CS184A/284A
AI in Biology and Medicine
Decision Trees
Decision trees

- Functional form $f(x; \theta)$: nested “if-then-else” statements
 - Discrete features: fully expressive (any function)
- Structure:
 - Internal nodes: check feature, branch on value
 - Leaf nodes: output prediction

“XOR”

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

if X_1:
 # branch on feature at root
 if X_2: return +1
 # if true, branch on right child feature
 else: return -1
 # & return leaf value
else:
 # left branch:
 if X_2: return -1
 # branch on left child feature
 else: return +1
 # & return leaf value

Parameters?
Tree structure, features, and leaf outputs
Decision trees

- Real-valued features
 - Compare feature value to some threshold
Decision trees

- Categorical variables
 - Could have one child per value
 - Binary splits: single values, or by subsets

The discrete variable will not appear again below here...

Could appear again multiple times...
Decision trees

- “Complexity” of function depends on the depth
- A depth-1 decision tree is called a decision “stump”
 - Simpler than a linear classifier!
Decision trees

- “Complexity” of function depends on the depth
- More splits provide a finer-grained partitioning

Depth $d = \text{up to } 2^d$ regions & predictions

![Diagram of decision tree and color-coded regions](image-url)
Decision trees for regression

- Exactly the same
- Predict real valued numbers at leaf nodes

- Examples on a single scalar feature:

Depth 1 = 2 regions & predictions

Depth 2 = 4 regions & predictions
Each node in tree splits examples according to a single feature
Leaves predict mean of training data whose path through tree ends there
Tree-structured splitting

• “CART” = classification and regression trees
 – A particular algorithm, but many similar variants
 – See e.g. http://en.wikipedia.org/wiki/Classification_and_regression_tree
 – Also ID3 and C4.5 algorithms

• Classification
 – Union of rectangular decision regions
 – Split criterion, e.g., information gain (or “cross-entropy”)
 – Alternative: “Gini index” (similar properties)

• Regression
 – Divide input space (“x”) into regions
 – Each region has its own regression function
 – Split criterion, e.g., predictive improvement
Learning decision trees

• Break into two parts
 – Should this be a leaf node?
 – If so: what should we predict?
 – If not: how should we further split the data?

• Leaf nodes: best prediction given this data subset
 – Classify: pick majority class; Regress: predict average value

• Non-leaf nodes: pick a feature and a split
 – Greedy: “score” all possible features and splits
 – Score function measures “purity” of data after split
 • How much easier is our prediction task after we divide the data?

• When to make a leaf node?
 – All training examples the same class (correct), or indistinguishable
 – Fixed depth (fixed complexity decision boundary)
 – Others …

Example algorithms: ID3, C4.5
See e.g. wikipedia, “Classification and regression tree”
Learning decision trees

Algorithm 1 BuildTree(D): Greedy training of a decision tree

Input: A data set $D = (X, Y)$.

Output: A decision tree.

if LeafCondition(D) then
 $f_n = \text{FindBestPrediction}(D)$
else
 $j_n, t_n = \text{FindBestSplit}(D)$
 $D_L = \{(x^{(i)}, y^{(i)}): x^{(i)}_{j_n} < t_n\}$ and
 $D_R = \{(x^{(i)}, y^{(i)}): x^{(i)}_{j_n} \geq t_n\}$
 leftChild = BuildTree(D_L)
 rightChild = BuildTree(D_R)
end if
Scoring decision tree splits

- How can we select which feature to split on?
 - And, for real-valued features, what threshold?

Example Data

<table>
<thead>
<tr>
<th>Example</th>
<th>Attributes</th>
<th>Target</th>
</tr>
</thead>
</table>
Scoring decision tree splits

- Suppose we are considering splitting feature 1
 - How can we score any particular split?
 - “Impurity” – how easy is the prediction problem in the leaves?
- “Greedy” – could choose split with the best accuracy
 - Assume we have to predict a value next
 - MSE (regression)
 - 0/1 loss (classification)
- But: “soft” score can work better

\[X_1 > t? \]
Entropy and information

• “Entropy” is a measure of randomness
 – How hard is it to communicate a result to you?
 – Depends on the probability of the outcomes

• Communicating fair coin tosses
 – Output: H H T H T T H H H H T …
 – Sequence takes n bits – each outcome totally unpredictable

