CS184A/284A

AI in Biology and Medicine

Linear Regression
Machine Learning

- Linear Regression via Least Squares
- Gradient Descent Algorithms
- Direct Minimization of Squared Error
- Regression with Non-linear Features
- Bias, Variance, & Validation
- Regularized Linear Regression
Supervised learning

Notation
- Features x
- Targets y
- Predictions $\hat{y} = f(x; \theta)$
- Parameters θ

Program ("Learner")
Characterized by some "parameters" θ
Procedure (using θ) that outputs a prediction

Learning algorithm
Change θ
Improve performance

Training data (examples)
Features

Feedback / Target values

"predict"
Score performance ("cost function")

"train"
Linear regression

- Define form of function $f(x)$ explicitly
- Find a good $f(x)$ within that family

"Predictor": Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r
Define \(x_0 = 1 \) (constant)

Then

\[
\hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots
\]

\[
\hat{y}(x) = \theta x^T
\]

\[
\theta = [\theta_0, \ldots, \theta_n]
\]

\[
x = [1, x_1, \ldots, x_n]
\]
Supervised learning

- Notation
 - Features x
 - Targets y
 - Predictions $\hat{y} = f(x; \theta)$
 - Parameters θ

Program ("Learner")
Characterized by some "parameters" θ
Procedure (using θ) that outputs a prediction

Learning algorithm
Change θ
Improve performance

Training data (examples)
Feedback / Target values

"predict"
Score performance ("cost function")

"train"
Measuring error

Prediction \hat{y}

Observation y

Error or “residual”

$y - \hat{y}(x) = (y - \theta \cdot x^T)$
Mean squared error

- How can we quantify the error?

\[
\text{MSE}, \ J(\theta) = \frac{1}{m} \sum_j (y^{(j)} - \hat{y}(x^{(j)}))^2
\]

\[
= \frac{1}{m} \sum_j (y^{(j)} - \theta \cdot x^{(j)T})^2
\]

- Could choose something else, of course…
 - Computationally convenient (more later)
 - Measures the variance of the residuals
 - Corresponds to likelihood under Gaussian model of “noise”

\[
\mathcal{N}(y ; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} (y - \mu)^2 \right\}
\]
MSE cost function

- Rewrite using matrix form

\[
\text{MSE, } J(\theta) = \frac{1}{m} \sum_j (y^{(j)} - \hat{y}(x^{(j)}))^2
\]

\[
= \frac{1}{m} \sum_j (y^{(j)} - \theta \cdot x^{(j)T})^2
\]

\[
\theta = [\theta_0, \ldots, \theta_n]
\]

\[
y = [y^{(1)}, \ldots, y^{(m)}]^T
\]

\[
x^{(1)} \ldots x^{(1)}
\]

\[
x_0 \ldots x_n
\]

\[
x^{(m)} \ldots x^{(m)}
\]

\[
J(\theta) = \frac{1}{m} (y^T - \theta X^T) \cdot (y^T - \theta X^T)^T
\]

Python / NumPy:

e = Y - X.dot(theta.T);
J = e.T.dot(e) / m # = np.mean(e ** 2)
Supervised learning

- **Notation**
 - Features x
 - Targets y
 - Predictions $\hat{y} = f(x; \theta)$
 - Parameters θ

Program ("Learner")
Characterized by some "parameters" θ
Procedure (using θ) that outputs a prediction

Learning algorithm
Change θ
Improve performance

Training data (examples)
- Features
- Feedback / Target values

"predict"
Score performance ("cost function")

"train"
Visualizing the cost function

\[J(\theta) \]

\[\theta_0 \quad \theta_1 \]
Finding good parameters

- Want to find parameters which minimize our error...

