CS184A/284A
Al in Biology and Medicine

Linear Regression

Machine Learning

Linear Regression via Least Squares

4 N
- J
4 I
- J
4 N
- j
4 N
- J
4 N

Supervised learning

* Notation
— Features X
— Targets y

— Predictions y =f(x; 6)
— Parameters 6

Learning algorithm

Program (“Learner”)
Change 0

Improve performance

Characterized by

some “parameters” 6

Training data

(examples) Procedure (using 6) “train”

that outputs a
Features | prediction

Feedback / “predict” ‘
Target values \ Score performance

(“cost function”)

Linear regression

“Predictor”:
40r .
. Evaluate line:
> r =0y + 0121
N
[<P]
=Y))
E‘: returnr
e
2 L

00 10 20
Feature x

+ Define form of function f(x) explicitly
* Find a good f(x) within that family

Notation

@(ZC) = 0Og + 0121 + O2202 + . ..

Detine “feature” X, =1 (constant)
Then

@(CU)ZQCUT Q:[907°--79n]

L = [1,$1,...,$n]

Supervised learning

* Notation
— Features X
— Targets y

— Predictions y =f(x; 6)
— Parameters 0

Learning algorithm

Program (“Learner”) Change 0

Improve performance

Characterized by

some “parameters” 6

Training data

(examples) Procedure (using 0) “train”
that output
Features | i .ou. puts 4
prediction
Feedback / “predict” %

Tar |
arget values Score performance

(“cost function”)

Measuring error

Observation Yy

Prediction :/g\

Error or “residual”

J
20

Mean squared error
* How can we quantify the error?
MSE, J(8) = — 3 (9 — ()2
J

1 . .
= — Z(y(J) —9- £(J)T)2
J

* Could choose something else, of course...
— Computationally convenient (more later)
— Measures the variance of the residuals
— Corresponds to likelihood under Gaussian model of “noise”

MSE cost function

* Rewrite using matrix form

MSE, J(6) = % > Y —g(a)))?

J
1 . .
= — Z(y(J) —9- Q(J)T)Q
J

_ Al
Q — _007 I Qn] X — .
L m] o
1
70) = 1" - xT)- (f ~ 8 X7

Python / NumPy:
e =Y — X.dot(theta.T);
J=eT.dot(e)/m #=np.mean(e **2)

Supervised learning

* Notation
— Features X
— Targets y

— Predictions y =f(x; 6)
— Parameters 0

Learning algorithm

Program (“Learner”)
Change 6

Characterized by Improve performance

some “parameters” 6

Training data
(examples) Procedure (using 6) “train”

that outputs a
Features | prediction

Feedback / “predict” %
Target values

Score performance
(“cost function”)

Visualizing the cost function

Finding good parameters

« Want to find parameters which minimize our error...

* Think of a cost “surface”: error residual for that 4 ...

0o

Machine Learning

Gradient Descent Algorithms

4 I
- J
4 N
- j
4 N
- J
4 N

Gradient descent

* How to change 0O to
J(Q) g improve J(0)?
» Choose a direction in
which J(0) is decreasing

Gradient descent

How to change 6 to
improve J(0)?
=2« Choose a direction in
which J(0) is decreasing
Derivative 0J(0)

00
Positive => increasing
Negative => decreasing

Gradient descent in more dimensions

« Gradient vector
_[9J@®) 8J(9)
VJ(8) = [T8 %,]
—VJ ()

61 Indicates direction of steepest ascent
(negative = steepest descent)

Gradient descent

* |nitialization

° Stepsize d o Initialize O
— Can change over iterations Do{
* Gradient direction 6 — 8 - av, (o)
* Stopping condition } while (a||V 3| > ¢)

8.J(8)

J(Q) 00

Gradient for the MSE

- MSE
1 : T
J(0) = — Z(y(J) By RAY))2

e;j(0)

1 : : .
J(O) = > (4 — b0z — 12t — ..

o/ 91 (a2) G)
aeo_aeom;(ej(e)) a_eoej Z/ 8009% 9:1; .

_ x(()a)

Gradient for the MSE

- MSE
1 : T
J(0) = — > W -2)?
vVJ=? ’
fj(é’)
1 r ‘ . \
JO) = D> W = oz — 012y ..)?
J
0J oJ
VIO =| g5 0 }

Gradient descent

* |nitialization

° Stepsize d o Initialize O
— Can change over iterations Do{
* Gradient direction 6 — 8 - av, (o)
* Stopping condition } while (a||V 3| > ¢)

1 . .
J(0) = — Z(() g . gD"y?

