CS184A/284A
AI in Biology and Medicine
SVM
Machine Learning

- Support Vector Machines
- Lagrangian and Dual
- The Kernel Trick
Linear classifiers

- Which decision boundary is “better”?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better…

- How can we quantify “better”, and learn the “best” parameter settings?
One possible answer...

- Maybe we want to maximize our “margin”
- To optimize, relate to model parameters
- Remove “scale invariance”
 - Define class +1 in some region, class −1 in another
 - Make those regions as far apart as possible

We could define such a function:

\[f(x) = w \cdot x + b \]

\[f(x) > +1 \text{ in region } +1 \]
\[f(x) < -1 \text{ in region } -1 \]

Passes through zero in center…

“Support vectors” – data points on margin

Notation change!
\[\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots \]
\[b + w_1 x_1 + w_2 x_2 + \ldots \]
Computing the margin width

- Vector $\mathbf{w} = [w_1, w_2, \ldots]$ is perpendicular to the boundaries (why?)

- $\mathbf{w} \cdot \mathbf{x} + b = 0 \quad \& \quad \mathbf{w} \cdot \mathbf{x'} + b = 0 \quad \Rightarrow \quad \mathbf{w} \cdot (\mathbf{x'} - \mathbf{x}) = 0$: orthogonal
Computing the margin width

- Vector $\mathbf{w} = [w_1, w_2, \ldots]$ is perpendicular to the boundaries.
- Choose \mathbf{x}^- s.t. $f(\mathbf{x}^-) = -1$; let \mathbf{x}^+ be the closest point with $f(\mathbf{x}^+) = +1$
 - $\mathbf{x}^+ = \mathbf{x}^- + r \cdot \mathbf{w}$ (why?)
- Closest two points on the margin also satisfy

 $$w \cdot x^- + b = -1$$
 $$w \cdot x^+ + b = +1$$

![Diagram with regions and margin](image)
Computing the margin width

- Vector $\mathbf{w} = [w_1, w_2, \ldots]$ is perpendicular to the boundaries
- Choose \mathbf{x}^- s.t. $f(\mathbf{x}^-) = -1$; let \mathbf{x}^+ be the closest point with $f(\mathbf{x}^+) = +1$
 \[\mathbf{x}^+ = \mathbf{x}^- + r \times \mathbf{w} \]
- Closest two points on the margin also satisfy
 \[w \cdot \mathbf{x}^- + b = -1 \]
 \[w \cdot \mathbf{x}^+ + b = +1 \]

\[
\begin{align*}
 w \cdot (\mathbf{x}^- + r\mathbf{w}) + b &= +1 \\
 \Rightarrow r \|\mathbf{w}\|^2 + w \cdot \mathbf{x}^- + b &= +1 \\
 \Rightarrow r \|\mathbf{w}\|^2 - 1 &= +1 \\
 \Rightarrow r &= \frac{2}{\|\mathbf{w}\|^2} \\
 M &= \|\mathbf{x}^+ - \mathbf{x}^-\| = \|r\mathbf{w}\| \\
 &= \frac{2}{\|\mathbf{w}\|^2} \|\mathbf{w}\| = \frac{2}{\sqrt{w^T w}}
\end{align*}
\]
Maximum margin classifier

- Constrained optimization
 - Get all data points correct
 - Maximize the margin

This is an example of a quadratic program: quadratic cost function, linear constraints

\[
w^* = \arg \max_w \frac{2}{\sqrt{w^T w}}
\]

such that “all data on the correct side of the margin”

Primal problem:

\[
w^* = \arg \min_w \sum_j w_j^2
\]

s.t.

\[
y^{(i)} = +1 \Rightarrow w \cdot x^{(i)} + b \geq +1
\]

\[
y^{(i)} = -1 \Rightarrow w \cdot x^{(i)} + b \leq -1
\]

(m constraints)
Maximum margin classifier

- Constrained optimization
 - Get all data points correct
 - Maximize the margin

This is an example of a quadratic program: quadratic cost function, linear constraints

Primal problem:

$$w^* = \arg\min_w \sum_j w_j^2$$

s.t.

$$y^{(i)} (w \cdot x^{(i)} + b) \geq +1$$

(m constraints)
A 1D Example

- Suppose we have three data points:
 - $x = -3, y = -1$
 - $x = -1, y = -1$
 - $x = 2, y = 1$

