Principal Component Analysis

PROF XIAOHUI XIE
SPRING 2019
CS 273P Machine Learning and Data Mining

Machine Learning

Dimensionality Reduction

Principal Components Analysis (PCA)

Applications of PCA: Eigenfaces \& LSI

Collaborative Filtering

Motivation

- High-dimensional data
- Images of faces
- Text from articles
- All S\&P 500 stocks
- Can we describe them in a "simpler" way?
- Embedding: place data in R^{d}, such that "similar" data are close

Ex: embedding images in 2D

Ex: embedding movies in 2D

Motivation

- High-dimensional data
- Images of faces
- Text from articles
- All S\&P 500 stocks
- Can we describe them in a "simpler" way?
- Embedding: place data in R^{d}, such that "similar" data are close
- Ex: S\&P 500 - vector of 500 (change in) values per day
- But, lots of structure
- Some elements tend to "change together"
- Maybe we only need a few values to approximate it?
- "Tech stocks up $2 x$, manufacturing up $1.5 x, \ldots$. ?
- How can we access that structure?

Dimensionality reduction

- Ex: data with two real values $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$
- We'd like to describe each point using only one value $\left[z_{1}\right]$
- We'll communicate a "model" to convert: $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right] \sim \mathrm{f}\left(\mathrm{z}_{1}\right)$
- Ex: linear function $\mathrm{f}(\mathrm{z})$: $\quad\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]=\mathrm{w}+\mathrm{z} * \underline{v}=\mathrm{w}+\mathrm{z}{ }^{*}\left[\mathrm{v}_{1}, \mathrm{v}_{2}\right]$
- $\mathrm{w}, \underline{\mathrm{v}}$ are the same for all data points (communicate once)
- z tells us the closest point on v to the original point $\left[x_{1}, x_{2}\right]$

Some uses of latent spaces

- Data compression
- Cheaper, low-dimensional representation
- Noise removal
- Simple "true" data + noise
- Supervised learning, e.g. regression:
- Remove colinear / nearly colinear features
- Reduce feature dimension => combat overfitting

Machine Learning

Dimensionality Reduction

Principal Components Analysis (PCA)

Applications of PCA: Digenfaces \& LSI

Collaborative Filtering

Principal Components Analysis

- How should we find v ?
- Assume X is zero mean, or $\tilde{X}=X-\mu$
- Find "v" as the direction of maximum "spread" (variance)
- Solution is the eigenvector with largest eigenvalue

Project X to $\mathrm{v}: \quad z=\tilde{X} \cdot v$
Variance of projected points:
$\sum_{i}\left(z^{(i)}\right)^{2}=z^{T} z=v^{T} \tilde{X}^{T} \tilde{X} v$
Best "direction" v:

$$
\max _{v} v^{T} \tilde{X}^{T} \tilde{X} v \quad \text { s.t. }\|v\|=1
$$

\rightarrow largest eigenvector of $X^{\top} X$

Principal Components Analysis

- How should we find v ?
- Assume X is zero mean, or $\tilde{X}=X-\mu$
- Find "v" as the direction of maximum "spread" (variance)
- Solution is the eigenvector with largest eigenvalue
- Equivalent: v also leaves the smallest residual variance! ("error")

$$
\text { Project } \mathrm{X} \text { to } \mathrm{v}: \quad z=\tilde{X} \cdot v
$$

Variance of projected points:
$\sum_{i}\left(z^{(i)}\right)^{2}=z^{T} z=v^{T} \tilde{X}^{T} \tilde{X} v$
Best "direction" v:

$$
\max _{v} v^{T} \tilde{X}^{T} \tilde{X} v \quad \text { s.t. }\|v\|=1
$$

Principal Components Analysis

Principal Components Analysis (PCA)

TODO

- Notion of "trace": total variance of data?
- Invariant to rotation?
- Decompose into "variance captured" vs "residual"?
- Clear derivation...
- Notation for "zero-meaned" X (tilde X?)
- Make text / BOW example clearer, details
- Add word2vec example also (from end)