- Think of a cost "surface": error residual for that θ ...

\[
\hat{\theta} = \arg \min_{\theta} J(\theta)
\]
Machine Learning

- Linear Regression via Least Squares
- Gradient Descent Algorithms
- Direct Minimization of Squared Error
- Regression with Non-linear Features
- Bias, Variance, & Validation
- Regularized Linear Regression
Gradient descent

- How to change θ to improve $J(\theta)$?
- Choose a direction in which $J(\theta)$ is decreasing
Gradient descent

- How to change θ to improve $J(\theta)$?
- Choose a direction in which $J(\theta)$ is decreasing
- Derivative $\frac{\partial J(\theta)}{\partial \theta}$
 - Positive \Rightarrow increasing
 - Negative \Rightarrow decreasing
Gradient descent in more dimensions

- Gradient vector

\[\nabla J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_0} & \frac{\partial J(\theta)}{\partial \theta_1} & \cdots \end{bmatrix} \]

Indicates direction of steepest ascent (negative = steepest descent)
Gradient descent

- Initialization
- Step size α
 - Can change over iterations
- Gradient direction
- Stopping condition

Initialize θ

Do{
 $\theta \leftarrow \theta - \alpha \nabla_\theta J(\theta)$
}

while ($\alpha \| \nabla_\theta J \| > \varepsilon$)
Gradient for the MSE

- **MSE**

\[
J(\theta) = \frac{1}{m} \sum_j (y^{(j)} - \theta \cdot x^{(j)T})^2
\]

- \(\nabla J = ? \)

\[
J(\theta) = \frac{1}{m} \sum_j (y^{(j)} - \theta_0 x_0^{(j)} - \theta_1 x_1^{(j)} - \ldots)^2
\]

\[
\frac{\partial J}{\partial \theta_0} = \frac{\partial}{\partial \theta_0} \frac{1}{m} \sum_j (e_j(\theta))^2
\]

\[
= \frac{1}{m} \sum_j \frac{\partial}{\partial \theta_0} (e_j(\theta))^2
\]

\[
= \frac{1}{m} \sum_j 2e_j(\theta) \frac{\partial}{\partial \theta_0} e_j(\theta)
\]

\[
\frac{\partial e_j(\theta)}{\partial \theta_0} = \frac{\partial}{\partial \theta_0} y^{(j)} - \frac{\partial}{\partial \theta_0} \theta_0 x_0^{(j)} - \frac{\partial}{\partial \theta_0} \theta_1 x_1^{(j)} - \ldots
\]

\[
= 0
\]

\[
= -x_0^{(j)}
\]
Gradient for the MSE

- **MSE**

\[J(\theta) = \frac{1}{m} \sum_j (y(j) - \theta \cdot x(j)^T)^2 \]

- **\(\nabla J = ? \)**

\[J(\theta) = \frac{1}{m} \sum_j (y(j) - \theta_0 x_0^{(j)} - \theta_1 x_1^{(j)} - \ldots)^2 \]

\[
\nabla J(\theta) = \begin{bmatrix}
\frac{\partial J}{\partial \theta_0} & \frac{\partial J}{\partial \theta_1} & \ldots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{2}{m} \sum_j -e_j(\theta)x_0^{(j)} & \frac{2}{m} \sum_j -e_j(\theta)x_1^{(j)} & \ldots \\
\end{bmatrix}
\]
Gradient descent

- Initialization
- Step size α
 - Can change over iterations
- Gradient direction
- Stopping condition

Initialize θ

Do{
 $\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$
}

while $(\alpha \| \nabla_{\theta} J \| > \varepsilon)$

$$J(\theta) = \frac{1}{m} \sum_{j} (y^{(j)} - \theta \cdot x^{(j)T})^2$$

$$\nabla J(\theta) = -\frac{2}{m} \sum_{j} (y^{(j)} - \theta \cdot x^{(j)T}) \cdot [x_0^{(j)} x_1^{(j)} \ldots]$$

Error magnitude & direction for datum j

Sensitivity to each param
Derivative of MSE

- Rewrite using matrix form

\[
\nabla J(\theta) = -\frac{2}{m} \sum_j (y^{(j)} - \theta \cdot x^{(j)T}) \cdot \begin{bmatrix} x_0^{(j)} & x_1^{(j)} & \ldots \end{bmatrix}
\]

\[
\theta = [\theta_0, \ldots, \theta_n]
\]

\[
y = \begin{bmatrix} y^{(1)} \ldots, y^{(m)} \end{bmatrix}^T
\]

\[
\nabla J(\theta) = -\frac{2}{m} (y^T - \theta X^T) \cdot X
\]

```python
# error residual
e = Y - X.dot(theta.T)
# compute the gradient
DJ = - e.dot(X) * 2.0/m
# take a step
theta -= alpha * DJ
```
Gradient descent on cost function
Comments on gradient descent

