# Sequence Alignment 

Xiaohui Xie

University of California, Irvine

## Pairwise sequence alignment

- Example: Given two sequences: $S=$ ACCTGA and $T=$ AGCTA, find the minimal number of edit operations to transform $S$ to $T$.
- Edit operations:
- Insertion
- Deletion
- Substitution


## Biological Motivation

- Comparing or retrieving DNA/protein sequences in databases
- Comparing two or more sequences for similarities
- Finding patterns within a protein or DNA sequence
- Tracking the evolution of sequences


## Pairwise alignment

- Definition: An alignment of two sequences $S$ and $T$ is obtained by first inserting spaces $\left({ }^{\prime}-^{\prime}\right)$ either into, before or at the ends of $S$ and $T$ to obtain $S^{\prime}$ and $T^{\prime}$ such that $\left|S^{\prime}\right|=\left|T^{\prime}\right|$, and then placing $S^{\prime}$ on top of $T^{\prime}$ such that every character in $S^{\prime}$ is uniquely aligned with a charater in $T^{\prime}$.
- Example: two aligned sequences:

S: GTAGTACAGCT-CAGTTGGGATCACAGGCTTCT


T: GTAGAACGGCTTCAGTTG---TCACAGCGTTC-

## Similarity measure

- $\sigma(a, b)$ - the score (weight) of the alignment of character $a$ with character $b$, where $a, b \in \Sigma \cup\left\{{ }^{\prime}-^{\prime}\right\}$ wher $\Sigma=\left\{{ }^{\prime} \mathrm{A}^{\prime},{ }^{\prime} \mathrm{C}^{\prime},{ }^{\prime} \mathrm{G}^{\prime}, \mathrm{T}^{\prime}\right\}$. For example

$$
\sigma(a, b)= \begin{cases}2 & \text { if } a=b \text { and } a, b \in \Sigma \\ 0 & \text { if } a \neq b \text { and } a, b \in \Sigma \\ -1 & \text { if } a \neq b \text { and } a=^{\prime}-^{\prime} \text { or } b=^{\prime}-^{\prime}\end{cases}
$$

- Similarity between $S$ and $T$ given the alignment $\left(S^{\prime}, T^{\prime}\right)$

$$
V(S, T)=\sum_{i=1}^{n} \sigma\left(S_{i}^{\prime}, T_{i}^{\prime}\right)
$$

## Global alignment

- INPUT: Two sequences $S$ and $T$ of roughly the same length Q: What's the maximum similarity between the two. Find abest alignment.


## Nomenclature

- $\Sigma$ - an alphabet, a non-empty finite set. For example, $\Sigma=\{A, C, G, T\}$.
- A string over $\Sigma$ is any finite sequence of characters from $\Sigma$.
- $\Sigma^{n}$ - the set of all strings over $\Sigma$ of length $n$. Note that $\Sigma^{0}=\{\epsilon\}$.
- The set of all strings over $\Sigma$ of any length is denoted $\Sigma^{*}=\bigcup_{n \in \mathbb{N}} \Sigma^{n}$
- a substring of a string $T=t_{1} \cdots t_{n}$ is a string $\hat{T}=t_{1+i} \cdots t_{m+i}$, where $0 \leq i$ and $m+i \leq n$.
- a prefix of a string $T=t_{1} \cdots t_{n}$ is a string $\hat{T}=t_{1} \cdots t_{m}$, where $m \leq n$.
- a suffix of a string $T=t_{1} \cdots t_{n}$ is a string $\hat{T}=t_{n-m+1} \cdots t_{n}$, where $m \leq n$.
2 a subsequence of a string $T=t_{1} \cdots t_{n}$ is a string $\hat{T}=t_{i_{1}} \cdots t_{i_{m}}$ such that $i_{1}<\cdots<i_{m}$, where $m \leq n$.


