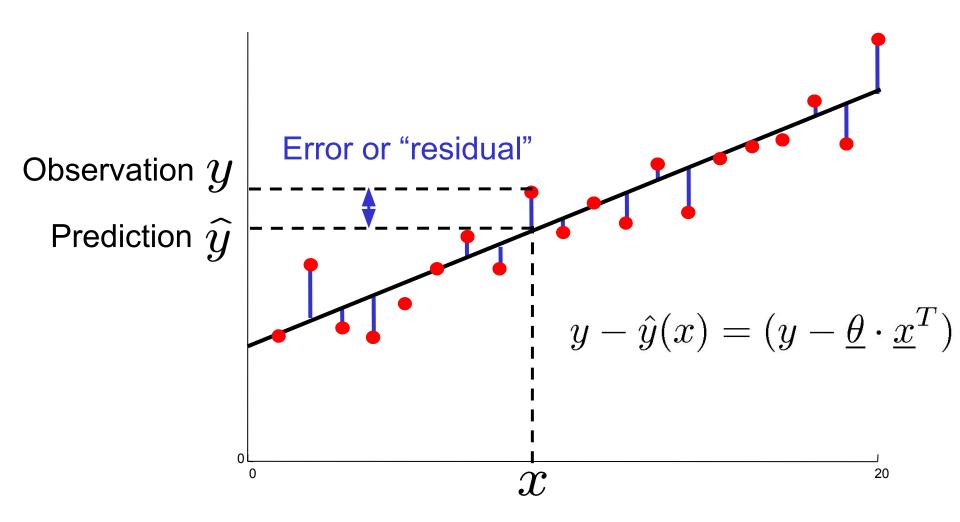
Supervised learning

Notation

- Features x
- Targets y
- Predictions $\hat{y} = f(x; \theta)$
- Parameters θ



Measuring error



Mean squared error

How can we quantify the error?

MSE,
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2$$
$$= \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)T})^2$$

- Could choose something else, of course...
 - Computationally convenient (more later)
 - Measures the variance of the residuals
 - Corresponds to likelihood under Gaussian model of "noise"

$$\mathcal{N}(y ; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2}(y - \mu)^2\right\}$$

MSE cost function

Rewrite using matrix form

MSE,
$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \hat{y}(x^{(j)}))^2$$
$$= \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)T})^2$$

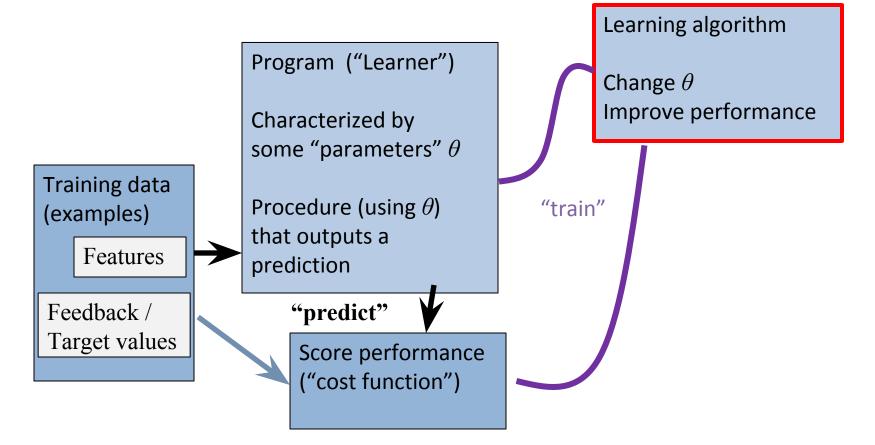
$$\underline{\theta} = [\theta_0, \dots, \theta_n] \\
\underline{y} = \begin{bmatrix} y^{(1)} \dots, y^{(m)} \end{bmatrix}^T \qquad \underline{X} = \begin{bmatrix} x_0^{(1)} \dots & x_n^{(1)} \\
\vdots & \ddots & \vdots \\
x_0^{(m)} \dots & x_n^{(m)} \end{bmatrix} \\
J(\underline{\theta}) = \frac{1}{m} (\underline{y}^T - \underline{\theta} \underline{X}^T) \cdot (\underline{y}^T - \underline{\theta} \underline{X}^T)^T$$

```
# Python / NumPy:
e = Y - X.dot( theta.T );
J = e.T.dot( e ) / m # = np.mean( e ** 2 )
```

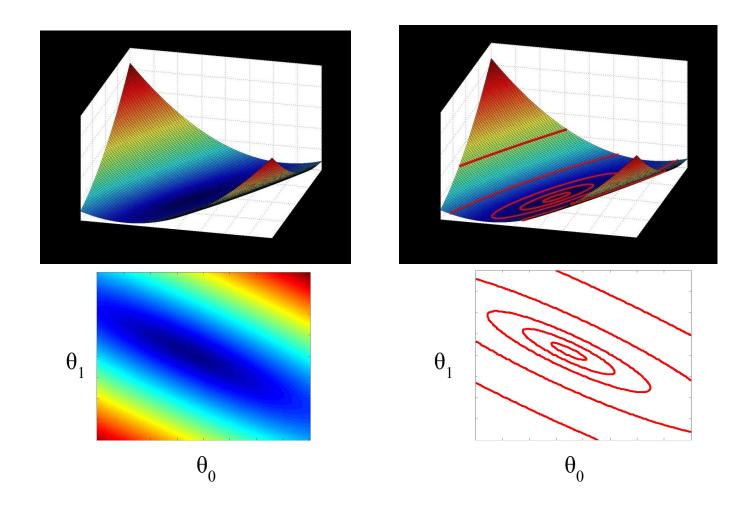
Supervised learning

Notation

- Features x
- Targets y
- Predictions $\hat{y} = f(x; \theta)$
- Parameters θ

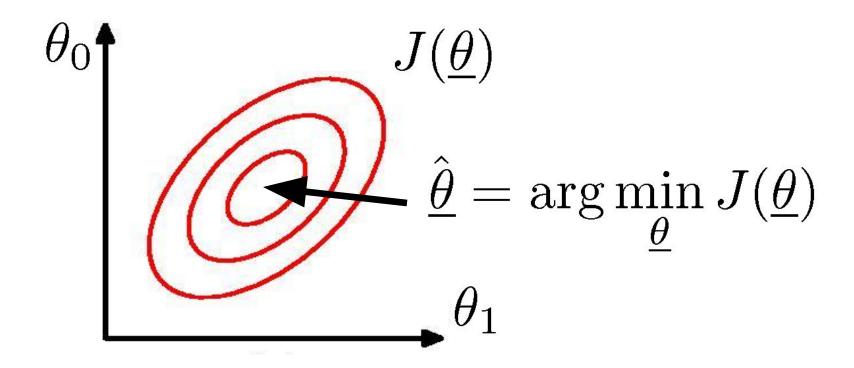


Visualizing the cost function



Finding good parameters

- Want to find parameters which minimize our error...
- Think of a cost "surface": error residual for that heta ...



Machine Learning

Linear Regression via Least Squares

Gradient Descent Algorithms

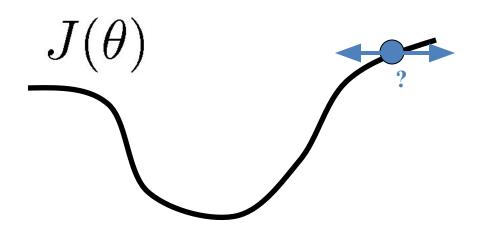
Direct Minimization of Squared Error

Regression with Non-linear Features

Bias, Variance, & Validation

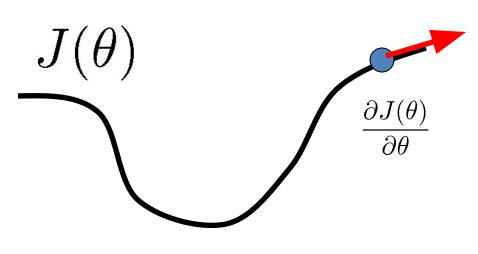
Regularized Linear Regression

Gradient descent



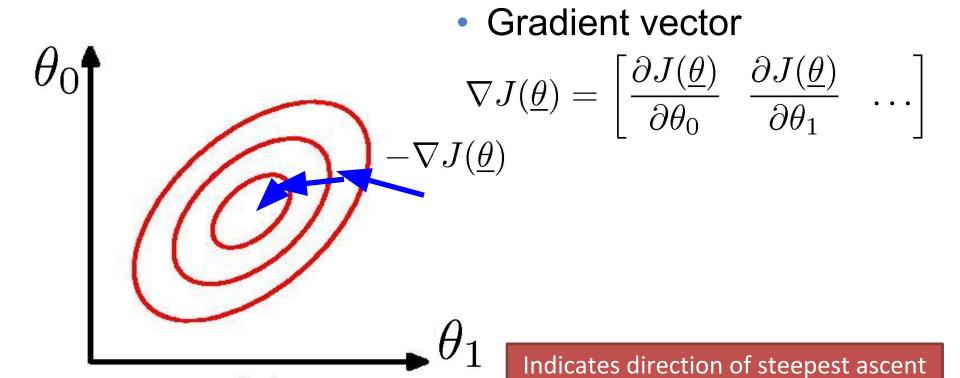
- How to change θ to improve J(θ)?
- Choose a direction in which J(θ) is decreasing

Gradient descent



- How to change θ to improve J(θ)?
- Choose a direction in which J(θ) is decreasing
- Derivative $\frac{\partial J(\theta)}{\partial \theta}$
- Positive => increasing
- Negative => decreasing