- Very general algorithm
 - We’ll see it many times
- Local minima
 - Sensitive to starting point
Comments on gradient descent

• Very general algorithm
 – We’ll see it many times

• Local minima
 – Sensitive to starting point

• Step size
 – Too large? Too small? Automatic ways to choose?
 – May want step size to decrease with iteration
 – Common choices:
 • Fixed
 • Linear: $C/(\text{iteration})$
 • Line search / backoff (Armijo, etc.)
 • Newton’s method
Newton’s method

- Want to find the roots of $f(x)$
 - “Root”: value of x for which $f(x)=0$
- Initialize to some point x
- Compute the tangent at x & compute where it crosses x-axis
 \[
 \nabla f(z) = \frac{0 - f(z)}{z' - z} \quad \Rightarrow \quad z' = z - \frac{f(z)}{\nabla f(z)}
 \]
- Optimization: find roots of $rJ(\mu)$
 \[
 \nabla^2 J(\theta) = \frac{0 - \nabla J(\theta)}{\theta' - \theta} \quad \Rightarrow \quad \theta' = \theta - \frac{\nabla J(\theta)}{\nabla^2 J(\theta)}
 \]
 - If converges, usually very fast
 - Works well for smooth, non-pathological functions, locally quadratic
 - For n large, may be computationally hard: $O(n^2)$ storage, $O(n^3)$ time

(Multivariate:
 \[r J(\mu) = \text{gradient vector} \]
 \[r^2 J(\mu) = \text{matrix of 2^{nd} derivatives} \]
 \[a/b = a^{-1}, \text{matrix inverse} \]
Stochastic / Online gradient descent

- **MSE**

\[
J(\theta) = \frac{1}{m} \sum_{j} J_j(\theta), \quad J_j(\theta) = (y^{(j)} - \theta \cdot x^{(j)T})^2
\]

- **Gradient**

\[
\nabla J(\theta) = \frac{1}{m} \sum_{j} \nabla J_j(\theta) \quad \nabla J_j(\theta) = (y^{(j)} - \theta \cdot x^{(j)T}) \cdot [x_0^{(j)} x_1^{(j)} \ldots]
\]

- **Stochastic (or “online”) gradient descent:**
 - Use updates based on individual datum j, chosen at random
 - At optima, \(\mathbb{E} [\nabla J_j(\theta)] = \nabla J(\theta) = 0 \) (average over the data)
Online gradient descent

- Update based on one datum, and its residual, at a time

Initialize θ

Do {
 for $j=1:m$
 $\theta \leftarrow \theta - \alpha \nabla_{\theta} J_j(\theta)$
} while (not done)
Online gradient descent

Initialize θ
Do {
 for $j=1:m$
 $\theta \leftarrow \theta - \alpha \nabla_{\theta} J_j(\theta)$
} while (not done)
Online gradient descent

Initialize θ
Do {
 for $j=1:m$
 $\theta \leftarrow \theta - \alpha \nabla_{\theta}J_j(\theta)$
} while (not done)
Online gradient descent

Initialize θ
Do {
 for $j=1:m$
 $\theta \leftarrow \theta - \alpha \nabla \theta_j(\theta)$
} while (not done)
Online gradient descent

Initialize θ

Do {
 for $j=1:m$
 $\theta \leftarrow \theta - \alpha \nabla_{\theta} J_j(\theta)$
} while (not done)
Online gradient descent

Initialize θ
Do {
 for $j=1:m$
 $\theta \leftarrow \theta - \alpha \nabla_{\theta} J_j(\theta)$
 } while (not done)
Online gradient descent

• Benefits
 – Lots of data = many more updates per pass
 – Computationally faster

• Disadvantages
 – No longer strictly “descent”
 – Stopping conditions may be harder to evaluate
 (Can use “running estimates” of J(.), etc.)