## Nomenclature

| Biology | Computer Science |
| :--- | :--- |
| Sequence | String,word |
| Subsequence | Substring (contiguous) |
| N/A | Subsequence |
| N/A | Exact matching |
| Alignment | Inexact matching |

## Pairwise global alignment

- Example: one possible alignment between ACGCtttg and CAtGTAT is

S: AC--GCTTTG
T: -CATG-TAT-

- Global alignment Input: Two sequences $S=s_{1} \cdots s_{n}$ and $T=t_{1} \cdots t_{m}$ ( $n$ and $m$ are approximately the same).
Question: Find an optimal alignment $S \rightarrow S^{\prime}$ and $T \rightarrow T^{\prime}$ such that $V=\sum_{i=1}^{d} \sigma\left(S_{i}^{\prime}, T_{i}^{\prime}\right)$ is maximal.


## Dynamic programming

Let $V(i, j)$ be the optimal alignment score of $S_{1 \cdots i}$ and $T_{1 \cdots j}(0 \leq i \leq n$, $0 \leq j \leq m)$. $V$ has the following properties:
Base conditions:

$$
\begin{align*}
& V(i, 0)=\sum_{k=0}^{i} \sigma\left(S_{k},{ }^{\prime}-^{\prime}\right)  \tag{1}\\
& V(0, j)=\sum_{k=0}^{j} \sigma\left({ }^{\prime}-^{\prime}, T_{k}\right) \tag{2}
\end{align*}
$$

Recurrence relationship:

$$
V(i, j)=\max \left\{\begin{array}{l}
V(i-1, j-1)+\sigma\left(S_{i}, T_{j}\right)  \tag{4}\\
V(i-1, j)+\sigma\left(S_{i},,^{\prime}-{ }^{\prime}\right) \\
V(i, j-1)+\sigma\left({ }^{\prime}-^{\prime}, T_{j}\right)
\end{array}\right.
$$

## Tabular computation of optimal alignmen

- pseudo code:
for $i=0$ to $n$ do
begin
for $j=0$ to $m$ do
begin

> Calculate V(i,j) using

$$
V(i-1, j-1), V(i, j-1) \text { and } V(i-1, j)
$$

end
end

## Tabular computation

|  | j | 0 | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| i |  |  | C | A | T | G | T |
| 0 |  | 0 | -1 | -2 | -3 | -4 | -5 |
| 1 | A | -1 | -1 | 1 | 0 | -1 | -2 |
| 2 | C | -2 | 1 | 0 | 0 | -1 | -2 |
| 3 | G | -3 | 0 | 0 | -1 | 2 | 1 |
| 4 | C | -4 | -1 | -1 | -1 | 1 | 1 |
| 5 | T | -5 | -2 | -2 | 1 | 0 | 3 |
| 6 | G | -6 | -3 | -3 | 0 | 3 | 2 |

Score: match=+2, mismatch=-1.

## Pairwise alignment

- Reconstruction of the alignment: Traceback

Establish pointers in the cells of the table as the values are computed.

- The time complexity of the algorithm is $O(n m)$. The space complexity of the algorithm is $O(n+m)$ if only $V(S, T)$ is required and $O(n m)$ for the reconstruction of the alignment.


## Global alignment in linear space

- Let $V^{r}(i, j)$ denote the optimal alignment value of the last $i$ characters in sequence $S$ against the last $j$ characters in sequence $T$.

$$
\begin{equation*}
V(n, m)=\max _{k \in[0, m]}\left\{V\left(\frac{n}{2}, k\right)+V^{r}\left(\frac{n}{2}, m-k\right)\right\} \tag{5}
\end{equation*}
$$

## Global alignment in linear space

Hirschberg's algorithm:

1. Compute $V(i, j)$. Save the values of $\frac{n}{2}$-th row. Denote $V(i, j)$ the forward matrix $F$
2. Compute $V^{r}(i, j)$. Save the values of $\frac{n}{2}$-th row. Denote $V^{r}(i, j)$ the forward matrix $B$
3. Find the column $k^{*}$ such that

$$
F\left(\frac{n}{2} k^{*}\right)+B\left(\frac{n}{2}, m-k^{*}\right)
$$

is maximal
4. Now that $k^{*}$ is found, recursively partition the problem into two sub problems: i) Find the path from $(0,0)$ to $\left(n / 2, k^{*}\right)$
ii) Find the path from $\left(n / 2, m-k^{*}\right)$ to $(n, m)$.

