Sequence Alignment

Xiaohui Xie

University of California, Irvine

Pairwise sequence alignment

- Example: Given two sequences: S = ACCTGA and T = AGCTA, find the minimal number of edit operations to transform S to T.
- Edit operations:
 - Insertion
 - Deletion
 - Substitution

Biological Motivation

- Comparing or retrieving DNA/protein sequences in databases
- Comparing two or more sequences for similarities
- Finding patterns within a protein or DNA sequence
- Tracking the evolution of sequences
- 9.

Pairwise alignment

- Definition: An alignment of two sequences S and T is obtained by first inserting spaces ('-') either into, before or at the ends of S and T to obtain S' and T' such that |S'| = |T'|, and then placing S' on top of T' such that every character in S' is uniquely aligned with a charater in T'.
- Example: two aligned sequences:
 - S: GTAGTACAGCT-CAGTTGGGATCACAGGCTTCT
 - T: GTAGAACGGCTTCAGTTG---TCACAGCGTTC-

Similarity measure

σ(a, b) - the score (weight) of the alignment of character a with character b, where a, b ∈ Σ ∪ {′−′} wher Σ = {′A′,′C′,′G′,′T′}.
 For example

$$\sigma(a,b) = \begin{cases} 2 & \text{if } a = b \text{ and } a, b \in \Sigma \\ 0 & \text{if } a \neq b \text{ and } a, b \in \Sigma \\ -1 & \text{if } a \neq b \text{ and } a = -' \text{ or } b = -' \end{cases}$$

Similarity between S and T given the alignment (S', T')

$$V(S,T) = \sum_{i=1}^{n} \sigma(S'_i, T'_i)$$

Global alignment

INPUT: Two sequences S and T of roughly the same length Q: What's the maximum similarity between the two. Find abest alignment.

Nomenclature

- Σ an alphabet, a non-empty finite set. For example, $\Sigma = \{A, C, G, T\}.$
- **A** string over Σ is any finite sequence of characters from Σ .
- Σ^n the set of all strings over Σ of length n. Note that $\Sigma^0 = \{\epsilon\}$.
- The set of all strings over Σ of any length is denoted $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$
- **a** substring of a string $T = t_1 \cdots t_n$ is a string $\hat{T} = t_{1+i} \cdots t_{m+i}$, where $0 \le i$ and $m + i \le n$.
- **J** a prefix of a string $T = t_1 \cdots t_n$ is a string $\hat{T} = t_1 \cdots t_m$, where $m \leq n$.
- **a** suffix of a string $T = t_1 \cdots t_n$ is a string $\hat{T} = t_{n-m+1} \cdots t_n$, where $m \leq n$.
- **a** subsequence of a string $T = t_1 \cdots t_n$ is a string $\hat{T} = t_{i_1} \cdots t_{i_m}$ such that $i_1 < \cdots < i_m$, where $m \le n$.

Nomenclature

Biology	Computer Science
Sequence	String,word
Subsequence	Substring (contiguous)
N/A	Subsequence
N/A	Exact matching
Alignment	Inexact matching

Pairwise global alignment

- Example: one possible alignment between ACGCTTTG and CATGTAT is
 - S: AC--GCTTTG
 - T: -CATG-TAT-
- Global alignment
 Input: Two sequences $S = s_1 \cdots s_n$ and $T = t_1 \cdots t_m$ (*n* and *m* are approximately the same).

Question: Find an optimal alignment $S \to S'$ and $T \to T'$ such that $V = \sum_{i=1}^{d} \sigma(S'_i, T'_i)$ is maximal.

Dynamic programming

Let V(i, j) be the optimal alignment score of $S_{1...i}$ and $T_{1...j}$ ($0 \le i \le n$, $0 \le j \le m$). *V* has the following properties: Base conditions:

$$V(i,0) = \sum_{k=0}^{i} \sigma(S_k, '-')$$

$$V(0,j) = \sum_{k=0}^{j} \sigma('-', T_k)$$
(1)
(2)

Recurrence relationship:

$$V(i,j) = \max \begin{cases} V(i-1,j-1) + \sigma(S_i,T_j) \\ V(i-1,j) + \sigma(S_i,'-') \\ V(i,j-1) + \sigma('-',T_j) \end{cases}$$
(4)

(3)

Fabular computation of optimal alignmen

pseudo code:

```
for i=0 to n do
begin
  for j=0 to m do
  begin
     Calculate V(i,j) using
     V(i-1,j-1), V(i,j-1) and V(i-1,j)
  end
end
```

Sequence Alignment - p.11/3

Tabular computation

	j	0	1	2	3	4	5
i			С	А	Т	G	Т
0		0	-1	-2	-3	-4	-5
1	A	-1	-1	1	0	-1	-2
2	C	-2	1	0	0	-1	-2
3	G	-3	0	0	-1	2	1
4	С	-4	-1	-1	-1	1	1
5	Т	-5	-2	-2	1	0	3
6	G	-6	-3	-3	0	3	2

Score: match=+2, mismatch=-1.

