Decision Trees

PROF XIAOHUI XIE
SPRING 2019

CS 273P Machine Learning and Data Mining
Decision trees

- Functional form $f(x; \theta)$: nested “if-then-else” statements
 - Discrete features: fully expressive (any function)
- Structure:
 - Internal nodes: check feature, branch on value
 - Leaf nodes: output prediction

```
"XOR"

<table>
<thead>
<tr>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

```
if X1:
  # branch on feature at root
  if X2:  return +1  # if true, branch on right child feature
  else:   return -1  # & return leaf value
else:  # left branch:
  if X2:  return -1  # branch on left child feature
  else:   return +1  # & return leaf value
```

Parameters?
Tree structure, features, and leaf outputs
Decision trees

- Real-valued features
 - Compare feature value to some threshold
Decision trees

- **Categorical variables**
 - Could have one child per value
 - Binary splits: single values, or by subsets

The discrete variable will not appear again below here...

Could appear again multiple times...
• “Complexity” of function depends on the depth

• A depth-1 decision tree is called a decision “stump”
 – Simpler than a linear classifier!
Decision trees

- “Complexity” of function depends on the depth
- More splits provide a finer-grained partitioning

Depth $d = \text{up to } 2^d \text{ regions & predictions}$
Decision trees for regression

- Exactly the same
- Predict real valued numbers at leaf nodes
- Examples on a single scalar feature:
Decision Trees for 2D Regression

- Each node in tree splits examples according to a single feature
- Leaves predict mean of training data whose path through tree ends there
Tree-structured splitting

- “CART” = classification and regression trees
 - A particular algorithm, but many similar variants
 - See e.g. http://en.wikipedia.org/wiki/Classification_and_regression_tree
 - Also ID3 and C4.5 algorithms

- Classification
 - Union of rectangular decision regions
 - Split criterion, e.g., information gain (or “cross-entropy”)
 - Alternative: “Gini index” (similar properties)

- Regression
 - Divide input space (“x”) into regions
 - Each region has its own regression function
 - Split criterion, e.g., predictive improvement
Learning decision trees

- Break into two parts
 - Should this be a leaf node?
 - If so: what should we predict?
 - If not: how should we further split the data?

- Leaf nodes: best prediction given this data subset
 - Classify: pick majority class; Regress: predict average value

- Non-leaf nodes: pick a feature and a split
 - Greedy: “score” all possible features and splits
 - Score function measures “purity” of data after split
 - How much easier is our prediction task after we divide the data?

- When to make a leaf node?
 - All training examples the same class (correct), or indistinguishable
 - Fixed depth (fixed complexity decision boundary)
 - Others …

Example algorithms:
ID3, C4.5
See e.g. wikipedia, “Classification and regression tree”
Learning decision trees

Algorithm 1 BuildTree(D): Greedy training of a decision tree

Input: A data set $D = (X, Y)$.

Output: A decision tree.

if LeafCondition(D) then
 $f_n = \text{FindBestPrediction}(D)$
else
 $j_n, t_n = \text{FindBestSplit}(D)$
 $D_L = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} < t_n\}$ and
 $D_R = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} \geq t_n\}$
 leftChild = BuildTree(D_L)
 rightChild = BuildTree(D_R)
end if
Scoring decision tree splits

- How can we select which feature to split on?
 - And, for real-valued features, what threshold?

Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Attributes</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Alt Bar Fri Hun Pat Price Rain Res Type Est Wait</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>T F F F T Full $ F F F Thai 30–60 F</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>F T F F Some $ F F F Burger 0–10 T</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>T F T T Full $ F F Thai 10–30 T</td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>T F T F Full $$$$ F T French >60 F</td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>F T F T Some $$ T T T Italian 0–10 T</td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>F T F F None $ T F Burger 0–10 F</td>