Gradient descent in more dimensions

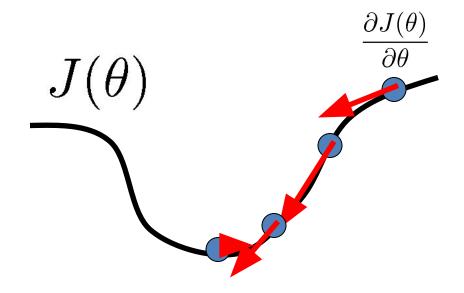


(negative = steepest descent)

Gradient descent

- Initialization
- Step size α
 - Can change over iterations
- Gradient direction
- Stopping condition

```
Initialize \theta
Do{
\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)
} while (\alpha || \nabla_{\theta} J || > \epsilon)
```



Gradient for the MSE

MSE

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$
• $\nabla J = ?$

$$J(\underline{\theta}) = \frac{1}{m} \sum_{i} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2$$

$$\begin{split} \frac{\partial J}{\partial \theta_0} &= \frac{\partial}{\partial \theta_0} \frac{1}{m} \sum_j (\ e_j(\theta)\)^2 & \frac{\partial}{\partial \theta_0} e_j(\theta) = \frac{\partial}{\partial \theta_0} y^{(j)} - \frac{\partial}{\partial \theta_0} \theta_0 x_0^{(j)} - \frac{\partial}{\partial \theta_0} \theta_1 x_1^{(j)} - \dots \\ &= \frac{1}{m} \sum_j \frac{\partial}{\partial \theta_0} (\ e_j(\theta)\)^2 &= -x_0^{(j)} \\ &= \frac{1}{m} \sum_j 2e_j(\theta) \frac{\partial}{\partial \theta_0} e_j(\theta) \end{split}$$

Gradient for the MSE

MSE

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$
 • ∇ J = ?

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \theta_0 \underline{x}_0^{(j)} - \theta_1 \underline{x}_1^{(j)} - \dots)^2$$

$$\nabla J(\underline{\theta}) = \begin{bmatrix} \frac{\partial J}{\partial \theta_0} & \frac{\partial J}{\partial \theta_1} & \dots \end{bmatrix}$$
$$= \begin{bmatrix} \frac{2}{m} \sum_{j} -e_j(\theta) x_0^{(j)} & \frac{2}{m} \sum_{j} -e_j(\theta) x_1^{(j)} & \dots \end{bmatrix}$$

Gradient descent

- Initialization
- Step size α
 - Can change over iterations
- Gradient direction
- Stopping condition

Initialize θ Do{ $\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$ } while $(\alpha || \nabla_{\theta} J || > \epsilon)$

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

$$\nabla J(\underline{\theta}) = -\frac{2}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T}) \cdot [x_0^{(j)} x_1^{(j)} \dots]$$
 Error magnitude & Sensitivity to each param

Derivative of MSE

Rewrite using matrix form

$$\nabla J(\underline{\theta}) = -\frac{2}{m} \sum_{j} (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T}) \cdot [x_0^{(j)} x_1^{(j)} \dots]$$

$$\underline{\theta} = [\theta_0, \dots, \theta_n] \qquad \text{Error magnitude & Sensitivity to each } \theta_i$$

$$\underline{y} = \begin{bmatrix} y^{(1)} \dots, y^{(m)} \end{bmatrix}^T$$

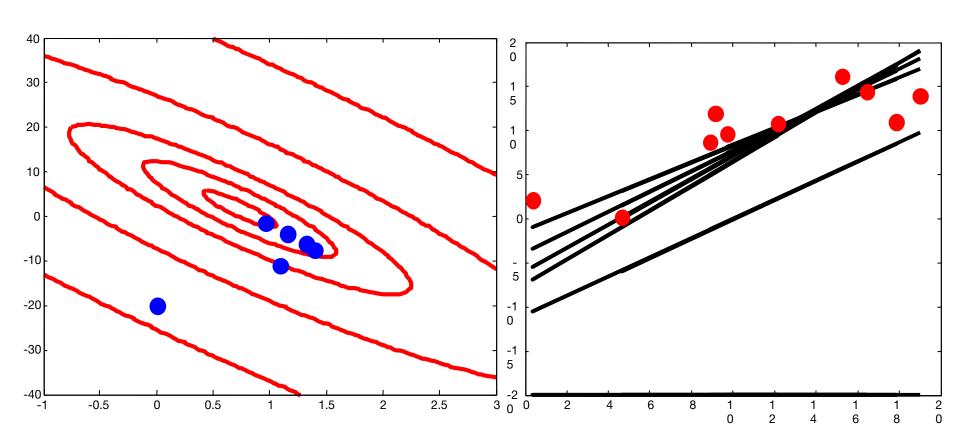
$$\underline{X} = \begin{bmatrix} x_0^{(1)} \dots & x_n^{(1)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

$$\nabla J(\underline{\theta}) = -\frac{2}{m} (\underline{y}^T - \underline{\theta} \underline{X}^T) \cdot \underline{X}$$

$$\underline{X} = \begin{bmatrix} x_0^{(m)} \dots & x_n^{(m)} \\ \vdots & \ddots & \vdots \\ x_0^{(m)} & \dots & x_n^{(m)} \end{bmatrix}$$

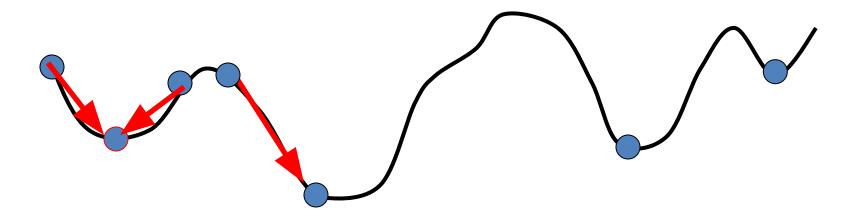
```
e = Y - X.dot( theta.T ) # error residual
DJ = - e.dot(X) * 2.0/m # compute the gradient
theta -= alpha * DJ # take a step
```

Gradient descent on cost function



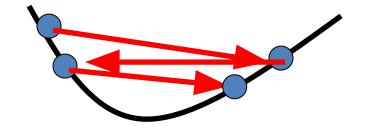
Comments on gradient descent

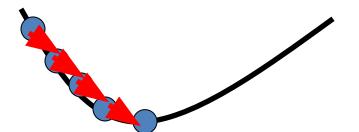
- Very general algorithm
 - We'll see it many times
- Local minima
 - Sensitive to starting point



Comments on gradient descent

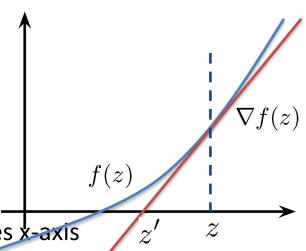
- Very general algorithm
 - We'll see it many times
- Local minima
 - Sensitive to starting point
- Step size
 - Too large? Too small? Automatic ways to choose?
 - May want step size to decrease with iteration
 - Common choices:
 - Fixed
 - Linear: C/(iteration)
 - Line search / backoff (Armijo, etc.)
 - Newton's method





Newton's method

- Want to find the roots of f(x)
 - "Root": value of x for which f(x)=0
- Initialize to *some* point x
- Compute the tangent at x & compute where it crosses $\frac{1}{x}$ -axis



$$\nabla f(z) = \frac{0 - f(z)}{z' - z} \quad \Rightarrow \quad z' = z - \frac{f(z)}{\nabla f(z)}$$
 Optimization. This foots of Tayler

$$\nabla \nabla J(\theta) = \frac{0 - \nabla J(\theta)}{\theta' - \theta} \quad \Rightarrow \quad \theta' = \theta - \frac{\nabla J(\theta)}{\nabla \nabla J(\theta)} \text{ ("Step size" }_{\circ} \text{ = 1/rrJ ; inverse curvature)}$$

- If converges, usually very fast
- Works well for smooth, non-pathological functions, locally quadratic
- For n large, may be computationally hard: O(n²) storage, O(n³) time

(Multivariate:

 $r J(\mu) = gradient vector$ $r^2 J(\mu) = \text{matrix of } 2^{\text{nd}} \text{ derivatives}$ $a/b = a b^{-1}$, matrix inverse)

Stochastic / Online gradient descent

MSE

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} J_j(\underline{\theta}), \qquad J_j(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^T})^2$$

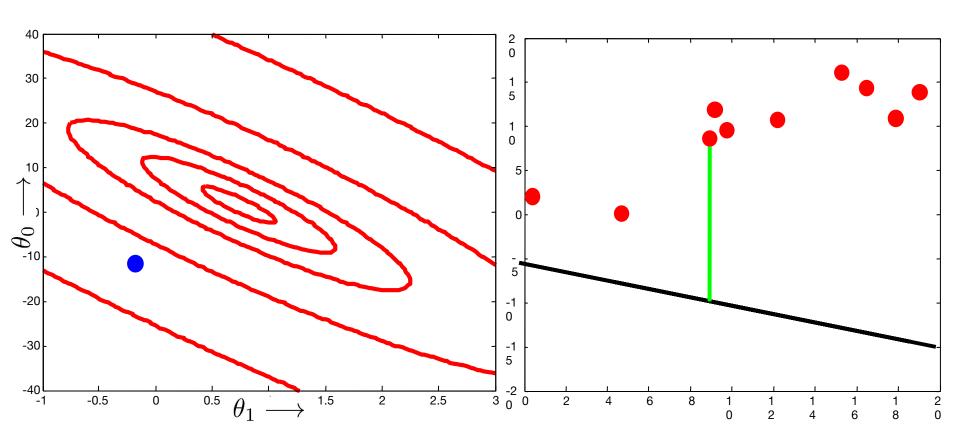
Gradient

$$\nabla J(\underline{\theta}) = \frac{1}{m} \sum_{j} \nabla J_{j}(\underline{\theta}) \qquad \nabla J_{j}(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)}) \cdot [x_{0}^{(j)} x_{1}^{(j)} \dots]$$