- Many separating perceptrons, $T[ax+b]$
 - Anything with $ax+b = 0$ between -1 and 2

- We can write the margin constraints:
 - $a(-3) + b < -1 \Rightarrow b < 3a - 1$
 - $a(-1) + b < -1 \Rightarrow b < a - 1$
 - $a(2) + b > +1 \Rightarrow b > -2a + 1$
A 1D Example

• Suppose we have three data points
 \[x = -3, \ y = -1\]
 \[x = -1, \ y = -1\]
 \[x = 2, \ y = 1\]

• Many separating perceptrons, \(T[ax+b]\)
 – Anything with \(ax+b = 0\) between -1 and 2

• We can write the margin constraints
 \[a (-3) + b < -1 \quad \Rightarrow \quad b < 3a - 1\]
 \[a (-1) + b < -1 \quad \Rightarrow \quad b < a - 1\]
 \[a (2) + b > +1 \quad \Rightarrow \quad b > -2a + 1\]

• Ex: \(a = 1, \ b = 0\)
A 1D Example

- Suppose we have three data points
 \(x = -3, \ y = -1 \)
 \(x = -1, \ y = -1 \)
 \(x = 2, \ y = 1 \)

- Many separating perceptrons, \(T[ax+b] \)
 - Anything with \(ax+b = 0 \) between -1 and 2

- We can write the margin constraints
 \[
 a (-3) + b < -1 \quad \Rightarrow \quad b < 3a - 1 \\
 a (-1) + b < -1 \quad \Rightarrow \quad b < a - 1 \\
 a (2) + b > +1 \quad \Rightarrow \quad b > -2a + 1
 \]

- Ex: \(a = 1, \ b = 0 \)
- Minimize \(\|a\| \) \(\Rightarrow \) \(a = .66, \ b = -.33 \)
 - Two data on the margin; constraints “tight”
Machine Learning

- Support Vector Machines
- Lagrangian and Dual
- The Kernel Trick
Lagrangian optimization

- Want to optimize constrained system:
 \[w^* = \arg \min_{w,b} \sum_j w_j^2 \quad s.t. \quad 1 - y^{(i)}(w \cdot x^{(i)} + b) \leq 0 \]

- Introduce Lagrange multipliers \(\alpha \) (one per constraint)
 \[\theta^* = \arg \min_\theta \max_{\alpha \geq 0} f(\theta) + \sum_i \alpha_i g_i(\theta) \]
 - Can optimize \(\theta, \alpha \) jointly over a simpler constraint set (initialization easy)
 - For inner max:
 \[g_i(\theta) \leq 0 : \alpha_i = 0 \]
 \[g_i(\theta) > 0 : \alpha_i \to +\infty \]
 - Any optimum of the original problem is a saddle point of the new
 - KKT complementary slackness:
 \[\alpha_i > 0 \Rightarrow g_i(\theta) = 0 \]
Notes on Lagrangian optimization

• Equivalence if alpha fully optimized
• Simple to initialize to valid point
 – Gi may be unsatisfied => if so, penalty grows, encouraging theta to satisfy
• Visualization; valid region?
Optimization

- Use Lagrange multipliers
 - Enforce inequality constraints

\[w^* = \underset{w}{\arg \min} \max_{\alpha \geq 0} \frac{1}{2} \sum_j w_j^2 + \sum_i \alpha_i \left(1 - y^{(i)} \left(w \cdot x^{(i)} + b \right) \right) \]

Stationary conditions wrt \(w \):

\[w^* = \sum_i \alpha_i y^{(i)} x^{(i)} \]

and since any support vector has \(y = wx + b \),

\[b = \frac{1}{N_{sv}} \sum_{i \in SV} \left(y^{(i)} - w \cdot x^{(i)} \right) \]

Alphas > 0 only on the margin:
“support vectors”
Dual form

- Use Lagrange multipliers
 - Enforce inequality constraints
 - Use solution w^* to write solely in terms of alphas:

$$\max_{\alpha \geq 0} \sum_i \left[\alpha_i - \frac{1}{2} \sum_{ij} \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)}) \right]$$

s.t. $\sum_{i} \alpha_i y^{(i)} = 0$ (since derivative wrt $b = 0$)