## Hirschberg's algorithm

The time complexity of Hirschberg's algorithm is $O(n m)$. The space complexity of Hirschberg's algorithm is $O(\min (m, n))$.

## Local alignment problem

- Input: Given two sequences $S$ and $T$.

Question: Find the subsequece $\alpha$ of $S$ and $\beta$ of $T$, whose simililarity (optimal global alignment) is maximal (over all such pairs of subsequences).

- Example: $\mathrm{S}=\mathrm{GGTCTGAG}$ and T=AAACGA

Score: match = 2 ; indel/substitution=-1
The optimal local alignment is $\alpha=$ CTGA and $\beta=$ CGA:
CTGA ( $\alpha \in S$ )
C-GA $(\beta \in T)$

## Local Suffix Alignment Problem

- Input: Given two sequences $S$ and $T$ and two indices $i$ and $j$. Question: Find a (possibly empty) suffix $\alpha$ of $S_{1 \cdots i}$ and a (possibliy empty) suffix $\beta$ of $T_{1 \cdots j}$ such that the value of the alignment between $\alpha$ and $\beta$ is maximal over all alignments of suffixes of $S_{1 \cdots i}$ and $T_{1 \cdots j}$.
- Terminology and Restriction
$V(i, j)$ : denote the value of the optimal local suffix alignment for a given pair $i, j$ of indices.
Limit the pair-wise scores by:

$$
\sigma(x, y)= \begin{cases}\geq 0 & \text { if } x, y \text { match }  \tag{6}\\ \leq 0 & \text { if } x, y \text { do not match, or one of them is a space }\end{cases}
$$

## Local Suffix Alignment Problem

- Recursive Definitions

Base conditions:
$V(i, 0)=0, V(0, j)=0$ for all $i$ and $j$.

## Recurrence relation:

$$
V(i, j)=\max \left\{\begin{array}{l}
0  \tag{7}\\
V(i-1, j-1)+\sigma\left(S_{i}, T_{j}\right) \\
V(i-1, j)+\sigma\left(S_{i},{ }^{\prime}-^{\prime}\right) \\
V(i, j-1)+\sigma\left({ }^{\prime}-^{\prime}, T_{j}\right)
\end{array}\right.
$$

Compute $i^{*}$ and $j^{*}$ :

$$
V\left(i^{*}, j^{*}\right)=\max _{i \in[1, n], j \in[1, m]} V(i, j)
$$

## Local Suffix Alignment Problem

|  | j | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| i |  |  | x | x | x | c | d | e |
| 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | a | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | b | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | c | 0 | 0 | 0 | 2 | 1 | 0 | 0 |
| 4 | x | 0 | 2 | 2 | 2 | 1 | 1 | 0 |
| 5 | d | 0 | 1 | 1 | 1 | 1 | 3 | 2 |
| 6 | e | 0 | 0 | 0 | 0 | 0 | 2 | 5 |
| 7 | x | 0 | 2 | 2 | 2 | 1 | 1 | 4 |

Score: match=+2, mismatch $=-1$.

## Gap Penalty

- Definition: A gap is any maximal, consecutive run of spaces in a single sequece of a given alignment.
Definition: The length of a gap is the number of indel operations in it. Example:

S: attc--ga-tggacc
T: a--cgtgatt---cc
7 matches, $N_{\text {gaps }}=4$ gaps, $N_{\text {spaces }}=8$ spaces, 0 mismatch.