Another interpretation

- Data covariance: $\Sigma=\frac{1}{m} \tilde{X}^{T} \tilde{X}$

$$
\tilde{X}=X-\mu
$$

- Describes "spread" of the data
- Draw this with an ellipse
- Gaussian is

$$
\begin{aligned}
p(x) \propto \exp & \left(-\frac{1}{2} \Delta^{2}\right) \\
\Delta^{2} & =(x-\mu) \Sigma^{-1}(x-\mu)^{T}
\end{aligned}
$$

- Ellipse shows the contour, $\Delta^{2}=$ constant

Geometry of the Gaussian

$$
\Delta^{2}=(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \quad \text { Oval shows constant } \Delta^{2} \text { value } \ldots
$$

$$
\Sigma=U \Lambda U^{T}
$$

Write Σ in terms of eigenvectors...

PCA representation

- Subtract data mean from each point
- (Typically) scale each dimension by its variance
- Helps pay less attention to magnitude of the variable
- Compute covariance matrix, $S=1 / m \sum\left(x^{i}-\mu\right)^{\prime}\left(x^{i}-\mu\right)$
- Compute the k largest eigenvectors of S

$$
S=V D V^{\wedge} T
$$

```
mu = np.mean( X, axis=0, keepdims=True ) # find mean over data points
X0 = X - mu # zero-center the data
S = X0.T.dot( X0 ) / m # S = np.cov( X.T ), data covariance
D,V = np.linalg.eig( S ) # find eigenvalues/vectors: can be slow!
pi = np.argsort(D)[::-1] # sort eigenvalues largest to smallest
D,V = D[pi], V[:,pi] #
D,V = D[0:k], V[:,0:k] # and keep the k largest
```


Singular Value Decomposition

- Alternative method to calculate (still subtract mean $1^{\text {st }}$)
- Decompose $\mathrm{X}=\mathrm{USV}{ }^{\top}$
- Orthogonal: $\mathrm{X}^{\top} \mathrm{X}=\mathrm{V}$ S S $\mathrm{V}^{\top}=\mathrm{V} D \mathrm{~V}^{\top}$
- $\quad X X^{\top}=U S S U^{\top}=U D U^{\top}$
- U*S matrix provides coefficients
- Example $x_{i}=U_{i, 1} S_{11} v_{1}+U_{i, 2} S_{22} v_{2}+\ldots$
- Gives the least-squares approximation to X of this form

SVD for PCA

- Subtract data mean from each point
- (Typically) scale each dimension by its variance
- Helps pay less attention to magnitude of the variable
- Compute the SVD of the data matrix

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{mu}=\mathrm{np} \cdot \text { mean (X, axis=0, keepdims=True) \# find mean over data points } \\
\mathrm{X} 0=\mathrm{X}-\mathrm{mu} \quad \text { \# zero-center the data }
\end{array} \\
& \begin{array}{l}
\mathrm{U}, \mathrm{~S}, \mathrm{Vh}=\operatorname{scipy} \cdot \operatorname{linalg} \cdot \operatorname{svd}(\mathrm{X} 0, \text { False }) \quad \text { \# X } 0=\mathrm{U} * \operatorname{diag}(\mathrm{~S}) * \mathrm{Vh} \\
\mathrm{Xhat}=\mathrm{U}[:, 0: \mathrm{k}] \cdot \operatorname{dot}(\mathrm{np} \cdot \operatorname{diag}(\mathrm{~S}[0: \mathrm{k}])) \cdot \operatorname{dot}(\mathrm{Vh}[0: \mathrm{k},:]) \quad \text { \# approx using k largest eigendir }
\end{array}
\end{aligned}
$$

Machine Learning

Dimensionality Reduction

Principal Components Analysis (PCA)

Applications of PCA: Eigenfaces \& LSA

Collaborative Filtering

Applications of SVD

- "Eigen-faces"
- Represent image data (faces) using PCA
- LSI / "topic models"
- Represent text data (bag of words) using PCA
- Collaborative filtering
- Represent rating data matrix using PCA
and more...