T (9) .(5)
= —— E (3)—6’ DYz 2y .
Error magnitude & Sensitivity to
direction for datum j each param

Derivative of MISE

Rewrite using matrix form

V@) == 3P 8- 207) @))
j o S——

Error magnitude & Sensitivity to

0 = [807 IO H’n] direction for datum j each 6
T T (1 1
A A D
_ 2T T m
VJ(@) = m(y 0X") X _LC(()) x%)

e = Y - X.dot(theta.T) # error residual
DJ = - e.dot(X) * 2.0/m # compute the gradient

theta -= alpha * DJ # take a step

|Gradient descent on cost function
I

Comments on gradient descent

* Very general algorithm
— WEe'll see it many times

* Local minima
— Sensitive to starting point

Comments on gradient descent

* Very general algorithm
— WEe'll see it many times

* Local minima
— Sensitive to starting point
« Step size
— Too large? Too small? Automatic ways to choose?

— May want step size to decrease with iteration

— Common choices:
* Fixed
* Linear: C/(iteration)
* Line search / backoff (Armijo, etc.)
* Newton’s method

= N\

Newton’s method

* Want to find the roots of f(x)
— “Root”: value of x for which f(x)=0

f(2)

* Initialize to some point x

>
* Compute the tangent at x & compute where it Crosses /z' &
B 0— f(Z) /- f(Z)
Vf(z)= R = 2 =z V)

* Optimization: find roots of rJ(p.)

00— VJ(9) ,
VVIO) = 5ot = =0 VI

— If converges, usually very fast

VJ(Q) (“Step size” | = 1/rrd ; inverse curvature)

— Works well for smooth, non-pathological functions, locally quadratic
— For nlarge, may be computationally hard: O(n?) storage, O(n®) time

(Multivariate:
r J(1.) = gradient vector
r> J(n) = matrix of 2" derivatives
a/b = a b, matrix inverse)

Stochastic / Online gradient descent
- MSE

10 =S50, SO =Y 0207

* Gradient

1 . o o
V() = — N w0 VIO =D -0z) 22]
j

« Stochastic (or “online”) gradient descent:
— Use updates based on individual datum j, chosen at random

— At optima, E[ij (Q)] =VJ(@) =0
(average over the data)

Online gradient descent Initialize 6

Do {

* Update based on one datum, and for j=1:m
. . . 0 — 0 -
its residual, at a time av,7.(0)

} while (not done)

1 1
-1 -0.5 0

1 1 1 _ 1 1 1] L L | | .
1.5 2 25 3p 0 2 4 6 8 1 1 1 1 1

Online gradient descent

Initialize 6

Do {

for j=1:m
0 — 0 -
aVer(e)

} while (not done)

L L 1 _ 1
1.5 2 2.5 39 0 2

L L
-1 -0.5 0

Online gradient descent Initialize 6

Do {

for j=1:m
B — 0 -
aVer(e)

} while (not done)

1 1
-1 -0.5 0

L L 1 - 1 1 1 1 1 L L 1 1
15 2 25 3pg 0 2 4 6 8 1 1 1 1 1 2
0

Online gradient descent

Initialize 6

Do {

for j=1:m
0 — 0 -
aVer(e)

} while (not done)

o = [onN

|] | | 1 |
-1 -0.5 0 15 2 25 3p0 2

0.5 91 ’ :

Online gradient descent

Initialize 6

Do {

for j=1:m
0 — 0 -
aVer(e)

} while (not done)

o = [onN

|] | | 1 |
-1 -0.5 0 15 2 25 3p0 2

0.5 91 ’ :

Online gradient descent

Initialize 6

Do {

for j=1:m
0 — 0 -
aVer(e)

} while (not done)

o = [onN

|] | | 1 |
-1 -0.5 0 15 2 25 3p0 2

0.5 91 ’ :

Online gradient descent Initialize 6

. Do {
* Benefits for j=1:m
— Lots of data = many more updates per pass 0 «— 0 -
— Computationally faster avyd;(0)

. } while (not done)
* Disadvantages

— No longer strictly “descent”
— Stopping conditions may be harder to evaluate
(Can use “running estimates” of J(.), etc.)

Ji(8) = (y9) — 6. z(3‘)T)2

VIi0) = -2y —9-29") - 2§20 ..