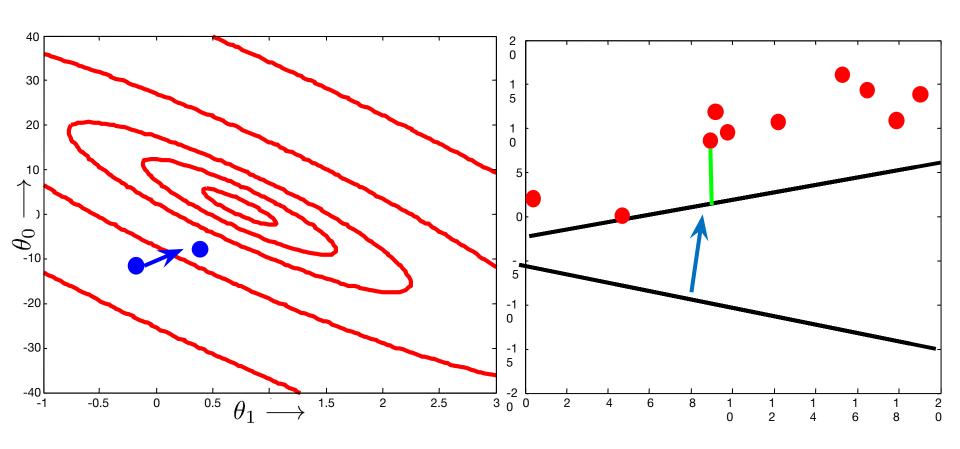
- Stochastic (or "online") gradient descent:
 - Use updates based on individual datum j, chosen at random
 - At optima, $\mathbb{E}\big[\nabla J_j(\underline{\theta})\big] = \nabla J(\underline{\theta}) = 0$ (average over the data)

 Update based on one datum, and its residual, at a time

```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```

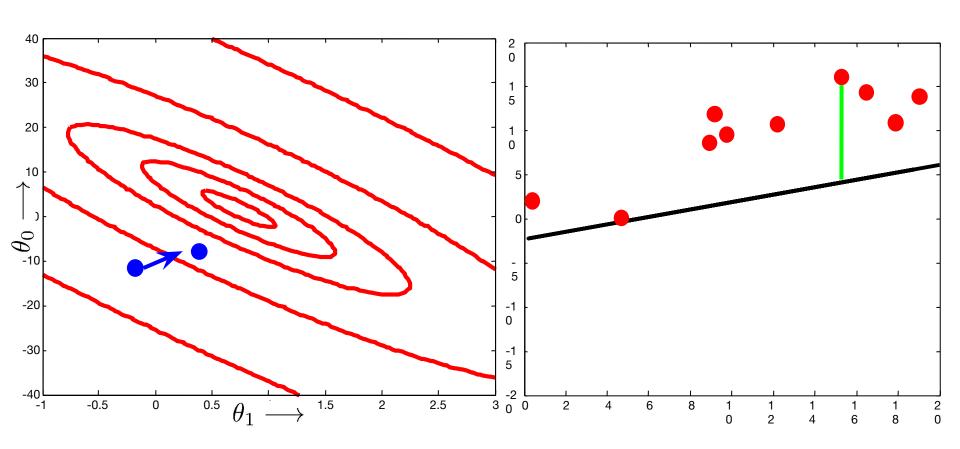


```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```

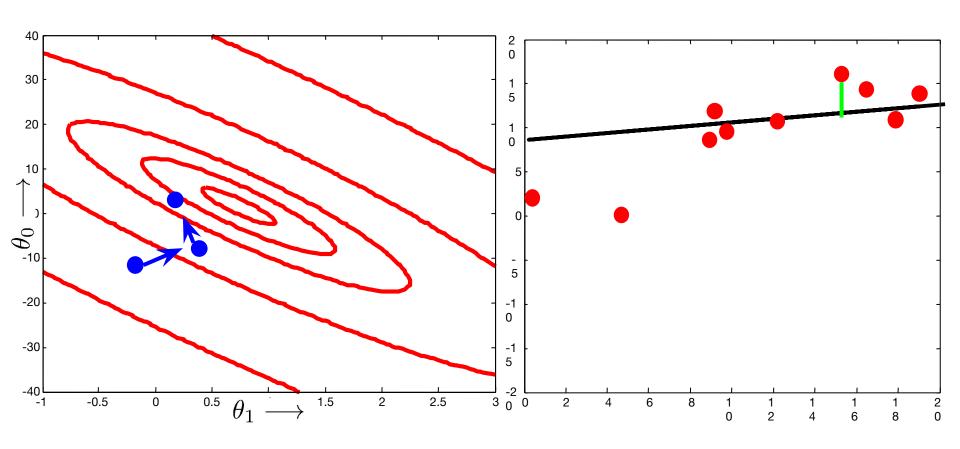


```
Initialize \theta

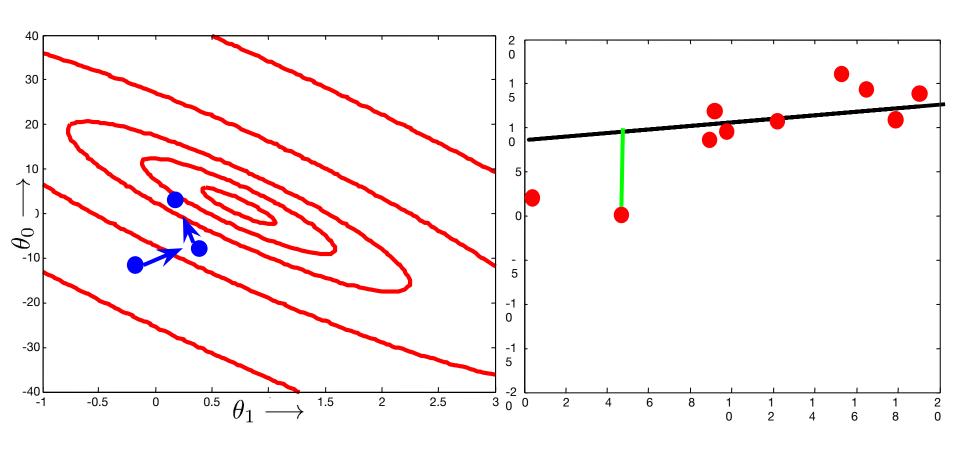
Do {
	for j=1:m
	\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```

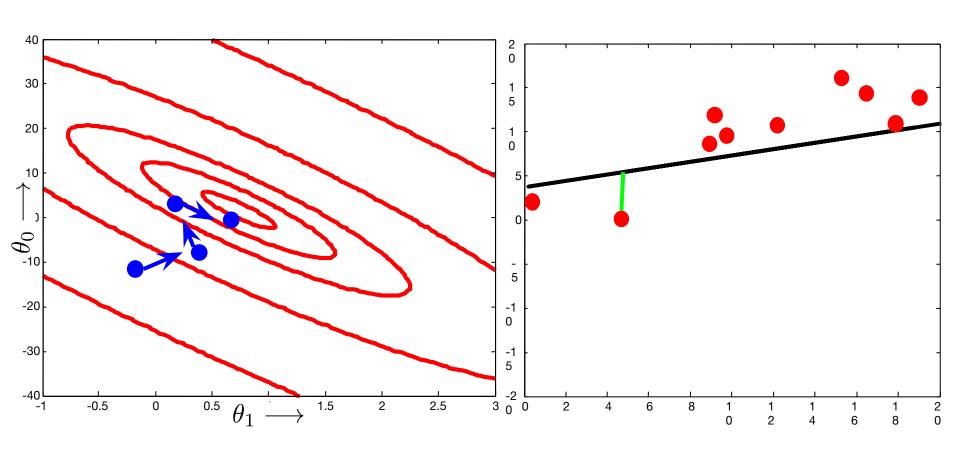


```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



```
Initialize \theta

Do {
	for j=1:m
	\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```



Benefits

- Lots of data = many more updates per pass
- Computationally faster

Disadvantages

- No longer strictly "descent"
- Stopping conditions may be harder to evaluate
 (Can use "running estimates" of J(.), etc.)

```
J_{j}(\underline{\theta}) = (y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}})^{2}
\nabla J_{j}(\underline{\theta}) = -2(y^{(j)} - \underline{\theta} \cdot \underline{x}^{(j)^{T}}) \cdot [x_{0}^{(j)} x_{1}^{(j)} \dots]
```

```
Initialize \theta
Do {
for j=1:m
\theta \leftarrow \theta - \alpha \nabla_{\theta} J_{j}(\theta)
} while (not done)
```

Machine Learning

Linear Regression via Least Squares

Gradient Descent Algorithms

Direct Minimization of Squared Error

Regression with Non-linear Features

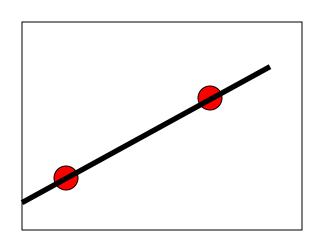
Bias, Variance, & Validation

Regularized Linear Regression

MSE Minimum

- Consider a simple problem
 - One feature, two data points
 - Two unknowns: θ_0 , θ_1
 - Two equations:

$$y^{(1)} = \theta_0 + \theta_1 x^{(1)}$$
$$y^{(2)} = \theta_0 + \theta_1 x^{(2)}$$



Can solve this system directly:

$$y^T = \underline{\theta} \underline{X}^T \qquad \Rightarrow \qquad \underline{\hat{\theta}} = y^T (\underline{X}^T)^{-1}$$

- However, most of the time, m > n
 - There may be no linear function that hits all the data exactly
 - Instead, solve directly for minimum of MSE function

MSE Minimum

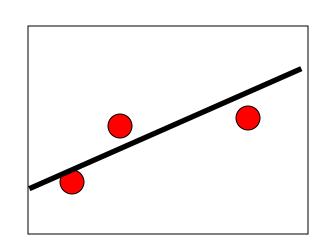
Simplify with some algebra:

$$\nabla J(\underline{\theta}) = -\frac{2}{m} (\underline{y}^T - \underline{\theta} \underline{X}^T) \cdot \underline{X} = \underline{0}$$

$$\underline{y}^{T} \underline{X} - \underline{\theta} \underline{X}^{T} \cdot \underline{X} = \underline{0}$$

$$\underline{y}^{T} \underline{X} = \underline{\theta} \underline{X}^{T} \cdot \underline{X}$$

$$\underline{\theta} = \underline{y}^{T} \underline{X} (\underline{X}^{T} \underline{X})^{-1}$$



- X (X^T X)⁻¹ is called the "pseudo-inverse"
- If X^T is square and full rank, this is the inverse
- If m > n: overdetermined; gives minimum MSE fit

Matlab MSE

This is easy to solve in Matlab...