## Affine Gap Penalty Model

- A total penalty for a gap of length $q$ is:

$$
W_{\text {total }}=W_{g}+q W_{s}
$$

where
$W_{g}$ : the weight for "openning the gap"
$W_{s}$ : the weight for "extending the gap" with one more space Under this model, the score for a particular alignment $S \rightarrow S^{\prime}$ and $T \rightarrow T^{\prime}$ is:

$$
\sum_{i \in\left\{k: S_{i}^{\prime} \not \not^{\prime}-^{\prime} \& T_{k}^{\prime} \neq^{\prime}-{ }^{\prime}\right\}} \sigma\left(S_{i}^{\prime}, T_{i}^{\prime}\right)+W_{g} N_{\text {gaps }}+W_{s} N_{\text {spaces }}
$$

## Global alignment with affine gap penality

To align sequence $S$ and $T$ ，consider the prefixes $S_{1 \cdots i}$ of $S$ and $T_{1 \cdots j}$ of $T$ ． Any alignment of these two prefixes is one of the following three types：
－Type $1(A(i, j))$ ：Characters $S_{i}$ and $T_{j}$ are aligned opposite each other．

S：＊＊＊＊＊＊＊＊＊＊＊＊i
T：＊＊＊＊＊＊＊＊＊＊＊＊j
－Type $2(L(i, j))$ ：Character $S_{i}$ is aligned to a chracter to the left of $T_{j}$ ．
S：＊＊＊＊＊＊＊＊＊＊＊＊i
T：＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊j
－Type $3(R(i, j))$ ：Character $S_{i}$ is aligned to a chracter to the right of $T_{j}$ ．

S：$\quad$＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊i
$\mathrm{T}: \quad \star * * *$ јー一ーーー

## Global alignment with affine gap penality

- $A(i, j)$ - the maximum value of any alignment of Type 1
- $L(i, j)$ - the maximum value of any alignment of Type 2
- $R(i, j)$ - the maximum value of any alignment of Type 3
- $V(i, j)$ - the maximum value of any alignment


## Recursive Definition

- Recursive Definition

Base conditions:

$$
\begin{align*}
& V(0,0)=0  \tag{8}\\
& V(i, 0)=R(i, 0)=W_{g}+i W_{s}  \tag{9}\\
& V(0, j)=L(0, j)=W_{g}+j W_{s} \tag{10}
\end{align*}
$$

Recurrence relation:

$$
\begin{align*}
& V(i, j)=\max \{A(i, j), L(i, j), R(i, j)\}  \tag{11}\\
& A(i, j)=V(i-1, j-1)+\sigma\left(S_{i}, T_{j}\right)  \tag{12}\\
& L(i, j)=\max \left\{L(i, j-1)+W_{s}, V(i, j-1)+W_{g}+W_{s}\right\}  \tag{13}\\
& R(i, j)=\max \left\{R(i-1, j)+W_{s}, V(i-1, j)+W_{g}+W_{s}\right\} \tag{14}
\end{align*}
$$

## Local alignment problem

- Local alignment problem

Input: Given two sequences $S$ and $T$.
Question: Find the subsequece $\alpha$ of $S$ and $\beta$ of $T$, whose similarity (optimal global alignment) is maximal (over all such pairs of subsequences).

- Example: $\mathrm{S}=\mathrm{Gg} \operatorname{tctg} \mathrm{GA}$ and $\mathrm{T}=\mathrm{AAACGA}$

Score: match =2; indel/substitution=-1
The optimal local alignment is $\alpha=$ CTGA and $\beta=\mathrm{CGA}$ :
CTGA $(\alpha \in S)$
C-GA $(\beta \in T)$

- Suppose the maximal local alignment score between $S$ and $T$ is $S$. How to measure the significane of $S$ ?


## Measure statistical significance

- One possible solution:

1. Generate many random sequences $T_{1}, T_{2}, \cdots, T_{N}$, (e.g.

$$
N>10,000) .
$$

2. Find the optimal alignment score $S_{i}$ between $S$ and $T_{i}$ for all $i$.
3. $p$-value $=\sum_{i=1}^{N} I\left(S_{i} \geq S\right) / N$.

However, the solution is not practical.

## Extreme value distribution (EVD)

- Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are iid random variables. Denote the maximum of these r.v. by $X_{\max }=\max \left\{X_{1}, X_{2}, \cdots, X_{n}\right\}$
- Suppose that $X_{1}, \cdots X_{n}$ are continuous r.v. with density function $f_{X}(x)$ and cumulative distribution function $F_{X}(x)$.
Question: what is the distribution of $X_{\max }$ ?