Initialize θ

Do {
 for $j=1:m$
 $\theta \leftarrow \theta - \alpha \nabla_{\theta} J_j(\theta)$
} while (not done)

\[
J_j(\theta) = (y^{(j)} - \theta \cdot x^{(j)T})^2
\]

\[
\nabla J_j(\theta) = -2(y^{(j)} - \theta \cdot x^{(j)T}) \cdot [x_0^{(j)} x_1^{(j)} \ldots]
\]
Machine Learning

- Linear Regression via Least Squares
- Gradient Descent Algorithms
- Direct Minimization of Squared Error
- Regression with Non-linear Features
- Bias, Variance, & Validation
- Regularized Linear Regression
MSE Minimum

- Consider a simple problem
 - One feature, two data points
 - Two unknowns: θ_0, θ_1
 - Two equations:
 \[
 y^{(1)} = \theta_0 + \theta_1 x^{(1)} \\
 y^{(2)} = \theta_0 + \theta_1 x^{(2)}
 \]
- Can solve this system directly:
 \[
 \begin{align*}
 y^T &= \theta X^T \\
 \hat{\theta} &= y^T (X^T)^{-1}
 \end{align*}
 \]
- However, most of the time, $m > n$
 - There may be no linear function that hits all the data exactly
 - Instead, solve directly for minimum of MSE function
MSE Minimum

• Simplify with some algebra:

\[\nabla J(\theta) = -\frac{2}{m} (y^T - \theta X^T) \cdot X = 0 \]

\[y^T X - \theta X^T \cdot X = 0 \]
\[y^T X = \theta X^T \cdot X \]
\[\theta = y^T X (X^T X)^{-1} \]

• \(X (X^T X)^{-1} \) is called the “pseudo-inverse”

• If \(X^T \) is square and full rank, this is the inverse
• If \(m > n \): overdetermined; gives minimum MSE fit
Matlab MSE

- This is easy to solve in Matlab...

\[\theta = y^T X (X^T X)^{-1} \]

\%
\%
\%
\%
\%
\%
\%
\%

% Solution 1: “manual”
\[\text{th} = y' \times X \times \text{inv}(X' \times X); \]

% Solution 2: “mrdivide”
\[\text{th} = y' / X' ; \% \text{th} \times X' = y \Rightarrow \text{th} = y / X' \]
Python MSE

• This is easy to solve in Python / NumPy…

\[\theta = y^T X (X^T X)^{-1} \]

y = np.matrix([[y1], ... , [ym]])
X = np.matrix([[x1_0 ... x1_n], [x2_0 ... x2_n], ...
...
#
Solution 1: “manual”
th = y.T * X * np.linalg.inv(X.T * X)

Solution 2: “least squares solve”
th = np.linalg.lstsq(X, Y)
Normal equations

\[\nabla J(\theta) = 0 \implies (y^T - \theta X^T) \cdot X = 0 \]

- **Interpretation:**
 - \((y - \theta X) = (y - \hat{y})\) is the vector of errors in each example
 - \(X\) are the features we have to work with for each example
 - Dot product = 0: orthogonal

\[
\begin{align*}
\underline{y}^T &= [y^{(1)} \ldots y^{(m)}] \\
\underline{x}_i &= [x_i^{(1)} \ldots x_i^{(m)}]
\end{align*}
\]
Normal equations

\[\nabla J(\theta) = 0 \implies (y^T - \theta X^T) \cdot X = 0 \]

• Interpretation:
 – \((y - \theta X) = (y - \hat{y})\) is the vector of errors in each example
 – \(X\) are the features we have to work with for each example
 – Dot product = 0: orthogonal

• Example:

\[
\begin{align*}
y &= [1 \ 3 \ 3]^T \\
x_0 &= [1 \ 1 \ 1]^T \\
x_1 &= [1 \ 2 \ 4]^T \\
\theta &= [1.00 \ 0.57] \\
\epsilon &= (y - \hat{y}) = [-0.57 \ 0.85 \ -0.28]^T
\end{align*}
\]
Effects of MSE choice

• Sensitivity to outliers

16^2 cost for this one datum

Heavy penalty for large errors
L1 error: Mean Absolute Error

\[\ell_1(\theta) = \sum_j |y^{(j)} - \hat{y}(x^{(j)})| \]

\[= \sum_j |y - \theta \cdot x^T| \]
Cost functions for regression

\[\ell_2 : (y - \hat{y})^2 \quad \text{(MSE)} \]

\[\ell_1 : |y - \hat{y}| \quad \text{(MAE)} \]

Something else entirely…

\[c - \log(\exp(-(y - \hat{y})^2) + c) \quad \text{(???)} \]