```
\underline{\theta} = y^T \underline{X} (\underline{X}^T \underline{X})^{-1}
% y = [y1 ; ... ; ym]
% X = [x1 \ 0 \ ... \ x1 \ m \ ; \ x2 \ 0 \ ... \ x2 \ m \ ; \ ...]
% Solution 1: "manual"
    th = y' * X * inv(X' * X);
% Solution 2: "mrdivide"
    th = y' / X'; % th*X' = y \Rightarrow th = y/X'
```

Python MSE

This is easy to solve in Python / NumPy...

```
\underline{\theta} = \underline{y}^T \underline{X} (\underline{X}^T \underline{X})^{-1}

# y = \text{np.matrix}([[y1], ..., [ym]])

# X = \text{np.matrix}([[x1_0 ... x1_n], [x2_0 ... x2_n], ...])

# Solution 1: "manual"

th = y.T * X * \text{np.linalg.inv}(X.T * X)

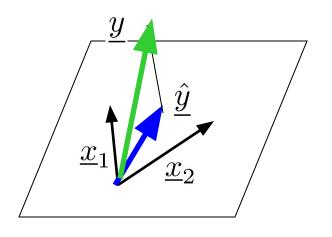
# Solution 2: "least squares solve"

th = \text{np.linalg.lstsq}(X, Y)
```

Normal equations

$$\nabla J(\underline{\theta}) = 0 \quad \Rightarrow \quad (\underline{y}^T - \underline{\theta}\underline{X}^T) \cdot \underline{X} \quad = \quad \underline{0}$$

- Interpretation:
 - $(y \theta X) = (y yhat)$ is the vector of errors in each example
 - X are the features we have to work with for each example
 - Dot product = 0: orthogonal



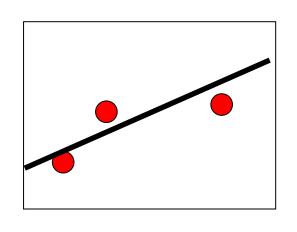
$$\underline{y}^{T} = [y^{(1)} \dots y^{(m)}]$$

$$\underline{x}_{i} = [x_{i}^{(1)} \dots x_{i}^{(m)}]$$

Normal equations

$$\nabla J(\underline{\theta}) = 0 \quad \Rightarrow \quad (\underline{y}^T - \underline{\theta}\underline{X}^T) \cdot \underline{X} \quad = \quad \underline{0}$$

- Interpretation:
 - $(y \theta X) = (y yhat)$ is the vector of errors in each example
 - X are the features we have to work with for each example
 - Dot product = 0: orthogonal
- Example:



$$\underline{y} = \begin{bmatrix} 1 & 3 & 3 \end{bmatrix}^T$$

$$\underline{x}_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

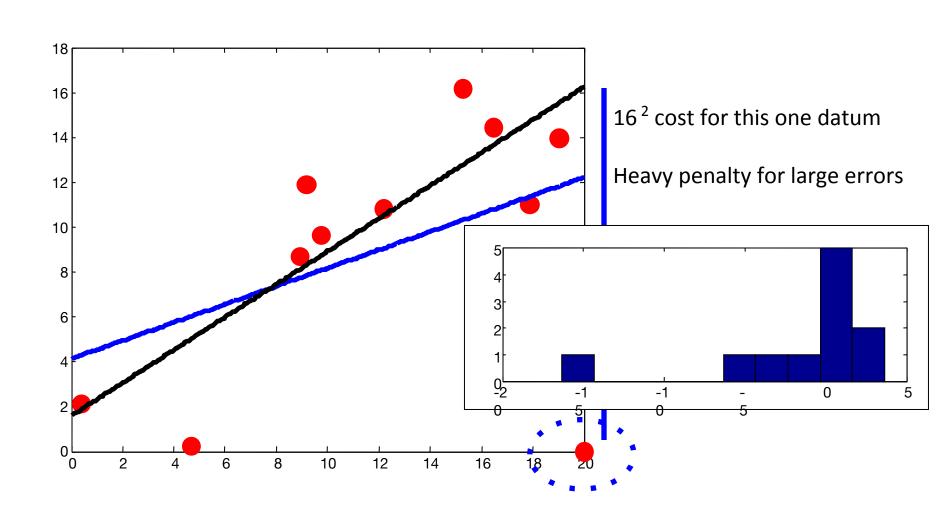
$$\underline{x}_1 = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}^T$$

$$\theta = \begin{bmatrix} 1.00 & 0.57 \end{bmatrix}$$

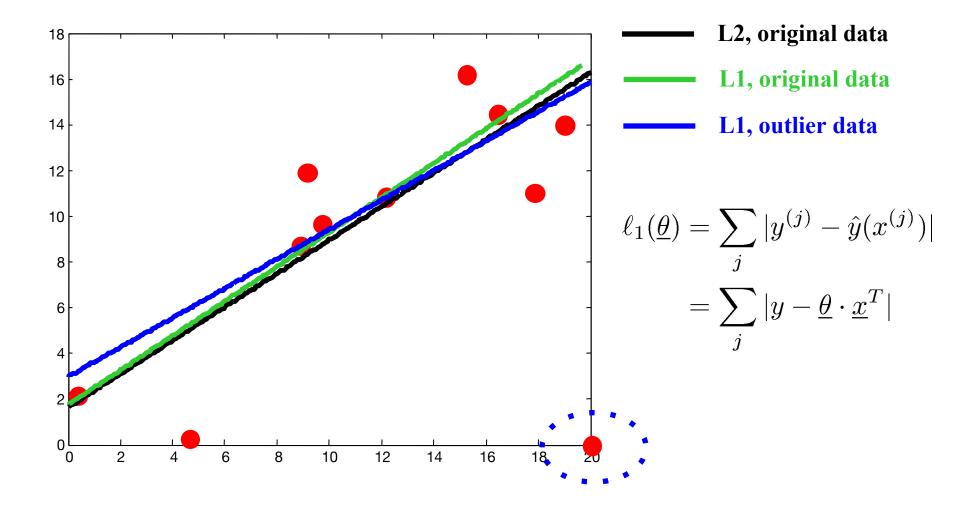
$$\underline{e} = (y - \hat{y}) = [-0.57 \ 0.85 \ -0.28]^T$$

Effects of MSE choice

Sensitivity to outliers



L1 error: Mean Absolute Error



Cost functions for regression

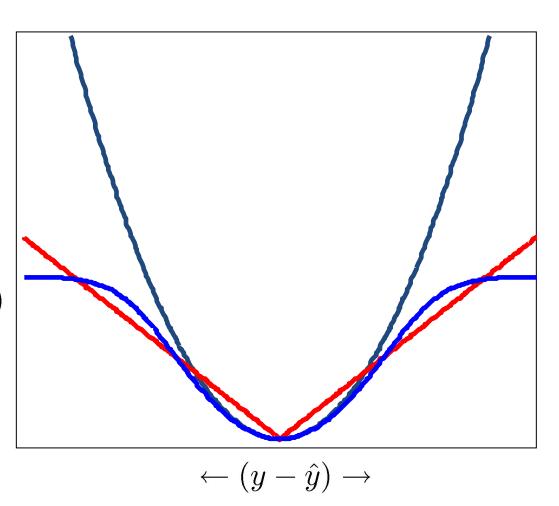
$$\ell_2$$
 : $(y-\hat{y})^2$ (MSE)

$$\ell_1 \,:\, |y-\hat{y}|$$
 (MAE)

Something else entirely...

$$c - \log(\exp(-(y - \hat{y})^2) + c)$$
(???)

Arbitrary functions cannot be solved in closed form - use gradient descent



Machine Learning

Linear Regression via Least Squares

Gradient Descent Algorithms

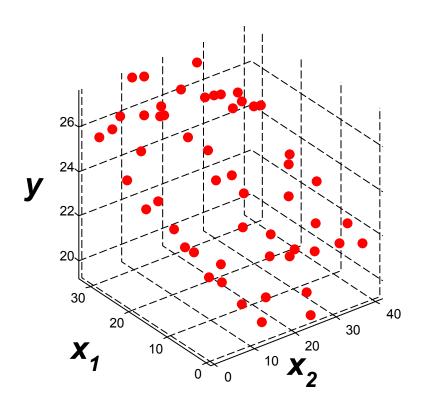
Direct Minimization of Squared Error

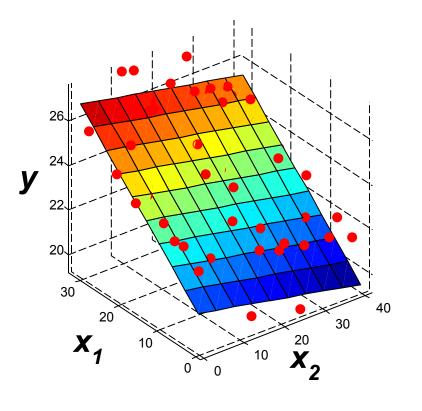
Regression with Non-linear Features

Bias, Variance, & Validation

Regularized Linear Regression

More dimensions?