Pairwise alignment

- Reconstruction of the alignment: Traceback Establish pointers in the cells of the table as the values are computed.
- The time complexity of the algorithm is O(nm). The space complexity of the algorithm is O(n+m) if only V(S,T) is required and O(nm) for the reconstruction of the alignment.

Global alignment in linear space

Let V^r(i, j) denote the optimal alignment value of the last i characters in sequence S against the last j characters in sequence T.

$$V(n,m) = \max_{k \in [0,m]} \left\{ V(\frac{n}{2},k) + V^r(\frac{n}{2},m-k) \right\}$$
(5)

Global alignment in linear space

Hirschberg's algorithm:

- 1. Compute V(i, j). Save the values of $\frac{n}{2}$ -th row. Denote V(i, j) the forward matrix F
- 2. Compute $V^{r}(i, j)$. Save the values of $\frac{n}{2}$ -th row. Denote $V^{r}(i, j)$ the forward matrix B
- 3. Find the column k^* such that

$$F(\frac{n}{2}k^*) + B(\frac{n}{2}, m - k^*)$$

is maximal

4. Now that k* is found, recursively partition the problem into two sub problems: i) Find the path from (0,0) to (n/2, k*)
ii) Find the path from (n/2, m − k*) to (n, m).

Hirschberg's algorithm

The time complexity of Hirschberg's algorithm is O(nm). The space complexity of Hirschberg's algorithm is $O(\min(m, n))$.

Local alignment problem

```
    Input: Given two sequences S and T.
    Question: Find the subsequece α of S and β of T, whose simililarity (optimal global alignment) is maximal (over all such pairs of subsequences).
```

```
    Example: S=GGTCTGAG and T=AAACGA
    Score: match = 2; indel/substitution=-1
    The optimal local alignment is α =CTGA and β =CGA:
    CTGA (α ∈ S)
    C-GA (β ∈ T)
```

Local Suffix Alignment Problem

Input: Given two sequences S and T and two indices i and j. Question: Find a (possibly empty) suffix α of $S_{1...i}$ and a (possibliv empty) suffix β of $T_{1...j}$ such that the value of the alignment between α and β is maximal over all alignments of suffixes of $S_{1...i}$ and $T_{1...j}$.

Terminology and Restriction V(i, j): denote the value of the optimal local suffix alignment for a given pair i, j of indices. Limit the pair-wise scores by:

$$\sigma(x,y) = \begin{cases} \geq 0 & \text{if } x,y \text{ match} \\ \leq 0 & \text{if } x,y \text{ do not match, or one of them is a space} \end{cases}$$
(6)

Local Suffix Alignment Problem

Recursive Definitions Base conditions:

V(i, 0) = 0, V(0, j) = 0 for all *i* and *j*.

Recurrence relation:

$$V(i,j) = \max \begin{cases} 0 \\ V(i-1,j-1) + \sigma(S_i,T_j) \\ V(i-1,j) + \sigma(S_i,'-') \\ V(i,j-1) + \sigma('-',T_j) \end{cases}$$

Compute i^* and j^* :

$$V(i^*, j^*) = \max_{i \in [1,n], j \in [1,m]} V(i,j)$$

(7)

Local Suffix Alignment Problem

	j	0	1	2	3	4	5	6
i			Х	Х	x	С	d	е
0		0	0	0	0	0	0	0
1	а	0	0	0	0	0	0	0
2	b	0	0	0	0	0	0	0
3	С	0	0	0	2	1	0	0
4	х	0	2	2	2	1	1	0
5	d	0	1	1	1	1	3	2
6	е	0	0	0	0	0	2	5
7	Х	0	2	2	2	1	1	4

Score: match=+2, mismatch=-1.

Gap Penalty

- Definition: A gap is any maximal, consecutive run of spaces in a single sequece of a given alignment. Definition: The *length* of a gap is the number of indel operations in it. Example:
 - S: attc--ga-tggacc
 - T: a--cgtgatt---cc
 - 7 matches, $N_{gaps} = 4$ gaps, $N_{spaces} = 8$ spaces, 0 mismatch.

Affine Gap Penalty Model

A total penalty for a gap of length q is:

$$W_{total} = W_g + qW_s$$

where

 W_g : the weight for "openning the gap"

 W_s : the weight for "extending the gap" with one more space Under this model, the score for a particular alignment $S \rightarrow S'$ and $T \rightarrow T'$ is:

$$\sum_{i \in \{k: S'_i \neq '-' \& T'_k \neq '-'\}} \sigma(S'_i, T'_i) + W_g N_{gaps} + W_s N_{spaces}$$

Global alignment with affine gap penality

To align sequence *S* and *T*, consider the prefixes $S_{1...i}$ of *S* and $T_{1...j}$ of *T*. Any alignment of these two prefixes is one of the following three types:

- **•** Type 1 (A(i, j)): Characters S_i and T_j are aligned opposite each other.
 - S: ********i
 - T: ********
- **J** Type 2 (L(i, j)): Character S_i is aligned to a chracter to the left of T_j .
 - S: ******
 - T: ***********
- **•** Type 3 (R(i, j)): Character S_i is aligned to a chracter to the *right* of T_j .
 - S: *********
 - T: *******