Another quadratic program:
optimize m vars with 1+m (simple) constraints
cost function has m^2 dot products

$$w^* = \sum_{i} \alpha_i y^{(i)} x^{(i)}$$

$$b = \frac{1}{Nsv} \sum_{i \in SV} (y^{(i)} - w \cdot x^{(i)})$$
Maximum margin classifier

• What if the data are not linearly separable?
 – Want a large “margin”:
 \[
 \min_w \sum_j w_j^2
 \]
 – Want low error:
 \[
 \min_w \sum_i J(y^{(i)}, w \cdot x^{(i)} + b)
 \]
 – “Soft margin” : introduce slack variables for violated constraints

Assigns “cost” R proportional to distance from margin
Another quadratic program!

\[
\begin{align*}
 w^* &= \arg \min_{w, \epsilon} \sum_j w_j^2 + R \sum_i \epsilon^{(i)} \\
 \text{s.t.} \quad & y^{(i)} (w^T x^{(i)} + b) \geq +1 - \epsilon^{(i)} \quad \text{(violate margin by \quad 2)} \\
 & \epsilon^{(i)} \geq 0
\end{align*}
\]
Soft margin SVM

- Large margin vs. Slack variables
- \(R \) large = hard margin
- \(R \) smaller
 - A few wrong predictions; boundary farther from rest

\[
\begin{align*}
 w^* &= \arg\min_{w, \epsilon} \sum_j w_j^2 + R \sum_i \epsilon^{(i)} \\
 \text{s.t.} \\
 y^{(i)} \left(w^T x^{(i)} + b \right) &\geq +1 - \epsilon^{(i)} \\
 \epsilon^{(i)} &\geq 0
\end{align*}
\]
Maximum margin classifier

- **Soft margin optimization:**
 - For *any* weights w, we can choose ε to satisfy constraints

 - Write ε^* as a function of w (call this J) and optimize directly

- $J = \text{distance from the "correct" place}$

\[
J_i = \max[0, 1 - y^{(i)}(w \cdot x^{(i)} + b)]
\]

\[
w^* = \arg \min_w \frac{1}{R} \sum_j w_j^2 + \sum_i J_i(y^{(i)}, w \cdot x^{(i)} + b)
\]

(L2 regularization on the weights)

\[
w^* = \arg \min_{w, \epsilon} \sum_j w_j^2 + R \sum_i \epsilon^{(i)}
\]

\[
y^{(i)}(w^T x^{(i)} + b) \geq +1 - \epsilon^{(i)}
\]

(hinge loss)

\[w \cdot x + b \rightarrow +1\]
Soft margin dual:

\[
\max_{0 \leq \alpha \leq R} \sum_i \alpha_i - \frac{1}{2} \sum_{ij} \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)})
\]

\[\text{s.t. } \sum_i \alpha_i y^{(i)} = 0\]

\(K_{ij}\) measures "similarity" of \(x_i\) and \(x_j\) (their dot product)

Support vectors now data on or past margin…

Prediction:

\[\hat{y} = w^* \cdot x + b = \sum_i \alpha_i y^{(i)} x^{(i)} \cdot x + b\]

\[w^* = \sum_i \alpha_i y^{(i)} x^{(i)}\]

\[b = \ldots\]

More complicated; can solve e.g. using any \(\alpha \in (0, R)\)
Support Vectors

The *support vectors* are data points i with non-zero weight α_i:
- Points with minimum margin (on optimized boundary)
- Points which violate margin constraint, but are still correctly classified
- Points which are misclassified

For all other training data, features have *no impact* on learned weight vector

Support vectors now data on or past margin…

Prediction:

$$\hat{y} = w^* \cdot x + b = \sum_i \alpha_i y^{(i)} x^{(i)} \cdot x + b$$

$$w^* = \sum_i \alpha_i y^{(i)} x^{(i)}$$

$$b = \ldots$$

More complicated; can solve e.g. using any $\alpha \in (0,R)$
Multi-class SVMs

• Use standard multi-class linear prediction, 0/1 loss:

\[\hat{y} = f(x; \theta) = \arg \max_{y} \theta \cdot \Phi(x, y) \]

\[\Phi(x, y) = [\mathbb{1}[y = 0] \Phi(x) \ , \ \mathbb{1}[y = 1] \Phi(x) \ , \ldots] \]