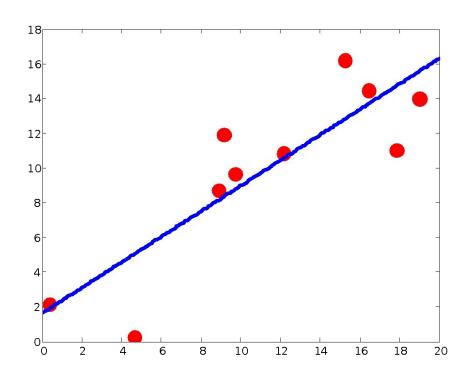
$$\hat{y}(x) = \underline{\theta} \cdot \underline{x}^T$$

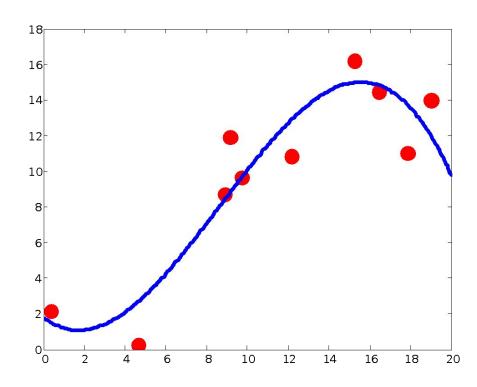
$$\underline{\theta} = [\theta_0 \ \theta_1 \ \theta_2]$$

$$\underline{x} = [1 \ x_1 \ x_2]$$

Nonlinear functions

- What if our hypotheses are not lines?
 - Ex: higher-order polynomials





Nonlinear functions

Single feature x, predict target y:

$$D = \left\{ (x^{(j)}, y^{(j)}) \right\}$$

$$\downarrow \qquad \qquad \hat{y}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

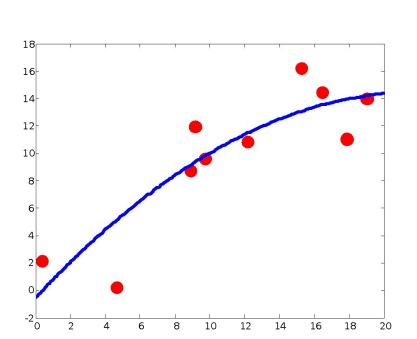
$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

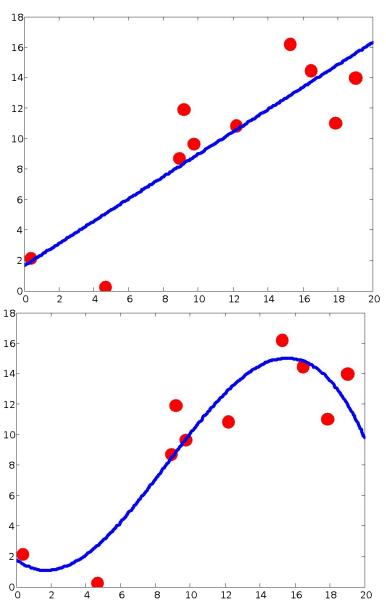
Sometimes useful to think of "feature transform"

$$\Phi(x) = \begin{bmatrix} 1, x, x^2, x^3, \dots \end{bmatrix} \qquad \hat{y}(x) = \underline{\theta} \cdot \Phi(x)$$

Higher-order polynomials

- Fit in the same way
- More "features"



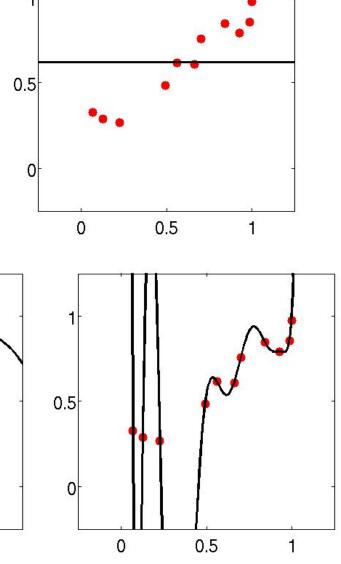


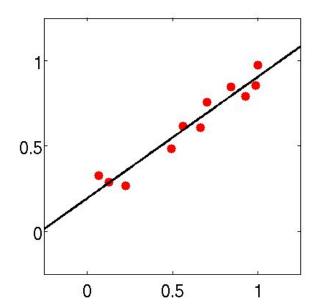
Features

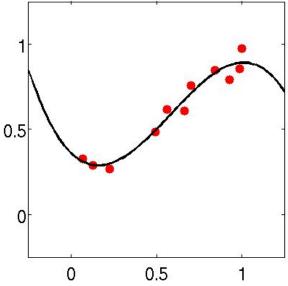
- In general, can use any features we think are useful
- Other information about the problem
 - Anything you can encode as fixed-length vectors of numbers
- Polynomial functions
 - Features [1, x, x^2 , x^3 , ...]
- Other functions
 - 1/x, sqrt(x), $x_1 * x_2$, ...
- "Linear regression" = linear in the parameters
 - Features we can make as complex as we want!

Higher-order polynomials

- Are more features better?
- "Nested" hypotheses
 - 2nd order more general than 1st,
 - 3rd order more general than 2nd, ...
- Fits the observed data better

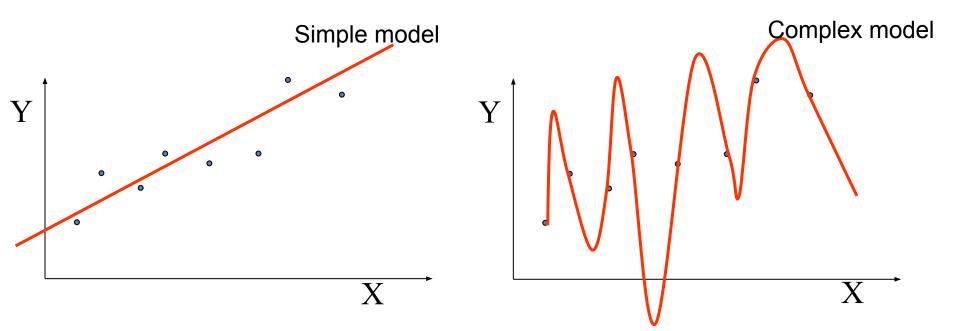






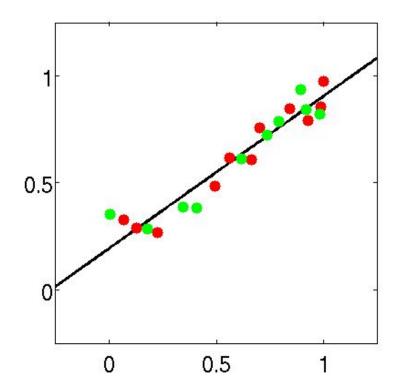
Overfitting and complexity

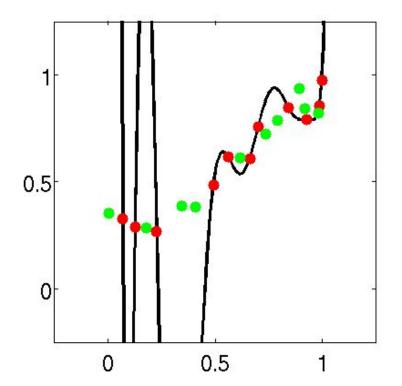
- More complex models will always fit the training data better
- But they may "overfit" the training data, learning complex relationships that are not really present



Test data

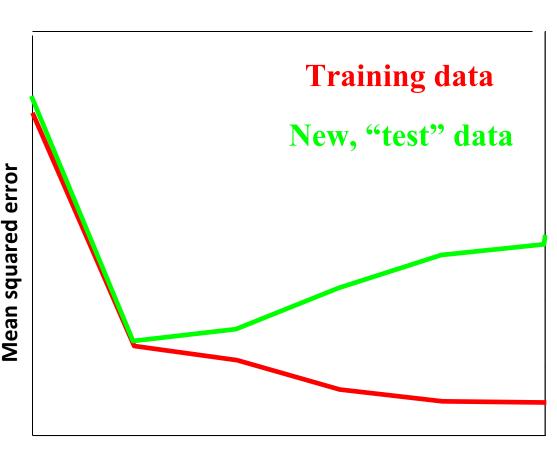
- After training the model
- Go out and get more data from the world
 - New observations (x,y)
- How well does our model perform?





Training versus test error

- Plot MSE as a function of model complexity
 - Polynomial order
- Decreases
 - More complex function fits training data better
- What about new data?
 - 0th to 1st order
 - Error decreases
 - Underfitting
 - Higher order
 - Error increases
 - Overfitting



Polynomial order

Machine Learning

Linear Regression via Least Squares

Gradient Descent Algorithms

Direct Minimization of Squared Error

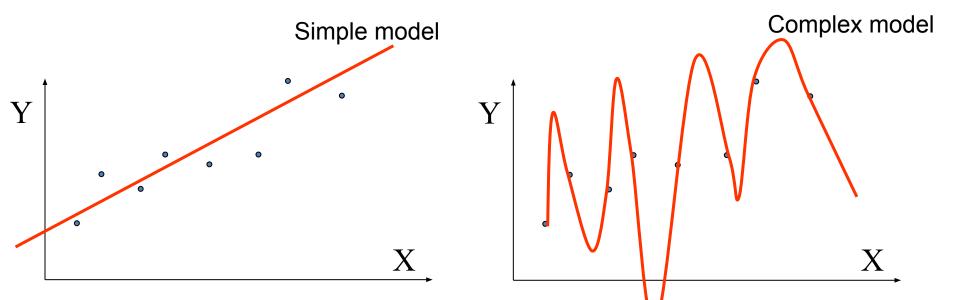
Regression with Non-linear Features

Bias, Variance, & Validation

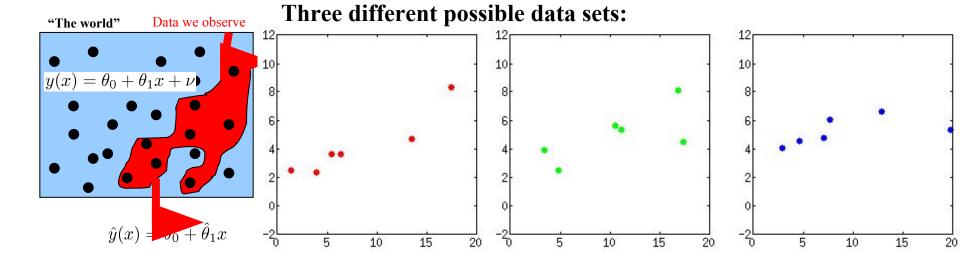
Regularized Linear Regression

Inductive bias

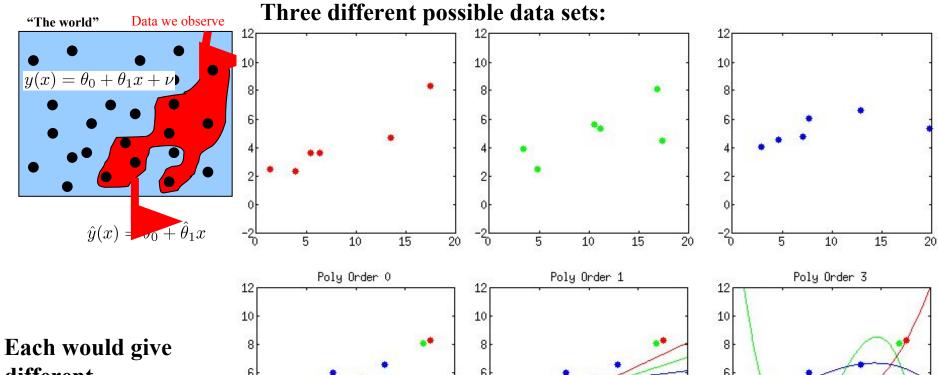