Machine Learning

| |

Direct Minimization of Squared Error

- j
4 N
- J
4 N

MSE Minimum

* Consider a simple problem
— One feature, two data points

— Two unknowns: 90, 91

— Two equations:
y = 0o + 612

y(2) — 90 + 9133(2)

» Can solve this system directly:

yT =0X" = 0=y (X")!
* However, most of the time, m >n
— There may be no linear function that hits all the data exactly

— Instead, solve directly for minimum of MSE function

MSE Minimum

« Simplify with some algebra:

P
VJ(8) = —E(QT -60x") X = 0

» X (X" X)'is called the “pseudo-inverse”

- If X" is square and full rank, this is the inverse
* If m > n: overdetermined; gives minimum MSE fit

Matlab MSE

* This Is easy to solve in Matlab...

Q _ yT X(XT X)—l
$ y = [yl ; .. ; ym]
$ X=[x10. x1m; x2 0. x2 m

~m ; .]

s Solution 1: “manual”
th =y’ * X * inv(X’' * X);

o®

Solution 2: “mrdiwvide”
th=y’ / X'; % th*X’ =y => th =

Python MSE
* This is easy to solve in Python / NumPy...

Q _ QT X(XT X)—l
y = np.matrix([[y1], ... , [ym]])
X = np.matrix([[x1_0 ... x1_n], [x2_0 ... x2_n],
])

Solution 1: “manual”
th = y.T * X * np.linalg.inv(X.T * X)

Solution 2: “least squares solve”
th = np.linalg.lstsq(X, Y)

Normal equations

Vi@ =0 = (y —6X") X

= 0
* Interpretation:

— (y -0 X) = (y - yhat) is the vector of errors in each example

— X are the features we have to work with for each example
— Dot product = 0: orthogonal

Normal equations

VIO =0 = (y —6X")- X = 0
* Interpretation:
— (y-8X)=(y-yhat) is the vector of errors in each example
— X are the features we have to work with for each example

— Dot product = 0: orthogonal

- Example:
y=1[13 37
zo=[1 11" 9g—_11.00 057
O O L1 = [1 2 4]T
e=(y—g)=[-0.57 0.85 —0.28]"

Effects of MISE choice

* Sensitivity to outliers

18
16+ .

141

162 cost for this one datum

1ol Heavy penalty for large errors

10t

PR N @ » o

L1 error: Mean Absolute Error

18

L2, original data
L1, original data

L1, outlier data

Cost functions for regression

ly : (y—19)° (mse)

01 ly—9| (mAE)

Something else entirely...

¢ —log(exp(—(y — 9)°) +¢)

(22?)

Arbitrary functions cannot be

solved in closed form
- use gradient descent

Machine Learning

4)
- /
4 N
- j

Regression with Non-linear Features

?

imensions

More d

/
/ / /
|||\I|||\||||\||.|
/ / /

o \
\ \ \
@ \
A A\,
7 7 7
© < AN
(qV] (q\] (qV]

0 = |6y 01 62
= [1 X1 332]

S
D

(D

Nonlinear functions

* What if our hypotheses are not lines?
— Ex: higher-order polynomials

18 T T T T T T T T T 18

Nonlinear functions

- Single feature x, predict target y:

D = {(z),y@)} g(x) = 09+ 01 x + O3 2% + O3 2°

\U/ Add features: \U

D = {([z\9, (@), @]y} g(x) = 00 + 0121 + Oz + O35
Linear regression in new features

« Sometimes useful to think of “feature transform”

O(zx)=[1,2,2%, 2°,...] y(x) =0 - ¢(x)

Higher-order polynomials

* Fit in the same way
* More “features”

Features

* In general, can use any features we think are useful

Other information about the problem
— Anything you can encode as fixed-length vectors of numbers

Polynomial functions
— Features [1, x, x2, x3, ...]
Other functions
— 1/, sqrt(x), x, * x

YRR

“Linear regression” = linear in the parameters
— Features we can make as complex as we want!

Higher-order polynomials

* Are more features better?

* “Nested” hypotheses

— 2"d order more general than 1%,

— 3" order more general than 2", ...

* Fits the observed data better

0.5

0.5

0.5

0.5

0.5

Overfitting and complexity

* More complex models will always fit the training data better

» But they may “overfit” the training data, learning complex
relationships that are not really present

Simple model omplex model

Test data

* After training the model

« Go out and get more data from the world
— New observations (x,y)

* How well does our model perform?