"Eigen-faces"

- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
- 24×24 images of faces $=576$ dimensional measurements

\bullet

"Eigen-faces"

- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
- 24×24 images of faces $=576$ dimensional measurements
- Take first K PCA components

"Eigen-faces"

- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
- 24x24 images of faces = 576 dimensional measurements
- Take first K PCA components

"Eigen-faces"

- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
- 24×24 images of faces $=576$ dimensional measurements
- Take first K PCA components

Mean

Dir 1

Dir 2

Dir 3

Dir 4

Projecting data onto first k dimensions

"Eigen-faces"

- "Eigen-X" = represent X using PCA
- Ex: Viola Jones data set
- 24×24 images of faces $=576$ dimensional measurements
- Take first K PCA components

Projecting data onto first k
dimensions

Text representations

- "Bag of words"
- Remember word counts but not order
- Example:

Rain and chilly weather didn't keep thousands of paradegoers from camping out Friday night for the 111th Tournament of Roses.

Spirits were high among the street party crowd as they set up for curbside seats for today's parade.
"I want to party all night," said Tyne Gaudielle, 15, of Glendale, who spent the last night of the year along Colorado Boulevard with a group of friends.

Whether they came for the partying or the parade, campers were in for a long night. Rain continued into the evening and temperatures were expected to dip down into the low 40s.

Text representations

- "Bag of words"
- Remember word counts but not orde
- Example:

Rain and chilly weather didn't keep thousands paradegoers from camping out Friday night for of Roses.

Spirits were high among the street party crowd for curbside seats for today's parade.
"I want to party all night," said Tyne Gaudielle Glendale, who spent the last night of the year al Boulevard with a group of friends.

```
### nyt/2000-01-01.0015.txt
rain
chilly
weather
didn
keep
thousands
paradegoers
camping
out
friday
night
111th
tournament
roses
spirits
high
among
street
party
crowd
they
set
```


Text representations
 - "Bag of words"

- Remember word counts but not order
- Example:

VOCABULARY:	DOC \#	WORD \#	COUNT	
0001 ability	1	29		1
0002 able	1	56		1
0003 accept	1	127	1	
0004 accepted	1	166	1	
0005 according	1	176	1	
0006 account	1	187	1	
0007 accounts	1	192	1	
0008 accused	1	198	2	
0009 act	1	356	1	
0010 acting	1	374	1	
0011 action	1	381	2	
0012 active	\ldots			

Example: Documents

c1: Human machine interface for ABC computer applications c2: A survey of user opinion of computer system response time
c3: The EPS user interface management system
c4: System and human system engineering testing of EPS
c5: Relation of user perceived response time to error measurement
m1: The generation of random, binary, ordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering m4: Graph minors: A survey

Latent Semantic Analysis (LSA)

- PCA for text data
- Create a giant matrix of words in docs
- "Word j appears" = feature x j
- "in document i" = data example I
- Huge matrix (mostly zeros)

Doc i

- Typically normalize rows to sum to one, to control for short docs
- Typically don't subtract mean or normalize columns by variance
- Might transform counts in some way (log, etc)
- PCA on this matrix provides a new representation
- Document comparison
- Fuzzy search ("concept" instead of "word" matching)

Example: Word-Doc Matrix

Matrices are big, but data is sparse

- Typical example:
- Number of docs, $D \sim 10^{6}$
- Number of unique words in vocab, W ~ 10^{5}
- FULL Storage required $\sim 10^{11}$
- Sparse Storage required $\sim 10^{8}$
- DxW matrix (\# docs x \# words)
- Each entry is non-negative
- Typically integer / count data

Problem with Sparse Matrices

c2: A survey of user opinion of computer system response time
m4: Graph minors: A survey
c1: Human machine interface for $A B C$ computer applications