- The assumptions needed to predict examples we haven't seen
- Makes us "prefer" one model over another
- Polynomial functions; smooth functions; etc
- Some bias is necessary for learning!



Bias & variance



Bias & variance



Each would give different predictors for any polynomial degree:

Detecting overfitting

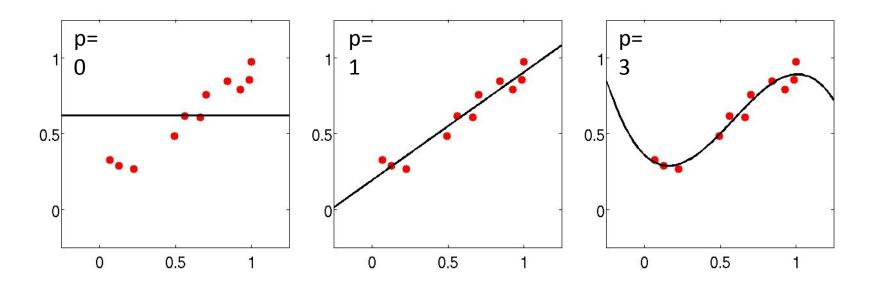
- Overfitting effect
 - Do better on training data than on future data
 - Need to choose the "right" complexity
- One solution: "Hold-out" data
- Separate our data into two sets
 - Training
 - Test
- Learn only on training data
- Use test data to estimate generalization quality
 - Model selection
- All good competitions use this formulation
 - Often multiple splits: one by judges, then another by you

Model selection

- Which of these models fits the data best?
 - p=0 (constant); p=1 (linear); p=3 (cubic); ...
- Or, should we use KNN? Other methods?
- Model selection problem
 - Can't use training data to decide (esp. if models are nested!)
- Want to estimate

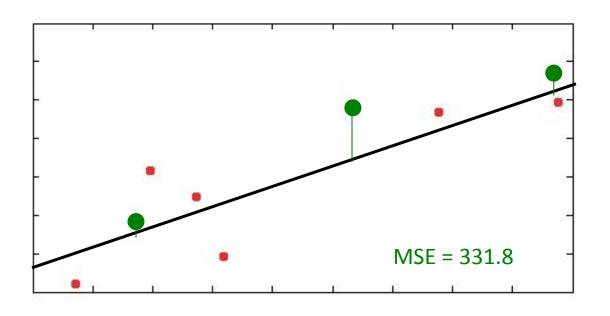
$$\mathbb{E}_{(x,y)}[J(y,\hat{y}(x;D))]$$

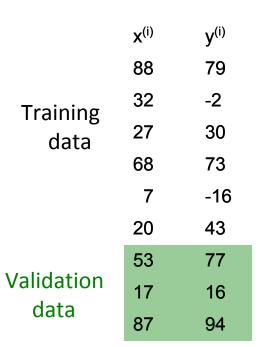
J = loss function (MSE) D = training data set



Hold-out method

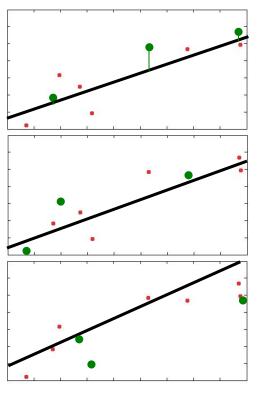
- Validation data
 - "Hold out" some data for evaluation (e.g., 70/30 split)
 - Train only on the remainder
- Some problems, if we have few data:
 - Few data in hold-out: noisy estimate of the error
 - More hold-out data leaves less for training!





Cross-validation method

- K-fold cross-validation
 - Divide data into K disjoint sets
 - Hold out one set (= M / K data) for evaluation
 - Train on the others (= M*(K-1) / K data)



Split 1: MSE = 331.8

Split 2:

MSE = 361.2

3-Fold X-Val MSE = 464.1

Split 3: MSE = 669.8

y⁽ⁱ⁾

 $\mathbf{x}^{(i)}$

Training

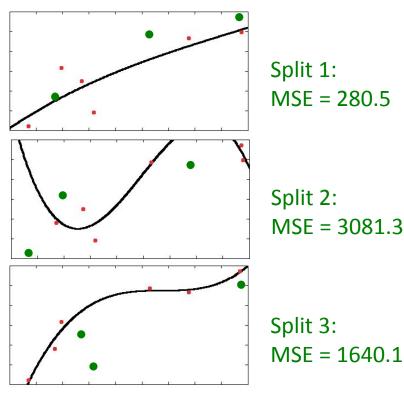
Validation

data

data

Cross-validation method

- K-fold cross-validation
 - Divide data into K disjoint sets
 - Hold out one set (= M / K data) for evaluation
 - Train on the others (= M*(K-1) / K data)



Split 1:

MSE = 280.5

Split 2:

MSE = 3081.3

Training data Validation

data

3-Fold X-Val MSE = 1667.3

X ⁽ⁱ⁾	y ⁽ⁱ⁾
88	79
32	-2
27	30
68	73
7	-16
20	43
53	77
17	16
87	94

Cross-validation

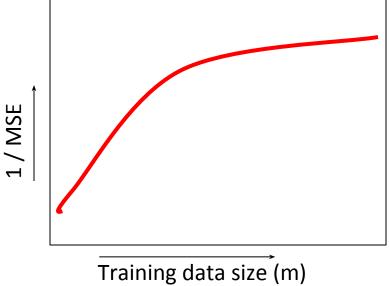
- Advantages:
 - Lets us use more (M) validation data(= less noisy estimate of test performance)
- Disadvantages:
 - More work
 - Trains K models instead of just one
 - Doesn't evaluate any particular predictor
 - Evaluates K different models & averages
 - Scores hyperparameters / procedure, not an actual, specific predictor!
- Also: still estimating error for M' < M data...

Learning curves

- Plot performance as a function of training size
 - Assess impact of fewer data on performance

