CS184A/284A Al in Biology and Medicine

Course Introduction, Logistics

CS184A/284A Artificial Intelligence in Biology and Medicine

Introduction to artificial intelligence and machine learning with a focus on how to apply them to solve problems in biology and medicine. This class will familiarize you with a broad cross-section of models and algorithms from Al and machine learning. Applications will focus on problems from bioinformatics, genomics, medicine and healthcare.

Tentative Topics

- Introduction. Course Framework
- Nearest neighbor methods, Linear regression
- Perceptron, Logistic regression, Support vector machines, Decision trees
- Application 1: Gene expression analysis, Biomarker discovery,
 Precision medicine
- Unsupervised learning, Principal Component Analysis, Clustering
- Application 2: Single cell RNA-seq analysis, other genomic applications
- Probabilistic models, Markov models, EM algorithm
- Application 3: Gene discovery, Regulatory motif discovery, CpG islands
- Neural networks, Deep learning
- Application 4: Biomedical image analysis

Al in everyday products

Artificial Intelligence:

Any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning including deep learning

Machine Learning:

A subset of AI that includes statistical techniques that enable machines to improve at talks with experience.

Deep Learning:

A subset of machine learning with models and algorithms built on deep neural networks.

Deep learning works by imitating the brain

IM GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images

Speech Recognition

Reduce error rate by over 30%

Machine Translation

Ingredients for Deep Learning

DEEP LEARNING REVOLUTIONIZING MEDICAL RESEARCH

Detecting Mitosis in Breast Cancer Cells
- IDSIA

Predicting the Toxicity of New Drugs

— Johannes Kepler University

Understanding Gene Mutation to Prevent Disease
- University of Toronto

Big data in biomedicine

Deep learning in image analysis

- **Application**
 - Segmentation
 - Localization
 - Quantification
 - Computer-aided

Machine Learning

Class Introduction

Course Logistics

Some example applications

Online resources

Course website

https://www.ics.uci.edu/~xhx/courses/CS284A/

Piazza:

https://piazza.com/uci/fall2020/cs184a/home

Grading

Grading policy:

- Course Project: 50%
 - Project Proposal
 - Presentation
 - o Final report
- Final: 40% (online exam)
- Participation: 10%

Programming Assignments

2-3 Programming Assignments

Objective

- Learn to apply ML techniques
- •

Source Code (Python)

Project

Groups for the Project

- Team size should be 3 or less
 - Larger teams not allowed
- More details coming later
- Short report due at the end of the quarter

Participation

Surveys and Course Evaluation

- Occasional polls on Canvas
- Participate in Course Evals

Discussions on Piazza

- Ask questions about material
- Answer posted questions
- Up vote helpful resources
- Post useful links related to the course

Example applications of AI/ML in Biology and Medicine

Some example applications

- 1. **Gesture recognition** hand pose estimation for detecting and monitoring movement disorders, such as Parkinson's disease.
- 2. **Medical image analysis** deep learning methods for detecting lung lesions
- 3. **Cell-level analysis** cell nuclei segmentation
- 4. Gene expression analysis
- 5. RNA structure prediction
- 6. Protein domain detection

Detecting and monitoring movement disorders via video analysis

Pulmonary nodule detection

Input:

3D volumetric CT images Typical CT image size: 512 x 512 x 400

Output:

Bounding box of detected nodules

Application 2: Analysis of COVID-19 CT Scans

- Deep learning can be applied to automatically extract image features
 from CT scans, which can be used for patient stratification, disease
 progression monitoring, and studying treatment effect.
- Image features associated with COVID-19
 - Ground-glass opacities (GGOs) and consolidation
 - Idiopathic Pulmonary Fibrosis (IPF)
 - Interlobular septal thickening
 - Air bronchogram sign

CT scans of a male patient with COVID-19. A and B: Initial CT images indicate GGO at level of aortic arch (A) and ventricles (B). C and D: Follow-up CT images obtained 2 days later show progression of abnormalities (rectangles). Image courtesy of AJR