• Hinge-like loss / slack variable optimization:

\[w^* = \arg \min_{w,b,\epsilon} \sum_{j} w_j^2 + R \sum_{i} \epsilon(i) \]

\[w^T \Phi(x^{(i)}, y^{(i)}) - w^T \Phi(x^{(i)}, y) \geq 1 - \epsilon(i) \quad \forall y \neq y^{(i)} \]

• Can introduce class-specific loss function: \(\Delta(y, \hat{y}) \)

\[w^T \Phi(x^{(i)}, y^{(i)}) - w^T \Phi(x^{(i)}, y) \geq \Delta(y^{(i)}, y) - \epsilon(i) \quad \forall y \neq y^{(i)} \]

 – Reduces to earlier form for 0/1 loss:
 \[\Delta(y, \hat{y}) = \mathbb{1}[y \neq \hat{y}] \]

 – Again, can optimize as QP (e.g., SMO) or hinge-like loss (e.g., SGD)
Linear SVMs

- So far, looked at linear SVMs:
 - Expressible as linear weights “w”
 - Linear decision boundary

- Dual optimization for a linear SVM:

\[
\max_{0 \leq \alpha \leq R} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)} \cdot x^{(j)}) \\
\text{s.t.} \sum_i \alpha_i y^{(i)} = 0
\]

- Depend on pairwise dot products:
 - Kij measures “similarity”, e.g., 0 if orthogonal

\[
K_{ij} = x^{(i)} \cdot x^{(j)}
\]
Adding features

• Linear classifier can’t learn some functions

1D example:

Not linearly separable

Add quadratic features

Linearly separable in new features…
Adding features

- Recall: feature function \(\Phi(x) \)
 - Predict using some transformation of original features
 \[
 \hat{y}(x) = \text{sign}\left[w \cdot \Phi(x) + b \right]
 \]

- Dual form of SVM optimization is:
 \[
 \max_{0 \leq \alpha \leq R} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y^{(i)} y^{(j)} \Phi(x^{(i)}) \Phi(x^{(j)})^T \quad \text{s.t.} \quad \sum_i \alpha_i y^{(i)} = 0
 \]

- For example, quadratic (polynomial) features:
 \[
 \Phi(x) = \begin{pmatrix}
 1 & \sqrt{2}x_1 & \sqrt{2}x_2 & \cdots & x_1^2 & x_2^2 & \cdots & \sqrt{2}x_1x_2 & \sqrt{2}x_1x_3 & \cdots
 \end{pmatrix}
 \]
 - Ignore root-2 scaling for now…
 - Expands “x” to length \(O(n^2) \)
Implicit features

- Need $\Phi(x^{(i)})\Phi(x^{(j)})^T$

$$\Phi(x) = (1 \ \sqrt{2}x_1 \ \sqrt{2}x_2 \ \cdots \ x_1^2 \ x_2^2 \ \cdots \ \sqrt{2}x_1x_2 \ \sqrt{2}x_1x_3 \ \cdots)$$

$$\Phi(a) = (1 \ \sqrt{2}a_1 \ \sqrt{2}a_2 \ \cdots \ a_1^2 \ a_2^2 \ \cdots \ \sqrt{2}a_1a_2 \ \sqrt{2}a_1a_3 \ \cdots)$$

$$\Phi(b) = (1 \ \sqrt{2}b_1 \ \sqrt{2}b_2 \ \cdots \ b_1^2 \ b_2^2 \ \cdots \ \sqrt{2}b_1b_2 \ \sqrt{2}b_1b_3 \ \cdots)$$

$$\Phi(a)^T \Phi(b) = 1 + \sum_j 2a_jb_j + \sum_j a_j^2b_j^2 + \sum_j \sum_{k>j} 2a_ja_kb_jb_k + \cdots$$

$$= (1 + \sum_j a_jb_j)^2$$

Can evaluate dot product in only $O(n)$ computations!
Mercer Kernels

- If $K(x,x')$ satisfies Mercer’s condition:
 \[\int_a \int_b K(a, b) g(a) g(b) \, da \, db \geq 0 \]

- Then, $K(a, b) = \Phi(a) \cdot \Phi(b)$ for some $\Phi(x)$

- Notably, Phi may be hard to calculate
 - May even be infinite dimensional!
 - Only matters that $K(x,x')$ is easy to compute:
 - Computation always stays $O(m^2)$