```
Ex: MSEO - MSE (regression)
or 1-Err (classification)
```

- Few data
 - More data significantly improve performance
- "Enough" data
 - Performance saturates



If slope is high, decreasing m (for validation / cross-validation) might have a big impact...

Leave-one-out cross-validation

- When K=M (# of data), we get
 - Train on all data except one
 - Evaluate on the left-out data
 - Repeat M times (each data point held out once) and average



Cross-validation Issues

- Need to balance:
 - Computational burden (multiple trainings)
 - Accuracy of estimated performance / error
- Single hold-out set:
 - Estimates performance with M' < M data (important? learning curve?)
 - Need enough data to trust performance estimate
 - Estimates performance of a particular, trained learner
- K-fold cross-validation
 - K times as much work, computationally
 - Better estimates, still of performance with M' < M data
- Leave-one-out cross-validation
 - M times as much work, computationally
 - M' = M-1, but overall error estimate may have high variance

Machine Learning

Linear Regression via Least Squares

Gradient Descent Algorithms

Direct Minimization of Squared Error

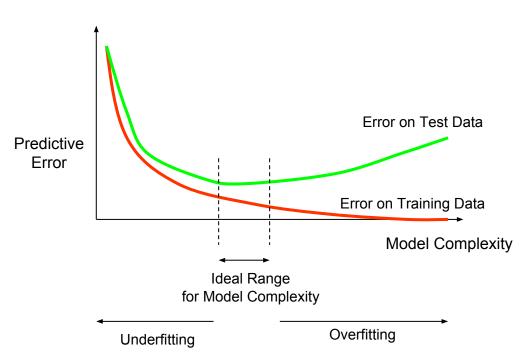
Regression with Non-linear Features

Bias, Variance, & Validation

Regularized Linear Regression

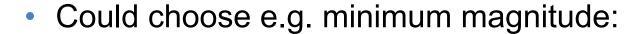
What to do about under/overfitting?

- Ways to increase complexity?
 - Add features, parameters
 - We'll see more...
- Ways to decrease complexity?
 - Remove features ("feature selection")
 - "Fail to fully memorize data"
 - Partial training
 - Regularization



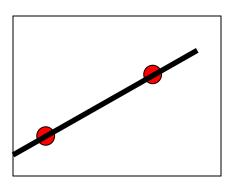
Linear regression

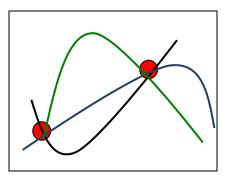
- Linear model, two data
- Quadratic model, two data?
 - Infinitely many settings with zero error
 - How to choose among them?
- Higher order coefficients = 0?
 - Uses knowledge of where features came from...



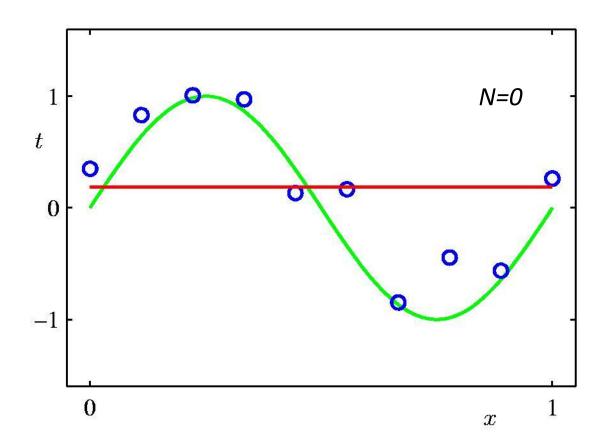
$$\min \underline{\theta} \underline{\theta}^T$$
 s.t. $J(\underline{\theta}) = 0$

A type of bias: tells us which models to prefer

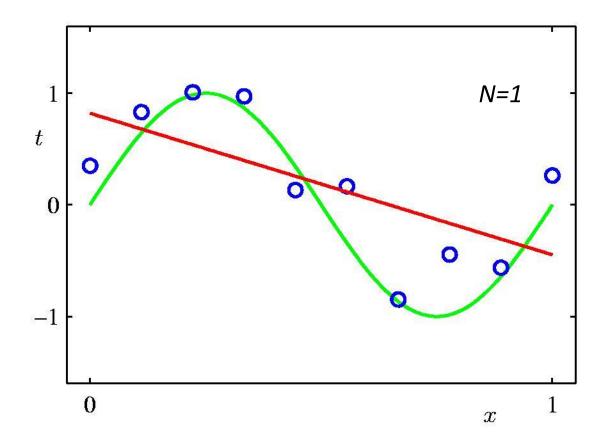




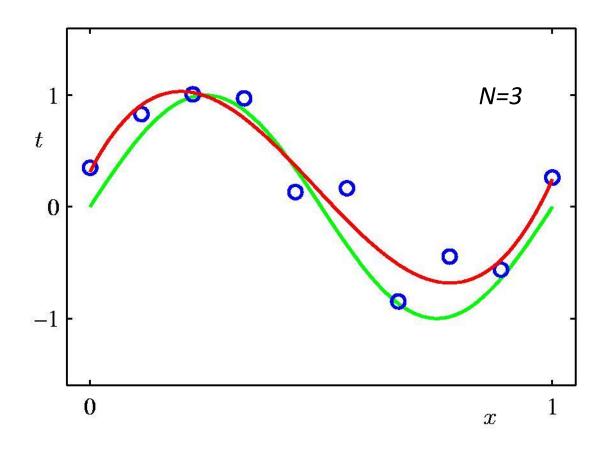
0th Order Polynomial



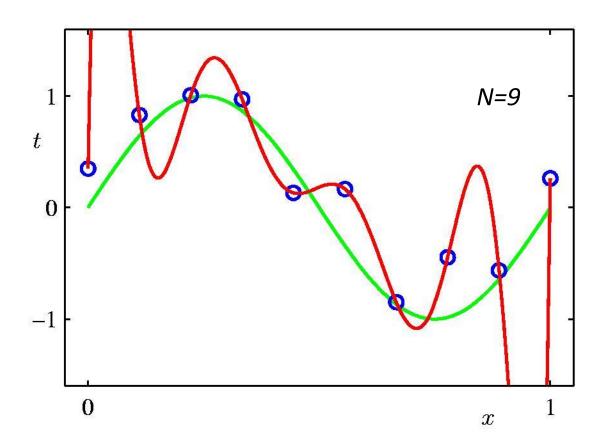
1st Order Polynomial



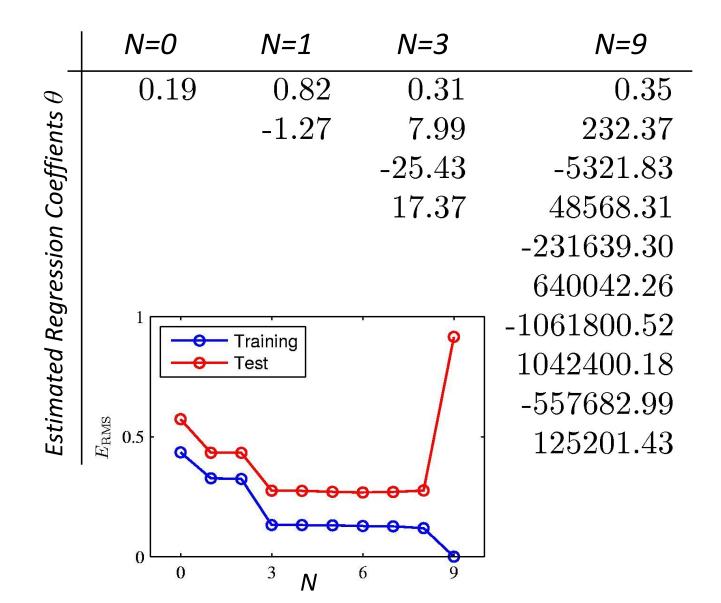
3rd Order Polynomial



9th Order Polynomial



Estimated Polynomial Coefficients



Regularization

 Can modify our cost function J to add "preference" for certain parameter values