Example: Document Distance Matrix

Example: Decomposition

Example: Reconstruction

Example: Distance Matrix

Latent Semantic Analysis (LSA)

- What do the principal components look like?

```
PRINCIPAL COMPONENT 1
0 . 1 3 5 \text { genetic}
0 . 1 3 4 \text { gene}
0 . 1 3 1 ~ s n p
0.129 disease
0.126 genome_wide
0 . 1 1 7 ~ c e l l ~
0 . 1 1 0 ~ v a r i a n t ~
0 . 1 0 9 ~ r i s k
0 . 0 9 8 \text { population}
0.097 analysis
0.094 expression
0 . 0 9 3 \text { gene_expression}
0 . 0 9 2 \text { gwas}
0 . 0 8 9 ~ c o n t r o l ~
0 . 0 8 8 \text { human}
0.086 cancer
0 . 0 8 4 ~ p r o t e i n
0.084 sample
0.083 loci
0.082 microarray
```


Latent Semantic Analysis (LSA)

- What do the principal components look like?

```
PRINCIPAL COMPONENT 1
    0 . 1 3 5 \text { genetic}
    0 . 1 3 4 \text { gene}
    0 . 1 3 1 ~ s n p
    0 . 1 2 9 \text { disease}
    0.126 genome_wide
    0.117 cell
    0 . 1 1 0 ~ v a r i a n t ~
    0 . 1 0 9 ~ r i s k
    0.098 population
    0 . 0 9 7 \text { analysis}
    0 . 0 9 4 ~ e x p r e s s i o n ~
    0 . 0 9 3 \text { gene_expression}
    0 . 0 9 2 \text { gwas}
    0 . 0 8 9 ~ c o n t r o l
    0 . 0 8 8 \text { human}
    0.086 cancer
    0 . 0 8 4 \text { protein}
    0.084 sample
    0.083 loci
    0.082 microarray
```

PRINCIPAL COMPONENT 2
0.247 snp
-0.196 cell
0.187 variant
0.181 risk
0.180 gwas
0.162 population
0.162 genome_wide
0.155 genetic
0.130 loci
-0.116 mir
-0.116 expression
0.113 allele
0.108 schizophrenia
0.107 disease
-0.103 mirnas
-0.099 protein
-0.089 gene_expression
0.087 polymorphism
0.087 susceptibility
0.084 trait

Q: But what does $\mathbf{- 0 . 1 9 6}$ cell mean?

Nonlinear latent spaces

- Latent space
- Any alternative representation (usually smaller) from which we can (approximately) recover the data
- Linear: "Encode" $\mathrm{Z}=\mathrm{X} \mathrm{V}^{\top}$; "Decode" $\mathrm{X} \approx \mathrm{Z} \mathrm{V}$
- Ex: Auto-encoders
- Use neural network with few internal nodes
- Train to "recover" the input "x"

stats.stackexchange.com
- Related: word2vec
- Trains an NN to recover the context of words
- Use internal hidden node responses as a vector representation of the word

Machine Learning

Dimensionality Reduction

Principal Components Analysis (PCA)

Applications of PCA: Eigenfaces \& LSI

Collaborative Filtering

Recommender systems

- Automated recommendations
- Inputs
- User information
- Situation context, demographics, preferences, past ratings
- Items
- Item characteristics, or nothing at all
- Output
- Relevance score, predicted rating, or ranking

Examples

Recommender systems reduce information overload by estimating relevance

Paradigms

Personalized recommendations

User profile / context

Item	score
I1	0.9
12	1
I3	0.3
\ldots	\ldots

Recommendatio
Recommendation
system
S

Paradigms

Paradigms

User profile / context

Title	Genre	Actors	\ldots

Product / item features

Knowledge models

Knowledge-based:
"Tell me what fits based on my needs"

Item	score
I1	0.9
I2	1
I3	0.3
\ldots	\ldots

Recommendatio
n
Recommendation
system

Paradigms

User profile / context

Paradigms

Measuring success

- Prediction perspective
- Predict to what degree users like the item
- Most common evaluation for research
- Regression vs. "top-K" ranking, etc.
- Interaction perspective
- Promote positive "feeling" in users ("satisfaction")
- Educate about the products
- Persuade users, provide explanations
- Conversion perspective
- Commercial success
- Increase "hits", "click-through" rates
- Optimize sales and profits

Why are recommenders important?