Arbitrary functions cannot be solved in closed form - use gradient descent
Machine Learning

- Linear Regression via Least Squares
- Gradient Descent Algorithms
- Direct Minimization of Squared Error
- Regression with Non-linear Features
- Bias, Variance, & Validation
- Regularized Linear Regression
More dimensions?

\[\hat{y}(x) = \theta \cdot x^T \]

\[\theta = [\theta_0 \ \theta_1 \ \theta_2] \]

\[x = [1 \ x_1 \ x_2] \]
Nonlinear functions

- What if our hypotheses are not lines?
 - Ex: higher-order polynomials
Nonlinear functions

• Single feature x, predict target y:

$$ D = \{(x^{(j)}, y^{(j)})\} $$

$$ \hat{y}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 $$

Add features:

$$ D = \{([x^{(j)}, (x^{(j)})^2, (x^{(j)})^3], y^{(j)})\} $$

$$ \hat{y}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 $$

Linear regression in new features

• Sometimes useful to think of “feature transform”

$$ \Phi(x) = [1, x, x^2, x^3, \ldots] $$

$$ \hat{y}(x) = \theta \cdot \Phi(x) $$
Higher-order polynomials

- Fit in the same way
- More “features”
Features

- In general, can use any features we think are useful

- Other information about the problem
 - Anything you can encode as fixed-length vectors of numbers

- Polynomial functions
 - Features $[1, x, x^2, x^3, \ldots]$

- Other functions
 - $1/x$, \sqrt{x}, $x_1 \times x_2$, …

- “Linear regression” = linear in the parameters
 - Features we can make as complex as we want!
Higher-order polynomials

- Are more features better?

- “Nested” hypotheses
 - 2^{nd} order more general than 1^{st},
 - 3^{rd} order more general than 2^{nd}, …

- Fits the observed data better
Overfitting and complexity

- More complex models will always fit the training data better
- But they may “overfit” the training data, learning complex relationships that are not really present
Test data

- After training the model
- Go out and get more data from the world
 - New observations (x,y)
- How well does our model perform?
Training versus test error

- Plot MSE as a function of model complexity
 - Polynomial order
- Decreases
 - More complex function fits training data better
- What about new data?
 - 0th to 1st order
 - Error decreases
 - Underfitting
 - Higher order
 - Error increases
 - Overfitting

Training data

New, “test” data

Mean squared error

Polynomial order
Linear Regression via Least Squares

Gradient Descent Algorithms

Direct Minimization of Squared Error

Regression with Non-linear Features

Bias, Variance, & Validation

Regularized Linear Regression
Inductive bias

- The assumptions needed to predict examples we haven’t seen
- Makes us “prefer” one model over another
- Polynomial functions; smooth functions; etc

- Some bias is necessary for learning!
Bias & variance

Data we observe

\[y(x) = \theta_0 + \theta_1 x + \nu \]

"The world"

\[\hat{y}(x) = \hat{\theta}_0 + \hat{\theta}_1 x \]

Three different possible data sets:
Bias & variance

Three different possible data sets:

Each would give different predictors for any polynomial degree:
Detecting overfitting

- Overfitting effect
 - Do better on training data than on future data
 - Need to choose the “right” complexity

- One solution: “Hold-out” data
- Separate our data into two sets
 - Training
 - Test
- Learn only on training data
- Use test data to estimate generalization quality
 - Model selection

- All good competitions use this formulation
 - Often multiple splits: one by judges, then another by you
Model selection

• Which of these models fits the data best?
 – $p=0$ (constant); $p=1$ (linear); $p=3$ (cubic); …

• Or, should we use KNN? Other methods?

• Model selection problem
 – Can’t use training data to decide (esp. if models are nested!)