<td></td>
</tr>
<tr>
<td>X8</td>
<td>F F F F Some $$ T T Thai 0–10 T</td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>F T T F Full $ T F Burger >60 F</td>
<td></td>
</tr>
<tr>
<td>X10</td>
<td>T T T T Full $$$$ F T Italian 10–30 F</td>
<td></td>
</tr>
<tr>
<td>X11</td>
<td>F F F F None $ F F Thai 0–10 F</td>
<td></td>
</tr>
<tr>
<td>X12</td>
<td>T T T T Full $ F F Burger 30–60 T</td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

- **Patrons?**
 - None
 - Some
 - Full

- **Type?**
 - French
 - Italian
 - Thai
 - Burger
Scoring decision tree splits

- Suppose we are considering splitting feature 1
 - How can we score any particular split?
 - “Impurity” – how easy is the prediction problem in the leaves?
- “Greedy” – could choose split with the best accuracy
 - Assume we have to predict a value next
 - MSE (regression)
 - 0/1 loss (classification)
- But: “soft” score can work better

\[X_1 > t? \]
Entropy and information

- "Entropy" is a measure of randomness
 - How hard is it to communicate a result to you?
 - Depends on the probability of the outcomes

- Communicating fair coin tosses
 - Output: H H T H T T H H H H T …
 - Sequence takes \(n \) bits – each outcome totally unpredictable

- Communicating my daily lottery results
 - Output: 0 0 0 0 0 0 …
 - Most likely to take one bit – I lost every day.
 - Small chance I’ll have to send more bits (won & when)

- Takes less work to communicate because it’s less random
 - Use a few bits for the most likely outcome, more for less likely ones
Entropy and information

- Entropy $H(x) = E[\log \frac{1}{p(x)}] = \sum p(x) \log \frac{1}{p(x)}$
 - Log base two, units of entropy are “bits”
 - Two outcomes: $H = -p \log(p) - (1-p) \log(1-p)$

- Examples:
 - $H(x) = .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4$
 $= \log 4 = 2$ bits
 - $H(x) = .75 \log 4/3 + .25 \log 4$
 $= .8133$ bits
 - $H(x) = 1 \log 1$
 $= 0$ bits

Max entropy for 4 outcomes
Min entropy
Entropy and information

- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

\[\text{Information gain} = \frac{13}{18} \times (0.99 - 0.77) + \frac{5}{18} \times (0.99 - 0) = 0.43 \text{ bits} \]

Equivalent:

\[\sum p(s,c) \log \left(\frac{p(s,c)}{p(s)p(c)} \right) = \frac{10}{18} \log \left(\frac{10/18}{13/18 \times 10/18} \right) + \frac{3}{18} \log \left(\frac{3/18}{13/18 \times 8/18} \right) + \ldots \]
Entropy and information

- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

Information = \(\frac{17}{18} \times (.99 - .97) + \frac{1}{18} \times (.99 - 0) = 0.074 \) bits

Less information reduction – a less desirable split of the data
Gini index & impurity

• An alternative to information gain
 – Measures variance in the allocation (instead of entropy)
• $H_{\text{gini}} = \sum_c p(c) (1-p(c))$ vs. $H_{\text{ent}} = -\sum_c p(c) \log p(c)$

\[
\begin{align*}
H_{\text{gini}} &= 13/18 \times (0.494-0.355) + 5/18 \times (0.494 - 0) \\
\text{Gini Index} &= 13/18 \times (0.494-0.355) + 5/18 \times (0.494 - 0)
\end{align*}
\]
Entropy vs Gini impurity

- The two are nearly the same...
 - Pick whichever one you like
Example

• Restaurant data:

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₂</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>30–60</td>
<td>F</td>
</tr>
<tr>
<td>X₃</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₄</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>10–30</td>
<td>T</td>
</tr>
<tr>
<td>X₅</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X₆</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₇</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X₈</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X₉</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X₁₀</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
</tr>
<tr>
<td>X₁₁</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X₁₂</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>$$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>30–60</td>
<td>T</td>
</tr>
</tbody>
</table>

• Split on:

Root entropy: \(0.5 \times \log(2) + 0.5 \times \log(2) = 1\) bit

Leaf entropies: \(\frac{2}{12} \times 1 + \frac{2}{12} \times 1 + \ldots = 1\) bit

No reduction!
Example

- **Restaurant data:**

<table>
<thead>
<tr>
<th>Example</th>