- The long tail of product appeal
- A few items are very popular
- Most items are popular only with a few people
- But everybody is interested in some rare products
- Goal: recommend not-widely known items that the user might like!

Collaborative filtering (Netflix) $\underset{\substack{\text { From Y Koren } \\ \text { of Belkor team }}}{ }$

Collaborative filtering

- Simple approach: standard regression
- Use "user features" A_{u}, "item features" A_{i}
- Train $f\left(A_{u}, A_{i}\right) \rightarrow r_{u i}$
- Learn "users with my features like items with these features"
- Extreme case: per-user model / per-item model
- Issues: needs lots of side information!

USERS

12	11	10	9	8	7	6	5	4	3	2	1
	4		5			5	$?$		3		1
1											
3	1	2			4			4	5		
	5	3	4		3		2	1		4	2
	2			4			5		4	2	
5	2					2	4	3	4		
	4			2			3		3		1

Collaborative filtering

- Example: nearest neighbor methods
- Which data are "similar"?
- Nearby items? (based on...)

users

Collaborative filtering

- Example: nearest neighbor methods
- Which data are "similar"?
- Nearby items? (based on...)

Based on ratings alone?

Find other items that are rated similarly...

Good match on observed ratings

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Collaborative filtering

- Which data are "similar"?
- Nearby items?
- Nearby users?
- Based on user features?
- Based on ratings?

Collaborative filtering

- Some very simple examples
- All users similar, items not similar?
- All items similar, users not similar?
- All users and items are equally similar?
users

12	11	10	9	8	7	6	5	4	3	2	1	
	4		5			5	$?$		3		1	1
3	1	2			4			4	5			2
	5	3	4		3		2	1		4	2	3
	2			4			5		4	2		4
5	2					2	4	3	4			5
	4			2			3		3		1	6

Measuring similarity

- Nearest neighbors depends significantly on distance function
- "Default": Euclidean distance
- Collaborative filtering:
- Cosine similarity: $\quad x^{(i)} \cdot x^{(j)} \quad$ (measures angle between $\mathrm{x}^{\wedge} \mathrm{i}, \mathrm{x}^{\wedge} \mathrm{j}$)
- Pearson correlation: measure correlation coefficient between $\mathrm{x}^{\wedge} \mathrm{i}, \mathrm{x}^{\wedge} \mathrm{j}$
- Often perform better in recommender tasks

$$
\frac{\left(x^{(i)}-\mu\right) \cdot\left(x^{(j)}-\mu\right)}{\left\|x^{(i)}-\mu\right\|\left\|x^{(j)}-\mu\right\|}
$$

- Variant: weighted nearest neighbors
- Average over neighbors is weighted by their similarity
- Note: with ratings, need to deal with missing data!

Nearest-Neighbor methods

| 12 |
| :--- | | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 4 | | 5 | | | 5 | $?$ | | 3 | | 1 | 1 |

Neighbor selection:
Identify movies similar to 1 , rated by user 5

Nearest-Neighbor methods

users

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 4 | | 5 | | | 5 | $?$ | | 3 | | 1 | 1 |
| 3 | 1 | 2 | | | 4 | | | 4 | 5 | | | 2 |
| | 5 | 3 | 4 | | 3 | | 2 | 1 | | 4 | 2 | $\underline{3}$ |
| | 2 | | | 4 | | | 5 | | 4 | 2 | | 4 |
| 5 | 2 | | | | | 2 | 4 | 3 | 4 | | | 5 |
| | 4 | | | 2 | | | 3 | | 3 | | 1 | 6 |