## Extreme value distribution (EVD)

- Note that $\operatorname{Prob}\left(X_{\max } \leq x\right)=[\operatorname{Prob}(X \leq x)]^{n}$. Hence

$$
F_{X_{\max }}(x)=\left(F_{X}(x)\right)^{n}
$$

- Density function of $X_{\max }$

$$
f_{X_{\max }}(x)=n f_{X}(x)\left(F_{X}(n)\right)^{n-1}
$$

## Example: the exponential distribution

- the exponential distribution

$$
\begin{align*}
& f_{X}(x)=\lambda e^{-\lambda x}, \quad x \geq 0  \tag{15}\\
& F_{X}(x)=1-e^{-\lambda x}, \quad x \geq 0 \tag{16}
\end{align*}
$$

Mean: $1 / \lambda$; Variance: $1 / \lambda^{2}$.

## EVD of the exponential distribution

- The EVD:

$$
\begin{align*}
f_{X}(x) & =n \lambda e^{-\lambda x}\left(1-e^{-\lambda x}\right)^{n-1}  \tag{17}\\
F_{X_{\max }}(x) & =\left(1-e^{-\lambda x}\right)^{n} \tag{18}
\end{align*}
$$

## EVD of the exponential distribution

- Mean and variance of $X_{\max }$ :

$$
\begin{align*}
\mathrm{E}\left[X_{\max }\right] & =\frac{1}{\lambda}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) \xrightarrow{n \rightarrow \infty} \frac{1}{\lambda}(\gamma+\log n)  \tag{19}\\
\operatorname{Var}\left[X_{\max }\right] & =\frac{1}{\lambda^{2}}\left(1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}\right) \xrightarrow{n \rightarrow \infty} \frac{\pi^{2}}{6 \lambda^{2}} \tag{20}
\end{align*}
$$

where $\gamma=0.5772 \ldots$ is Euler's constant.

## Asymptotic distribution

- Asymptotic formula for the distribution of $X_{\max }$.

Define a rescaled $X_{\max }$ :

$$
U=\frac{X_{\max }-\log (n) / \lambda}{1 / \lambda}=\lambda X_{\max }-\log n
$$

As $n \rightarrow \infty$, the mean of $U$ approaches $\gamma$ and the variance of $U$ approaches $\pi^{2} / 6$.

## Gumbel distribution

- The cumulative distribution:

$$
\begin{align*}
\operatorname{Prob}(U \leq u) & =\operatorname{Prob})\left(X_{\max } \leq(u+\log n) / \lambda\right)  \tag{21}\\
& =\left(1-e^{-u} / n\right)^{n}  \tag{22}\\
& =e^{-e^{-u}} \quad \text { as } n \rightarrow \infty \tag{23}
\end{align*}
$$

Or equivalently

$$
\operatorname{Prob}(U \geq u)=1-e^{-e^{-u}} \quad \text { as } n \rightarrow \infty
$$

which is called Gumbel distribution.

## EVD of the exponential distribution

- EVD for large $u$ The density function

$$
f_{U}(u)=e^{-u} e^{-e^{-u}} \approx e^{-u}\left(1-e^{-u}+\frac{e^{-2 u}}{2!}-\ldots\right) \approx e^{-u}
$$

which decays much slower than the Gaussian distribution.

## Karlin \& Altschul statistics

- Karlin \& Altschul statistics

For local ungapped alignments between two sequences of length $m$ and $n$, the probability that there is a match of a score greater than $S$ is:

$$
P(x \geq S)=1-e^{-K m n e^{-\lambda S}}
$$

Denote $E(S)=K m n e^{-\lambda S}$ - the expected number of unrelated matches with score greather than $S$.
Significane requirement: $E(S)$ should be significantly less than 1, that is

$$
S<\frac{\log (m n)}{\lambda}+\frac{\log K}{\lambda}
$$