• Communicating my daily lottery results
 – Output: 0 0 0 0 0 0 …
 – Most likely to take one bit – I lost every day.
 – Small chance I’ll have to send more bits (won & when)

• Takes less work to communicate because it’s less random
 – Use a few bits for the most likely outcome, more for less likely ones
Entropy and information

- Entropy $H(x) = E[\log 1/p(x)] = \sum p(x) \log 1/p(x)$
 - Log base two, units of entropy are “bits”
 - Two outcomes: $H = -p \log(p) - (1-p) \log(1-p)$

- Examples:

 $$H(x) = .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4$$
 $$= \log 4 = 2 \text{ bits}$$

 $$H(x) = .75 \log 4/3 + .25 \log 4$$
 $$= .8133 \text{ bits}$$

 $$H(x) = 1 \log 1$$
 $$= 0 \text{ bits}$$

Max entropy for 4 outcomes Min entropy
Entropy and information

- Information gain
 - How much is entropy reduced by measurement?

- Information: expected information gain

Information gain = \frac{13}{18} \times (0.99 - 0.77) + \frac{5}{18} \times (0.99 - 0) = 0.43 \text{ bits}

Equivalent: \sum p(s,c) \log \left[\frac{p(s,c)}{p(s) \ p(c)} \right] = \frac{10}{18} \log \left[\frac{10/18}{13/18 \times 10/18} \right] + \frac{3}{18} \log \left[\frac{3/18}{13/18 \times 8/18} \right] + \ldots
Entropy and information

- Information gain
 - How much is entropy reduced by measurement?
- Information: expected information gain

\[
H = 0 \quad \text{Prob} = 1/18 \\
H = .97 \text{ bits} \\
\text{Prob} = 17/18 \\
H = .99 \text{ bits} \\
\text{Prob} = 1/18
\]

\[
\text{Information} = 17/18 \times (0.99 - 0.97) + 1/18 \times (0.99 - 0) = 0.074 \text{ bits}
\]

Less information reduction – a less desirable split of the data
Gini index & impurity

• An alternative to information gain
 – Measures variance in the allocation (instead of entropy)
• $H_{\text{gini}} = \sum_c p(c) (1-p(c))$ vs. $H_{\text{ent}} = -\sum_c p(c) \log p(c)$

Gini Index = $\frac{13}{18} \cdot (0.494 - 0.355) + \frac{5}{18} \cdot (0.494 - 0)$
Entropy vs Gini impurity

• The two are nearly the same…
 – Pick whichever one you like
Example

Restaurant data:

<table>
<thead>
<tr>
<th>Example</th>
<th>Attributes</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt</td>
<td>Bar</td>
<td>Fri</td>
</tr>
<tr>
<td>X_1</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_2</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_3</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_4</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_5</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>X_6</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_7</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_8</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_9</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Root entropy: 0.5 * log(2) + 0.5 * log(2) = 1 bit

Leaf entropies: 2/12 * 1 + 2/12 * 1 + … = 1 bit

No reduction!
Example

- Restaurant data:

<table>
<thead>
<tr>
<th>Example</th>
<th>Attributes</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Alt Bar Fri Hun Pat Price Rain Res Type Est Wait</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>T F F T</td>
<td>F T</td>
</tr>
<tr>
<td>X_3</td>
<td>F T F F</td>
<td>F T</td>
</tr>
<tr>
<td>X_4</td>
<td>T F T T</td>
<td>F F</td>
</tr>
<tr>
<td>X_5</td>
<td>T F T T</td>
<td>F F</td>
</tr>
<tr>
<td>X_6</td>
<td>F T F F</td>
<td>T T</td>
</tr>
<tr>
<td>X_7</td>
<td>F T F F</td>
<td>T F</td>
</tr>
<tr>
<td>X_8</td>
<td>F F F F</td>
<td>T T</td>
</tr>
<tr>
<td>X_9</td>
<td>F T T T</td>
<td>F F</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T T T T</td>
<td>F F</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F F F F</td>
<td>T F</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T T T T</td>
<td>F F</td>
</tr>
</tbody>
</table>

- Split on:

Root entropy: $0.5 \times \log(2) + 0.5 \times \log(2) = 1$ bit

Leaf entropies: $2/12 \times 0 + 4/12 \times 0 + 6/12 \times 0.9$

Lower entropy after split!
Hungry?