Compute similarity weights:

$$
s_{13}=0.2, s_{16}=0.3
$$

Nearest-Neighbor methods

users

| 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 4 | | 5 | | | 5 | 2.6 | | 3 | | 1 | 1 |
| 3 | 1 | 2 | | | 4 | | | 4 | 5 | | | 2 |

Predict by taking weighted average:

$$
(0.2 * 2+0.3 * 3) /(0.2+0.3)=2.6
$$

Latent space models

users

- Model ratings matrix as combination of user and movie factors
- Infer values from known ratings
- Extrapolate to unranked

$\begin{aligned} & \vec{\nabla} \\ & \frac{\mathrm{D}}{3} \\ & \boldsymbol{\omega} \end{aligned}$. 2	-. 4	. 1
	. 5	. 6	-. 5
	. 5	. 3	-. 2
	. 3	2.1	1.1
	-2	2.1	-. 7
	. 3	. 7	-1

O

-.9	2.4	1.4	.3	-.4	.8	-.5	-2	.5	.3	-.2	1.1
1.3	-.1	1.2	-.7	2.9	1.4	-1	.3	1.4	.5	.7	-.8
.1	-.6	.7	.8	.4	-.3	.9	2.4	1.7	.6	-.4	2.1

Some SVD dimensions

See timelydevelopment.com

Dimension 1

Offbeat / Dark-Comedy
Lost in Translation
The Royal Tenenbaums
Dogville
Eternal Sunshine of the Spotless Mind Coyote Ugly
Punch-Drunk Love

Mass-Market / 'Beniffer' Movies
Pearl Harbor
Armageddon
The Wedding Planner
Miss Congeniality

Dimension 2
Good
Twisted
VeggieTales: Bible Heroes: Lions
The Best of Friends: Season 3
Felicity: Season 2
Friends: Season 4
Friends: Season 5
eart Huckabees
Freddy Got Fingered
House of 1

Dimension 3
What a 10 year old boy would watch What a liberal woman would watch
Dragon Ball Z: Vol. 17: Super Saiyan Fahrenheit 9/11
Battle Athletes Victory: Vol. 4: Spaceward Ho! The Hours
Battle Athletes Victory: Vol. 5: No Looking Back Going Upriver: The Long War of John Kerry
Battle Athletes Victory: Vol. 7: The Last Dance Sex and the City: Season 2
Battle Athletes Victory: Vol. 2: Doubt and Conflic Bowling for Columbine

Latent space models

- Latent representation encodes some meaning
- What kind of movie is this? What movies is it similar to?
- Matrix is full of missing data
- Hard to take SVD directly $J(U, V)=\sum_{u, m}\left(X_{m u}-\sum_{k} U_{m k} V_{k u}\right)^{2}$
- Typically solve using gradient descent

```
# for user u, movie m, find the kth eigenvector & coefficient by iterating:
predict_um = U[m,:].dot( V[:,u] ) # predict: vector-vector product
err = ( rating[u,m] - predict_um ) # find error residual
V_ku, U_mk = V[k,u], U[m,k] # make copies for update
U[m,k] += alpha * err * V_ku# Update our matrices
V[k,u] += alpha * err * U_mk# (compare to least-squares gradient)
```


Latent space models

- Can be a bit more sophisticated:
$-r_{i u} \approx \mu+b_{u}+b_{i}+\sum_{k} W_{i k} V_{k u}$
- "Overall average rating"
- "User effect" + "Item effect"
- Latent space effects (k indexes latent representation)
- (Saturating non-linearity?)
- Then, just train some loss, e.g. MSE, with SGD
- Each (user, item, rating) is one data point

Ensembles for recommenders

- Given that we have many possible models:
- Feature-based regression
- (Weighted) kNN on items
- (Weighted) kNN on users
- Latent space representation
- Perhaps we should combine them?
- Use an ensemble average, or a stacked ensemble - "Stacked" : train a weighted combination of model predictions