$$J(\underline{\theta}) = \frac{1}{2} (\underline{y} - \underline{\theta} \underline{X}^T) \cdot (\underline{y} - \underline{\theta} \underline{X}^T)^T + \alpha \, \theta \theta^T$$

• New solution (derive the same way)
$$\underline{\theta} = \underline{y} \underline{X} (\underline{X}^T \underline{X} + \alpha I)^{-1}$$

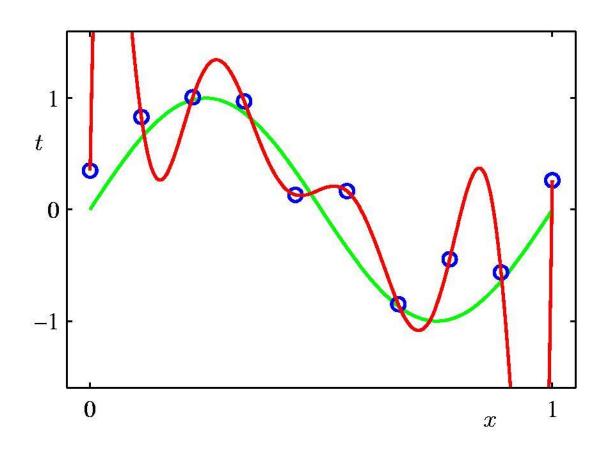
Problem is now well-posed for any degree

L, penalty: "Ridge regression"

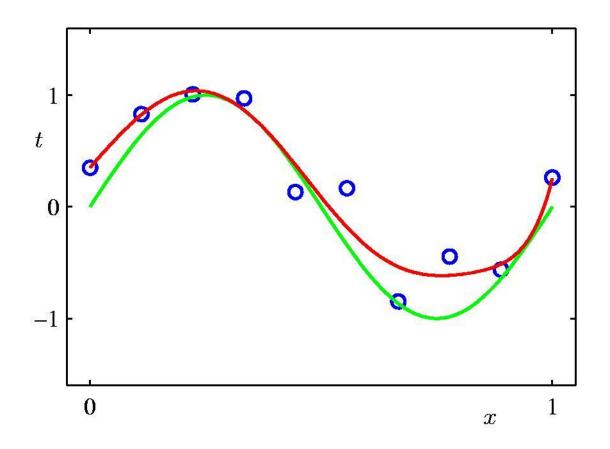
$$\theta\theta^T = \sum_i \theta_i^2$$

- Notes:
 - "Shrinks" the parameters toward zero
 - Alpha large: we prefer small theta to small MSE
 - Regularization term is independent of the data: paying more attention reduces our model variance

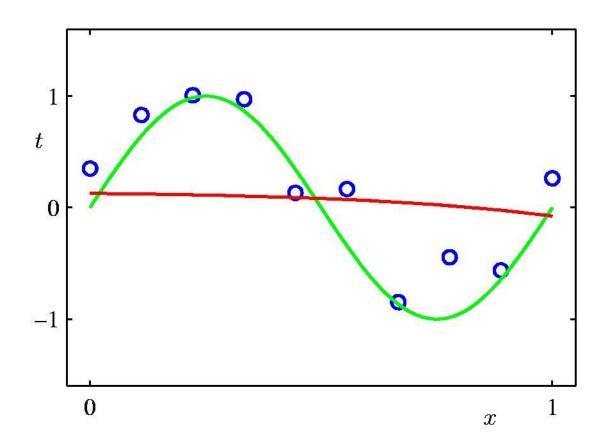
Regression: Zero Regularization



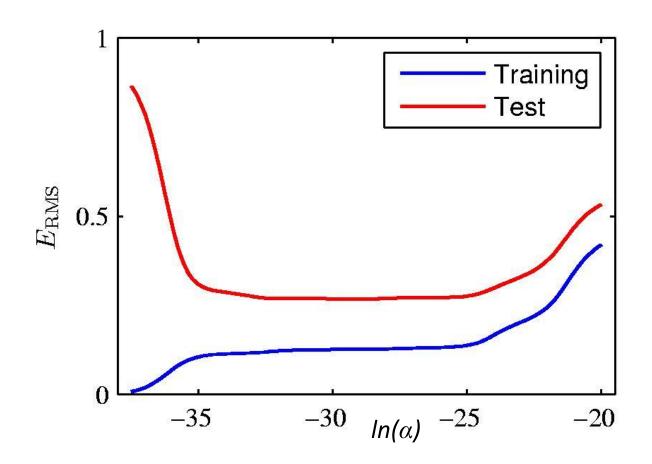
Regression: Moderate Regularization



Regression: Big Regularization



Impact of Regularization Parameter

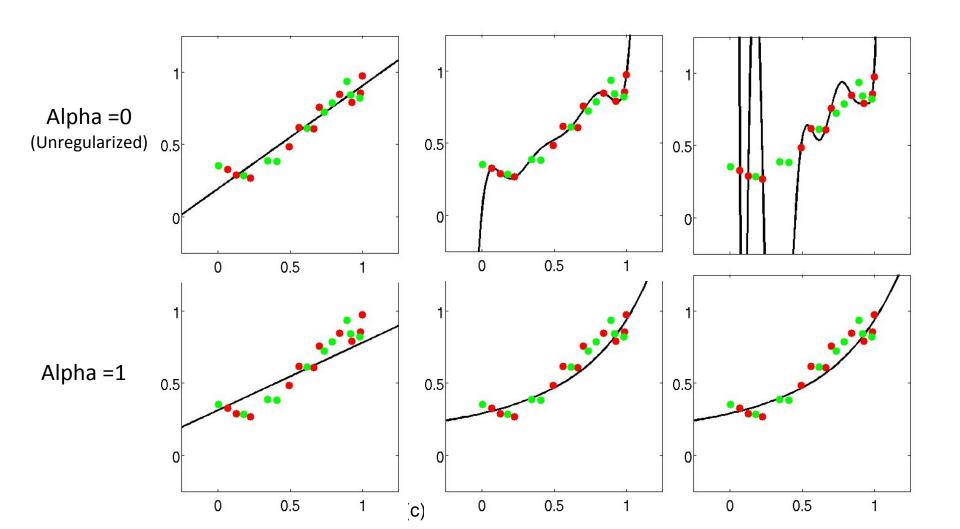


Estimated Polynomial Coefficients

	lpha zero	lpha medium	lpha big
nts $ heta$	0.35	0.35	0.13
	232.37	4.74	-0.05
Coeffients	-5321.83	-0.77	-0.06
	48568.31	-31.97	-0.05
Estimated Regression	-231639.30	-3.89	-0.03
ress	640042.26	55.28	-0.02
Reg	-1061800.52	41.32	-0.01
ted	1042400.18	-45.95	-0.00
ima	-557682.99	-91.53	0.00
Est	125201.43	72.68	0.01

Regularization

Compare between unreg. & reg. results

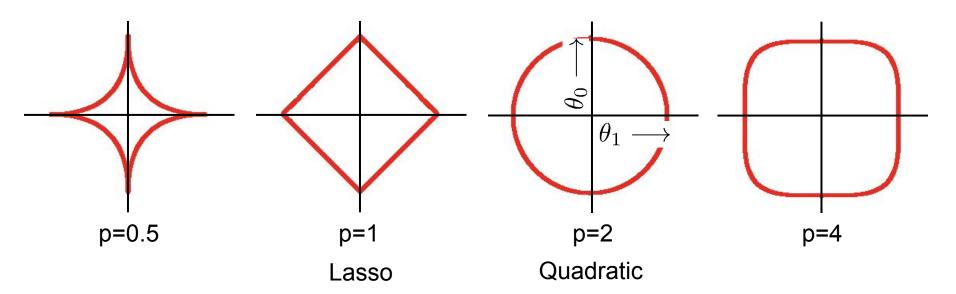


Different regularization functions

More generally, for the L_D regularizer:

$$\left(\sum_{i}|\theta_{i}|^{p}\right)^{\frac{1}{p}}$$

Isosurfaces: $\|\theta\|_{p} = constant$

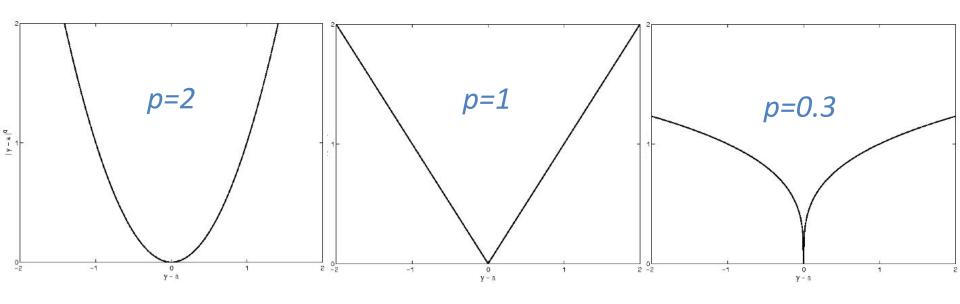


 L_0 = limit as p goes to 0 : "number of nonzero weights", a natural notion of complexity

Different regularization functions

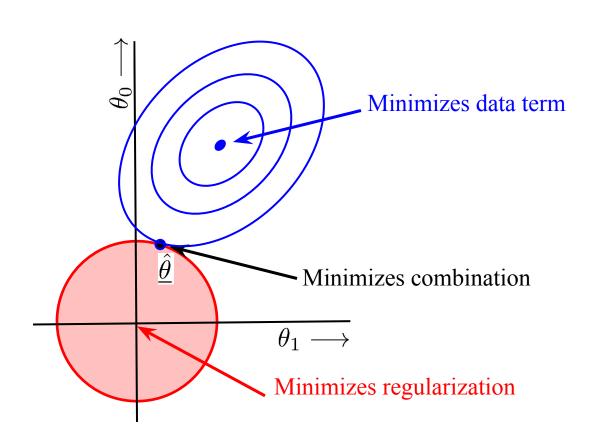
More generally, for the L_D regularizer:

$$\big(\sum_i | heta_i|^p\big)^{rac{1}{p}}$$



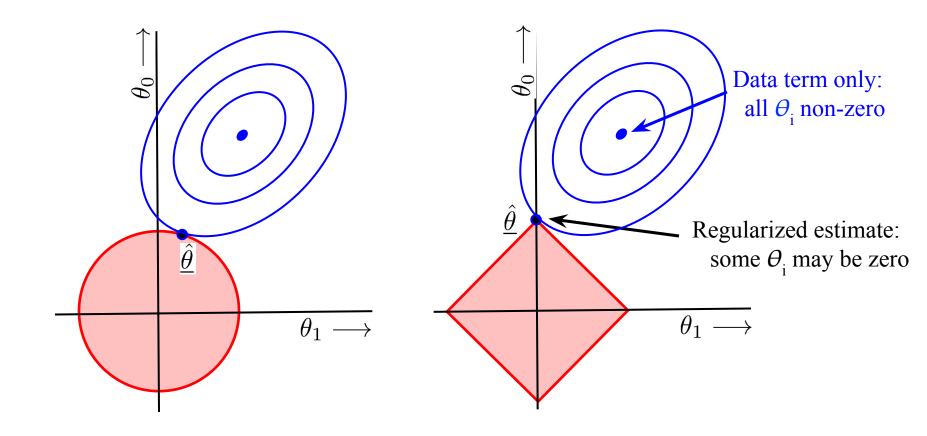
Regularization: L₂ vs L₁

Estimate balances data term & regularization term



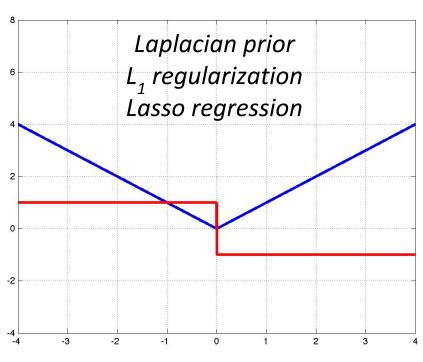
Regularization: L₂ vs L₁

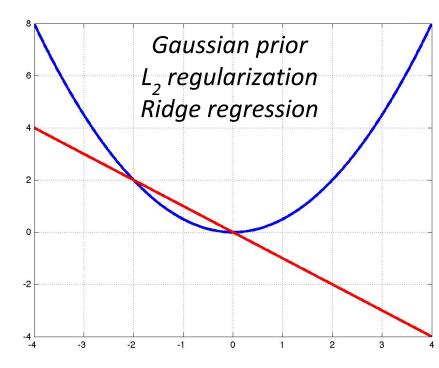
- Estimate balances data term & regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.



Gradient-Based Optimization

- L₂ makes (all) coefficients smaller
- L₁ makes (some) coefficients exactly zero: *feature selection*





Objective Function:

 $f(\theta_i) = |\theta_i|^p$

Negative Gradient: $-f'(\theta_i)$

(Informal intuition: Gradient of L₁ objective not defined at zero)