0.5

86

| Training versus test error

| . Plot MSE as a function of

model complexity
— Polynomial order

- Decreases Training data

— More complex function fits
training data better

 What about new data?

- 0" to 15t order
— Error decreases

— Underfitting T —
- Higher order

Mean squared error

— Error increases Polynomial order
— Overfitting

Machine Learning

4 N
- /
4 N
- j
4 N

Bias, Variance, & Validation

Inductive bias

« The assumptions needed to predict examples we haven’t seen
* Makes us “prefer” one model over another
+ Polynomial functions; smooth functions; etc

- Some bias is necessary for learning!

Simple model Complex model

|Bias & variance
|

“The world” Data we observe
o o
o o
y(x) =6y + b1z + vd
o
o
o
® o
o
o

Three different possible data sets:

12 T T T 12 T T 12

10t 10t 10t

8t 3t a8

B B B B]
& *

4t i 4t 4t

ol * = ol b ol

Of Of Of

K3 5 10 15 0 % 5 10 15) 10 15 20

|Bias & variance
|

“The world” Data we observe
o o
o o
y(x) =6y + b1z + vd
o
o
o
® o
o
o

Each would give
different
predictors for any
polynomial degree:

Three different possible data sets:
12 . . . 12 : :
10} 10}
at * 8t .
&t Bf »,
af i S af N
gl ol ’
of of
2 5 10 15 20 @ 5 10 15 20
is ' Poly Dn:‘der‘ 0 ' i ' Poly Dl'*der 1 '
10} 10}
al oW
i o LY : 4
| — ."- O
ol ® e
of of
2 5 10 15 20 % 5 10 15 20

12

10

10

Poly Order 3

15

20

S

20

Detecting overfitting

« Overfitting effect
— Do better on training data than on future data
— Need to choose the “right” complexity

* One solution: “Hold-out” data

* Separate our data into two sets
— Training
— Test

- Learn only on training data

» Use test data to estimate generalization quality
— Model selection

+ All good competitions use this formulation
— Often multiple splits: one by judges, then another by you

Model selection

Which of these models fits the data best?
— p=0 (constant); p=1 (linear); p=3 (cubic); ...
* Or, should we use KNN? Other methods?

* Model selection problem
— Can’t use training data to decide (esp. if models are nested!)

* Want to estimate

EnJ(y,9(x; D
(,y)[(y y(w))] J = loss function (MSE)

D = training data set

_p=

0.5f ™

Hold-out method

* Validation data
— “Hold out” some data for evaluation (e.g., 70/30 split)
— Train only on the remainder

* Some problems, if we have few data:

— Few data in hold-out: noisy estimate of the error
— More hold-out data leaves less for training!

Training
data

MSE = 331.8

Validation
data

Cross-validation method

K-fold cross-validation
— Divide data into K disjoint sets

— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Split 1:
MSE = 331.8
Training

data
Split 2: Validation
MSE = 361.2 data

3-Fold X-Val MSE

Split 3: » =464.1
MSE = 669.8

x()
88
32
27
68

20
63
17
87

Cross-validation method

K-fold cross-validation
— Divide data into K disjoint sets

— Hold out one set (= M / K data) for evaluation
— Train on the others (= M*(K-1) / K data)

Split 1:
MSE = 280.5
Training

data

Split 2: Validation

MSE = 3081.3 data

e,
‘_ 3-Fold X-Val MSE
7 o 1 Split 3: » =1667.3
. | MSE = 1640.1

x()
88
32
27
68

20
63
17
87

Cross-validation

* Advantages:
— Lets us use more (M) validation data
(= less noisy estimate of test performance)

* Disadvantages:
— More work
* Trains K models instead of just one

— Doesn’t evaluate any particular predictor
* Evaluates K different models & averages
* Scores hyperparameters / procedure, not an actual, specific predictor!

* Also: still estimating error for M’ < M data...

Learning curves

Plot performance as a function of training size
— Assess impact of fewer data on performance
Ex: MSEO - MSE (regression)
or 1-Err (classification)

* Few data
— More data significantly
improve performance

1/ MSE

* “Enough” data
— Performance saturates

Training data size (m)
* If slope is high, decreasing m (for validation / cross-validation) might have a big
impact...