• Want to estimate
 \[
 \mathbb{E}_{(x,y)}[J(y, \hat{y}(x; D))]
 \]

 $J =$ loss function (MSE)
 $D =$ training data set
Hold-out method

• Validation data
 – “Hold out” some data for evaluation (e.g., 70/30 split)
 – Train only on the remainder

• Some problems, if we have few data:
 – Few data in hold-out: noisy estimate of the error
 – More hold-out data leaves less for training!
Cross-validation method

• K-fold cross-validation
 – Divide data into K disjoint sets
 – Hold out one set (= \(M / K \) data) for evaluation
 – Train on the others (= \(M^*(K-1) / K \) data)

<table>
<thead>
<tr>
<th>(x^{(i)})</th>
<th>(y^{(i)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>79</td>
</tr>
<tr>
<td>32</td>
<td>-2</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>68</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>-16</td>
</tr>
<tr>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>53</td>
<td>77</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>87</td>
<td>94</td>
</tr>
</tbody>
</table>

- Split 1:
 MSE = 331.8

- Split 2:
 MSE = 361.2

- Split 3:
 MSE = 669.8

3-Fold X-Val MSE = 464.1
Cross-validation method

- **K-fold cross-validation**
 - Divide data into K disjoint sets
 - Hold out one set (= M / K data) for evaluation
 - Train on the others (= M*(K-1) / K data)

![Graph showing cross-validation results](image)

<table>
<thead>
<tr>
<th>x(i)</th>
<th>y(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>79</td>
</tr>
<tr>
<td>32</td>
<td>-2</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>68</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>-16</td>
</tr>
<tr>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>53</td>
<td>77</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>87</td>
<td>94</td>
</tr>
</tbody>
</table>

Split 1: MSE = 280.5
Split 2: MSE = 3081.3
Split 3: MSE = 1640.1
3-Fold X-Val MSE = 1667.3
Cross-validation

• Advantages:
 – Lets us use more (M) validation data
 (= less noisy estimate of test performance)

• Disadvantages:
 – More work
 • Trains K models instead of just one
 – Doesn’t evaluate any *particular* predictor
 • Evaluates K different models & averages
 • Scores *hyperparameters / procedure*, not an actual, specific predictor!

• Also: still estimating error for M’ < M data…
Learning curves

• Plot performance as a function of training size
 – Assess impact of fewer data on performance
 Ex: MSE0 - MSE (regression)
 or 1-Err (classification)

• Few data
 – More data significantly improve performance

• “Enough” data
 – Performance saturates

• If slope is high, decreasing m (for validation / cross-validation) might have a big impact…
Leave-one-out cross-validation

- When $K=M$ (# of data), we get
 - Train on all data except one
 - Evaluate on the left-out data
 - Repeat M times (each data point held out once) and average

\[
\text{LOO X-Val MSE} = \ldots
\]

<table>
<thead>
<tr>
<th>(x^{(i)})</th>
<th>(y^{(i)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>79</td>
</tr>
<tr>
<td>32</td>
<td>-2</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>68</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>-16</td>
</tr>
<tr>
<td>20</td>
<td>43</td>
</tr>
<tr>
<td>53</td>
<td>77</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>87</td>
<td>94</td>
</tr>
</tbody>
</table>
Cross-validation Issues

• Need to balance:
 – Computational burden (multiple trainings)
 – Accuracy of estimated performance / error

• Single hold-out set:
 – Estimates performance with $M' < M$ data (important? learning curve?)
 – Need enough data to trust performance estimate
 – Estimates performance of a particular, trained learner

• K-fold cross-validation
 – K times as much work, computationally
 – Better estimates, still of performance with $M' < M$ data

• Leave-one-out cross-validation
 – M times as much work, computationally
 – $M' = M-1$, but overall error estimate may have high variance
Machine Learning

- Linear Regression via Least Squares
- Gradient Descent Algorithms
- Direct Minimization of Squared Error
- Regression with Non-linear Features
- Bias, Variance, & Validation
- Regularized Linear Regression
What to do about under/overfitting?

- **Ways to increase complexity?**
 - Add features, parameters
 - We’ll see more…

- **Ways to decrease complexity?**
 - Remove features ("feature selection")
 - “Fail to fully memorize data”
 - Partial training
 - Regularization

![Graph showing ideal range for model complexity](image)
Linear regression

• Linear model, two data

• Quadratic model, two data?
 – Infinitely many settings with zero error
 – How to choose among them?