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$ $$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>30–60</td>
<td>F</td>
</tr>
<tr>
<td>X_3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_4</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>10–30</td>
<td>T</td>
</tr>
<tr>
<td>X_5</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$$ $$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_7</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X_9</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>Full</td>
<td>$</td>
<td>T</td>
<td>F</td>
<td>Burger</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X_{10}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$ $$</td>
<td>F</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
</tr>
<tr>
<td>X_{11}</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Thai</td>
<td>0–10</td>
<td>F</td>
</tr>
<tr>
<td>X_{12}</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$</td>
<td>F</td>
<td>F</td>
<td>Burger</td>
<td>30–60</td>
<td>T</td>
</tr>
</tbody>
</table>
For regression

- Most common is to measure variance reduction
 - Equivalent to “information gain” in a Gaussian model...

\[\text{Var reduction} = \frac{4}{10} \times (0.25 - 0.1) + \frac{6}{10} \times (0.25 - 0.2) \]
Scoring decision tree splits

Algorithm 1 FindBestSplit(D)

Input: A data set \(D = (X, Y) \) of size \(m \);
impurity function \(H(\cdot) \).

Output: A split \(j^*, t^* \) minimizing impurity \(H \)

Initialize \(H^* = 0 \)
for each feature \(j \) do
 Sort \(\{x_j^{(i)}\} \) in order of increasing value
 for each \(i \) such that \(x_j^{(i)} < x_j^{(i+1)} \) do
 Compute \(p_c^L = \frac{1}{i} \sum_{k \leq i} \mathbb{1}[y^{(k)} = c] \)
 and \(p_c^R = \frac{1}{k-i} \sum_{k > i} \mathbb{1}[y^{(k)} = c] \)
 Set \(H' = \frac{i}{m} H(p^L) + \frac{m-i}{m} H(p^R) \)
 if \(H' < H^* \) then
 Set \(j^* = j \), \(t^* = (x_j^{(i)} - x_j^{(i+1)})/2 \), \(H^* = H' \)
 end if
 end for
end for

Return \(j^*, t^* \)
Building a decision tree

Algorithm 1 BuildTree(D): Greedy training of a decision tree

Input: A data set \(D = (X, Y) \).

Output: A decision tree.

if LeafCondition(D) then
 \(f_n = \text{FindBestPrediction}(D) \)
else
 \(j_n, t_n = \text{FindBestSplit}(D) \)
 \(D_L = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} < t_n \} \) and \(D_R = \{(x^{(i)}, y^{(i)}) : x_{j_n}^{(i)} \geq t_n \} \)
 leftChild = BuildTree(D_L)
 rightChild = BuildTree(D_R)
end if

Stopping conditions:
* # of data < K
* Depth > D
* All data indistinguishable (discrete features)
* Prediction sufficiently accurate

* Information gain threshold? Often not a good idea! No single split improves, but, two splits do. Better: build full tree, then prune
Controlling complexity

- Maximum depth cutoff

Depth 1

Depth 2

Depth 3

Depth 4

Depth 5

No limit
Controlling complexity

- Minimum # parent data
Computational complexity

• “FindBestSplit”: on M' data
 – Try each feature: N features
 – Sort data: $O(M' \log M')$
 – Try each split: update p, find $H(p)$: $O(M \times C)$
 – Total: $O(N M' \log M')$

• “BuildTree”:
 – Root has M data points: $O(N M \log M)$
 – Next level has M *total* data points:
 $$O(N M_L \log M_L) + O(N M_R \log M_R) < O(N M \log M)$$
 – …
Decision trees in python

- Many implementations
- Class implementation:
 - real-valued features (can use 1-of-k for discrete)
 - Uses entropy (easy to extend)

```python
T = dt.treeClassify()
T.train(X,Y,maxDepth=2)
print T

if x[0] < 5.602476:
    if x[1] < 3.009747:
        Predict 1.0        # green
    else:
        Predict 0.0        # blue
else:
    if x[0] < 6.186588:
        Predict 1.0        # green
    else:
        Predict 2.0        # red

ml.plotClassify2D(T, X,Y)
```
Summary

• Decision trees
 – Flexible functional form
 – At each level, pick a variable and split condition
 – At leaves, predict a value

• Learning decision trees
 – Score all splits & pick best
 • Classification: Information gain
 • Regression: Expected variance reduction
 – Stopping criteria

• Complexity depends on depth
 – Decision stumps: very simple classifiers