Leave-one-out cross-validation

* When K=M (# of data), we get
— Train on all data except one
— Evaluate on the left-out data
— Repeat M times (each data point held out once) and average

x(y®

MSE = ... N 88 79
Training 30 D)

_dat? 27 30

Validation 68 73

MSE = ... data 2 16
20 43

»LOO_X—VaI MSE 53 77

17 16

87 94

Cross-validation Issues

Need to balance:
— Computational burden (multiple trainings)

— Accuracy of estimated performance / error

Single hold-out set:
— Estimates performance with M’ < M data (important? learning curve?)
— Need enough data to trust performance estimate
— Estimates performance of a particular, trained learner

K-fold cross-validation
— K times as much work, computationally
— Better estimates, still of performance with M’ < M data

Leave-one-out cross-validation
— M times as much work, computationally
— M’ = M-1, but overall error estimate may have high variance

Machine Learning

4 N
- /
4 N
- j
4 N
- J
4 N
- J

Regularized Linear Regression

What to do about under/overfitting?

« Ways to increase complexity?
— Add features, parameters
— We'll see more...

- Ways to decrease complexity?
— Remove features (“feature selection”)
— “Fail to fully memorize data”

- Partial training
* Regularization

Error on Test Data

Predictive
Error

Error on Training Data

Model Complexity

+—>

Ideal Range
for Model Complexity

Underfitting Overfitting

Linear regression

* Linear model, two data

Quadratic model, two data?
— Infinitely many settings with zero error
— How to choose among them?

Higher order coefficients = 07
— Uses knowledge of where features came from...

Could choose e.g. minimum magnitude:
min 897 s.t. J(@) =0

A type of bias: tells us which models to prefer

0™ Order Polynomial
|

11 Order Polynomial
|

13" Order Polynomial
|

19t Order Polynomial
|

|Estimated Polynomial Coefficients
I

N=0 N=1 N=3 N=9

< 0.19 0.82 0.31 0.35
2 -1.27 7.99 232.37
S 2543 -5321.83
S 17.37 48568.31
S -231639.30
4 640042.26
& L o Traing | 1 -1061800.52
S —6— Test 1042400.18
g -557682.99
3| &os 125201.43

Regularization

« Can modify our cost function J to add “preference” for
certain parameter values

J) = £y~ 6X7) - (y—6XT)T + abs"
* New solution (derive the same way)
0 = QX(XTX+OJ)"‘1

L, pe.nalty: |
“Ridge regression”

. 00" =N 0;
— Problem is now well-posed for any degree — ?
)

* Notes:
— “Shrinks” the parameters toward zero
— Alpha large: we prefer small theta to small MSE

— Regularization term is independent of the data: paying more
attention reduces our model variance

|Regression: Zero Regularization
|

|Regression: Moderate Regularization
|

|Regression: Big Regularization
|

Impact of Regularization Parameter

Training
Test
= 0.5 -
& /
0 /

-35 —-30 In(a) =25 —20

|Estimated Polynomial Coefficients
I

o zero o medium o big
- 0.35 0.35 0.13
£ 232.37 4.74 -0.05
S -5321.83 0.77 ~0.06
S| 48568.31 31.97 -0.05
§| -231639.30 -3.89 -0.03
S| 640042.26 55.28 -0.02
g -1061800.52 41.32 -0.01
| 1042400.18 -45.95 -0.00
g| -H57682.99 -91.53 0.00
21 125201.43 72.68 0.01

Regularization

« Compare between unreg. & reg. results

Alpha =0
(Unregularized) ¢s5t

Alpha =1

Different regularization functions

* More generally, for the Lp regularizer:

(16)7

Isosurfaces: ||9||p = constant

N D

U U

p=0.5 p=1 p=2 p=4
Lasso Quadratic

L, = limit as p goes to 0 : "number of nonzero weights”, a natural notion of complexity

Different regularization functions

* More generally, for the Lp regularizer:

(16)7

p=1

Regularization: L, vs L,

- Estimate balances data term & regularization term

Minimizes data term

Minimizes combination

91 —
Minimizes regularization

/\/\ QOH
(>

Regularization: L, vs L,

- Estimate balances data term & regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.

.

Data term only:
all 91 Nnon-zero

Regularized estimate:
some O. may be zero

|
/é
\/ 6, — \ 9, —

|Gradient-Based Optimization

* L, makes (all) coefficients smaller
* L, makes (some) coefficients exactly zero: feature selection

_ Laplacian prior . | GGUSSiG” ' pri iOf o
' Lasso regreSSlon R’dge regress"’”
Objective Function: 1(60;) = |0;|"

Negative Gradient: — f'(§,)

(Informal intuition: Gradient of L, objective not defined at zero)