• Higher order coefficients = 0?
 – Uses knowledge of where features came from…

• Could choose e.g. minimum magnitude:
 \[\min \theta \theta^T \quad s.t. \quad J(\theta) = 0 \]

• A type of bias: tells us which models to prefer
0th Order Polynomial

\[N = 0 \]
1^{st} Order Polynomial

\[N=1 \]
3^{rd} Order Polynomial

![Graph showing a 3rd order polynomial with N=3]
9^{th} Order Polynomial
Estimated Polynomial Coefficients

<table>
<thead>
<tr>
<th>N</th>
<th>$N=0$</th>
<th>$N=1$</th>
<th>$N=3$</th>
<th>$N=9$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.19</td>
<td>0.82</td>
<td>0.31</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>-1.27</td>
<td>7.99</td>
<td>232.37</td>
<td>640042.26</td>
</tr>
<tr>
<td></td>
<td>-25.43</td>
<td>-5321.83</td>
<td>48568.31</td>
<td>125201.43</td>
</tr>
<tr>
<td></td>
<td>17.37</td>
<td>-231639.30</td>
<td>-557682.99</td>
<td>1061800.52</td>
</tr>
</tbody>
</table>

The graph shows the estimated regression coefficients θ for different values of N. The inset graph plots E_{RMS} versus N for both training and test cases.
Regularization

• Can modify our cost function J to add “preference” for certain parameter values

$$J(\theta) = \frac{1}{2}(y - \theta X^T) \cdot (y - \theta X^T)^T + \alpha \theta \theta^T$$

• New solution (derive the same way)

$$\theta = y X (X^T X + \alpha I)^{-1}$$

– Problem is now well-posed for any degree

• Notes:
 – “Shrinks” the parameters toward zero
 – Alpha large: we prefer small theta to small MSE
 – Regularization term is independent of the data: paying more attention reduces our model variance

L_2 penalty: “Ridge regression”

$$\theta \theta^T = \sum_{i} \theta_i^2$$
Regression: Zero Regularization
Regression: Moderate Regularization
Regression: Big Regularization
Impact of Regularization Parameter

![Graph showing the impact of regularization parameter $\ln(\alpha)$ on E_{RMS}. The graph displays two curves: one for training and another for test data, indicating the RMS error as a function of $\ln(\alpha)$.](Image)
Estimated Polynomial Coefficients

<table>
<thead>
<tr>
<th>Estimated Regression Coefficients θ</th>
<th>α zero</th>
<th>α medium</th>
<th>α big</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>0.35</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>232.37</td>
<td>4.74</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>-5321.83</td>
<td>-0.77</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>48568.31</td>
<td>-31.97</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>-231639.30</td>
<td>-3.89</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>640042.26</td>
<td>55.28</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>-1061800.52</td>
<td>41.32</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>1042400.18</td>
<td>-45.95</td>
<td>-0.00</td>
<td></td>
</tr>
<tr>
<td>-557682.99</td>
<td>-91.53</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>125201.43</td>
<td>72.68</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
Regularization

- Compare between unreg. & reg. results

\[
\text{Alpha} = 0 \\
\text{(Unregularized)}
\]

\[
\text{Alpha} = 1
\]
Different regularization functions

- More generally, for the L_p regularizer:

$$\left(\sum_i |\theta_i|^p \right)^{\frac{1}{p}}$$

Isosurfaces: $||\theta||_p = \text{constant}$

- $L_0 = \text{limit as } p \text{ goes to 0}: \text{“number of nonzero weights”, a natural notion of complexity}$
Different regularization functions

- More generally, for the L_p regularizer:

$$
\left(\sum_i |\theta_i|^p \right)^{\frac{1}{p}}
$$

\begin{align*}
\text{\textcolor{red}{p=2}} & & \text{\textcolor{green}{p=1}} & & \text{\textcolor{blue}{p=0.3}} \\
\end{align*}
Regularization: L_2 vs L_1

- Estimate balances data term & regularization term

![Diagram showing L_2 and L_1 regularization with points minimizing data term and combination]
Regularization: L_2 vs L_1

- Estimate balances data term & regularization term
- Lasso tends to generate sparser solutions than a quadratic regularizer.
Gradient-Based Optimization

- \(L_2\) makes (all) coefficients smaller
- \(L_1\) makes (some) coefficients exactly zero: feature selection

Objective Function:

\[f(\theta_i) = |\theta_i|^p \]

Negative Gradient:

\[-f'(\theta_i) \]

(Informal intuition: Gradient of \(L_1\) objective not defined at zero)