<th>Attributes</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alt</td>
<td>Bar</td>
</tr>
<tr>
<td>X_1</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_2</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_3</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_4</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_5</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_6</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_7</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_8</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_9</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- **Split on:**

 Root entropy: \(0.5 \times \log(2) + 0.5 \times \log(2) = 1\) bit

 Leaf entropies: \(\frac{2}{12} \times 0 + \frac{4}{12} \times 0 + \frac{6}{12} \times 0.9\)

 Lower entropy after split!
Hungry?

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>30–60</td>
<td>F</td>
</tr>
<tr>
<td>X_3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_4</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>10–30</td>
<td>T</td>
</tr>
<tr>
<td>X_5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_7</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_9</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$$$</td>
<td>F</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>30–60</td>
<td>T</td>
</tr>
</tbody>
</table>
For regression

- Most common is to measure variance reduction
 - Equivalent to “information gain” in a Gaussian model…

\[
\text{Var reduction} = \frac{4}{10} \times (.25 - .1) + \frac{6}{10} \times (.25 - .2)
\]
Scoring decision tree splits

Algorithm 1 FindBestSplit(D)

Input: A data set $D = (X, Y)$ of size m; impurity function $H(\cdot)$.

Output: A split j^*, t^* minimizing impurity H

Initialize $H^* = 0$
for each feature j do
 Sort $\{x_j^{(i)}\}$ in order of increasing value
 for each i such that $x_j^{(i)} < x_j^{(i+1)}$ do
 Compute $p_c^L = \frac{1}{i} \sum_{k \leq i} \mathbb{1}[y^{(k)} = c]$
 and $p_c^R = \frac{1}{k-i} \sum_{k > i} \mathbb{1}[y^{(k)} = c]$
 Set $H' = \frac{i}{m} H(p_c^L) + \frac{m-i}{m} H(p_c^R)$
 if $H' < H^*$ then
 Set $j^* = j$, $t^* = (x_j^{(i)} - x_j^{(i+1)}) / 2$, $H^* = H'$
 end if
 end for
end for
Return j^*, t^*
Building a decision tree

Algorithm 1 BuildTree(D): Greedy training of a decision tree

Input: A data set $D = (X, Y)$.

Output: A decision tree.

if LeafCondition(D) then
 $f_n = \text{FindBestPrediction}(D)$
else
 $j_n, t_n = \text{FindBestSplit}(D)$
 $D_L = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} < t_n\}$ and
 $D_R = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} \geq t_n\}$
 leftChild $= \text{BuildTree}(D_L)$
 rightChild $= \text{BuildTree}(D_R)$
end if

Stopping conditions:
* # of data < K
* Depth > D
* All data indistinguishable (discrete features)
* Prediction sufficiently accurate

* Information gain threshold?
 Often not a good idea!
 No single split improves,
 but, two splits do.
 Better: build full tree, then prune
Controlling complexity

- Maximum depth cutoff
Controlling complexity

- Minimum # parent data
Computational complexity

• “FindBestSplit”: on M' data
 – Try each feature: N features
 – Sort data: $O(M' \log M')$
 – Try each split: update p, find $H(p)$: $O(M \times C)$
 – Total: $O(N M' \log M')$

• “BuildTree”:
 – Root has M data points: $O(N M \log M)$
 – Next level has M *total* data points:
 $O(N M_L \log M_L) + O(N M_R \log M_R) < O(N M \log M)$
 – …
Decision trees in python

- Many implementations
- Class implementation:
 - real-valued features (can use 1-of-k for discrete)
 - Uses entropy (easy to extend)

```python
T = dt.treeClassify()
T.train(X,Y,maxDepth=2)
print T

if x[0] < 5.602476:
    if x[1] < 3.009747:
        Predict 1.0  # green
    else:
        Predict 0.0  # blue
else:
    if x[0] < 6.186588:
        Predict 1.0  # green
    else:
        Predict 2.0  # red

ml.plotClassify2D(T, X,Y)
```
Summary

• Decision trees
 – Flexible functional form
 – At each level, pick a variable and split condition
 – At leaves, predict a value

• Learning decision trees
 – Score all splits & pick best
 • Classification: Information gain
 • Regression: Expected variance reduction
 – Stopping criteria

• Complexity depends on depth
 – Decision stumps: very simple classifiers