For all datasets X:
\[g^T \cdot K \cdot g \geq 0 \]
Some commonly used kernel functions & their shape:

Polynomial

\[K(a, b) = (1 + \sum_{j} a_j b_j)^d \]
Common kernel functions

- Some commonly used kernel functions & their shape:
 - Polynomial: \[K(a, b) = (1 + \sum_j a_j b_j)^d \]
 - Radial Basis Functions:
 \[K(a, b) = \exp\left(-\frac{(a - b)^2}{2\sigma^2}\right) \]
Common kernel functions

- Some commonly used kernel functions & their shape:

 - Polynomial: \(K(a, b) = (1 + \sum_j a_j b_j)^d \)

 - Radial Basis Functions
 \[K(a, b) = \exp\left(-\frac{(a-b)^2}{2\sigma^2}\right) \]

 - Saturating, sigmoid-like:
 \[K(a, b) = \tanh(ca^Tb + h) \]
Common kernel functions

• Some commonly used kernel functions & their shape:

 • Polynomial

 \[K(a, b) = (1 + \sum_{j} a_j b_j)^d \]

 • Radial Basis Functions

 \[K(a, b) = \exp\left(-\frac{(a - b)^2}{2\sigma^2}\right) \]

 • Saturating, sigmoid-like:

 \[K(a, b) = \tanh(ca^T b + h) \]

 • Many for special data types:
 – String similarity for text, genetics

 • In practice, may not even be Mercer kernels…
Support Vectors for Kernel SVMs

Support vectors (green) for data separable by radial basis function kernels, and non-linear margin boundaries.
How Many Support Vectors?

Only need to evaluate kernel at support vectors, not all training data. But there may still be a lot of support vectors.
Kernel SVMs

• Linear SVMs
 – Can represent classifier using \((w,b) = n+1 \) parameters
 – Or, represent using support vectors, \(x^{(i)} \)

• Kernelized?
 – \(K(x,x') \) may correspond to high (infinite?) dimensional \(\Phi(x) \)
 – Typically more efficient to remember the SVs
 – “Instance based” – save data, rather than parameters

• Contrast:
 – Linear SVM: identify features with linear relationship to target
 – Kernel SVM: identify similarity measure between data
 (Sometimes one may be easier; sometimes the other!)
Kernel Least-squares Linear Regression

• Recall L2-regularized linear regression:

\[
\theta = y X (X^T X + \alpha I)^{-1}
\]

Rearranging,

\[
\Rightarrow \theta (X^T X + \alpha I) = y X \\
\alpha \theta = (y - \theta X^T) X
\]

Define:

\[
r = \frac{1}{\alpha} (y - \theta X^T)
\]

\[
\alpha r = y - \theta X^T = y - r X X^T
\]

Gram matrix: \(m \times m \),

\[
K_{ij} = \langle x^{(i)}, x^{(j)} \rangle
\]

Rearrange & solve for \(r \):

\[
r = (X X^T + \alpha I)^{-1} y = (K + \alpha I)^{-1} y
\]

Linear prediction:

\[
\tilde{y} = \langle \theta, \tilde{x} \rangle = r X (\tilde{x})^T = \sum_j r_j \langle x^{(j)}, \tilde{x} \rangle = \sum_j r_j K(x^{(j)}, \tilde{x})
\]

Now just replace \(K(x,x') \) with your desired kernel function!
Example: Kernel Linear Regression

- **K**: MxM

\[r = \left(K + \alpha I \right)^{-1} y \]

\[\tilde{y} = \sum_j r_j K(x^{(j)}, \tilde{x}) \]

Linear kernel:

\[K(x, x') = x^T \cdot x' \]

Gaussian (RBF) kernel:

\[K(x, x') = \exp \left(-\gamma (x - x')^2 \right) \]
Summary

• Support vector machines

• “Large margin” for separable data
 – Primal QP: maximize margin subject to linear constraints
 – Lagrangian optimization simplifies constraints
 – Dual QP: m variables; involves m^2 dot product

• “Soft margin” for non-separable data
 – Primal form: regularized hinge loss
 – Dual form: m-dimensional QP

• Kernels
 – Dual form involves only pairwise similarity
 – Mercer kernels: dot products in implicit high-dimensional space