COVID-19 Vulnerability Score System

CRP-HS (mg/dL)

CT scan of a covid-19 case

Separation of patients based on GGO scores

Cell nuclei segmentation

Human Gene Expression Data

- 6830x64 matrix of real numbers
- Rows correspond to genes, columns to tissue samples
- Cluster rows (genes) to deduce function of unknown genes from experimentally known genes with similar profiles
- Cluster columns (samples) to hypothesize disease profiles

Hastie, Tibshirani, & Friedman 2009

Unsupervised learning for discovering cell types

UFold - Deep Learning for RNA Secondary Structure Prediction

Demo: RNA secondary structure prediction

https://ufold.ics.uci.edu/

Aligning protein sequences and discovering functional domains

Human Ubiquitin Conjugating Enzymes

		_		
UBE2D2	FPTDYPFKPPKVAFTTRIYHPNINS	1-G	SICLDILR	S DWSPALTISK
UBE2D3	FPTDYPFKPPKVAFTTRIYHPNINS	1-G	SICLDILR	S DWSPALTISK
BAA91697	FPTDYPFKPPKVAFTTKIYHPNINS	1-G	SICLDILR	SDWSPALTVSK
UBE2D1	FPTDYPFKPPKIAFTTKIYHPNINS	1-G	SICLDILR	S DWSPALTVSK
UBE2E1	FTPEYPFKPPKVTFRTRIYHCNINS	Q-G	VICLDILK	DNWSPALTISK
UBCH9	FSSDYPFKPPKVTFRTRIYHCNINS	2-G	VICLDILK	DNWSPALTISK
UBE2N	LPEEYPMAAPKVRFMTKIYHPNVDK	L−G	RICLDILK	DKWSPALQIRT
AAF67016	IPERYPFEPPQIRFLTPIYHPNIDS	A-G	RICLDVLK	LPPKGAWRPSLNIAT
UBCH10	FPSGYPYNAPTVKFLTPCYHPNVDT	2-G	NICLDILK	E <mark>KWSALYD</mark> VRT
CDC34	FPIDYPYSPPAFRFLTKMWHPNIYE	r-G	DVCISILH	PPV <mark>DD</mark> PQSGELPSERWNPTQNVRT
BAA91156	FPIDYPYSPPTFRFLTKMWHPNIYE	1-G	DVCISILH	PPVDDPQSGELPSERWNPTQNVRT
UBE2G1	FPKDYPLRPPKMKFITEIWHPNVDK	1-G	DVCISILH	EPGEDKYGYEKPEERWLPIHTVET
UBE2B	FSEEYPNKPPTVRFLSKMFHPNVYA	D-G	SICLDILQ	NRWSPTY <mark>D</mark> VSS
UBE2I	FKDDYPSSPPKCKFEPPLFHPNVYP	5-G	TVCLSILE	EDKDWRPAITIKQ
E2EPF5	LGKDFPASPPKGYFLTKIFHPNVGA	1-G	EICVNVLK	RDWTAELGIRH
UBE2L1	FPAEYPFKPPKITFKTKIYHPNIDE	K-G	QVCLPVIS	AENWKPATKT <mark>D</mark> Q
UBE2L6	FPPEYPFKPPMIKFTTKIYHPNVDE	1-G	QICLPIIS	SENWKPCTKTCQ
UBE2H	LPDKYPFKSPSIGFMNKIFHPNIDE	ASG	TVCLDVIN-	Q <mark>r</mark> wtaly <mark>d</mark> ltn
UBC12	VGQGYPHDPPKVKCETMVYHPNIDI	E-G	NVCLNILR	EDWKPVLTINS
UBE2H	LP <mark>D</mark> KYPFKSPSIGFMNKIFHPNIDE	ASG	TVCLDVIN	Qrwtaly <mark>d</mark> li