Global alignment with affine gap penality

- A(i, j) the maximum value of any alignment of Type 1
- **9** L(i, j) the maximum value of any alignment of Type 2
- \blacksquare R(i,j) the maximum value of any alignment of Type 3
- \checkmark V(i,j) the maximum value of any alignment

Recursive Definition

Recursive Definition Base conditions:

$$V(0,0) = 0$$
 (8)

$$V(i,0) = R(i,0) = W_g + iW_s$$
(9)

$$V(0,j) = L(0,j) = W_g + jW_s$$
(10)

Recurrence relation:

$$V(i,j) = \max\{A(i,j), L(i,j), R(i,j)\}$$
(11)

$$A(i,j) = V(i-1,j-1) + \sigma(S_i,T_j)$$
(12)

$$L(i,j) = \max\{L(i,j-1) + W_s, V(i,j-1) + W_g + W_s\}$$
(13)

$$R(i,j) = \max\{R(i-1,j) + W_s, V(i-1,j) + W_g + W_s\}$$
(14)

Local alignment problem

```
    Local alignment problem
    Input: Given two sequences S and T.
    Question: Find the subsequece α of S and β of T, whose similarity (optimal global alignment) is maximal (over all such pairs of subsequences).
```

```
Example: S=GGTCTGAG and T=AAACGA
Score: match = 2; indel/substitution=-1
The optimal local alignment is \alpha =CTGA and \beta =CGA:
CTGA (\alpha \in S)
C-GA (\beta \in T)
```

Suppose the maximal local alignment score between S and T is S. How to measure the significane of S?

Measure statistical significance

- One possible solution:
 - 1. Generate many random sequences T_1, T_2, \cdots, T_N , (e.g. N > 10,000).
 - 2. Find the optimal alignment score S_i between S and T_i for all i.
 - 3. *p*-value = $\sum_{i=1}^{N} I(S_i \ge S)/N$.

However, the solution is not practical.

Extreme value distribution (EVD)

- Suppose that X_1, X_2, \dots, X_n are iid random variables. Denote the maximum of these r.v. by $X_{\max} = \max\{X_1, X_2, \dots, X_n\}$
- Suppose that X₁, ··· X_n are continuous r.v. with density function f_X(x) and cumulative distribution function F_X(x).
 Question: what is the distribution of X_{max}?

Extreme value distribution (EVD)

• Note that
$$\operatorname{Prob}(X_{\max} \leq x) = [\operatorname{Prob}(X \leq x)]^n$$
. Hence

$$F_{X_{\max}}(x) = (F_X(x))^n$$

Density function of X_{\max}

$$f_{X_{\max}}(x) = n f_X(x) (F_X(n))^{n-1}$$

Example: the exponential distribution

the exponential distribution

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0 \tag{15}$$

$$F_X(x) = 1 - e^{-\lambda x}, \quad x \ge 0$$
 (16)

Mean: $1/\lambda$; Variance: $1/\lambda^2$.

EVD of the exponential distribution

The EVD:

$$f_X(x) = n\lambda e^{-\lambda x} (1 - e^{-\lambda x})^{n-1}$$
(17)

$$F_{X_{\max}}(x) = (1 - e^{-\lambda x})^n$$
 (18)

EVD of the exponential distribution

Mean and variance of X_{\max} :

$$E[X_{\max}] = \frac{1}{\lambda} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \xrightarrow{n \to \infty} \frac{1}{\lambda} \left(\gamma + \log n\right)$$
(19)
$$Var[X_{\max}] = \frac{1}{\lambda^2} \left(1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right) \xrightarrow{n \to \infty} \frac{\pi^2}{6\lambda^2}$$
(20)

where $\gamma = 0.5772\ldots$ is Euler's constant.

Asymptotic distribution

Asymptotic formula for the distribution of X_{max} .
Define a rescaled X_{max} :

$$U = \frac{X_{\max} - \log(n)/\lambda}{1/\lambda} = \lambda X_{\max} - \log n$$

As $n \to \infty$, the mean of U approaches γ and the variance of U approaches $\pi^2/6$.

Gumbel distribution

The cumulative distribution:

$$\operatorname{Prob}(U \le u) = \operatorname{Prob}(X_{\max} \le (u + \log n)/\lambda)$$
 (21)

$$=(1-e^{-u}/n)^n$$
 (22)

$$=e^{-e^{-u}}$$
 as $n \to \infty$ (23)

Or equivalently

$$\operatorname{Prob}(U \ge u) = 1 - e^{-e^{-u}} \quad \text{as } n \to \infty$$

which is called Gumbel distribution.

EVD of the exponential distribution

 \checkmark EVD for large u The density function

$$f_U(u) = e^{-u}e^{-e^{-u}} \approx e^{-u}(1 - e^{-u} + \frac{e^{-2u}}{2!} - \dots) \approx e^{-u}$$

which decays much slower than the Gaussian distribution.

Karlin & Altschul statistics

Karlin & Altschul statistics

For local ungapped alignments between two sequences of length m and n, the probability that there is a match of a score greater than S is:

$$P(x \ge S) = 1 - e^{-Kmne^{-\lambda S}}$$

Denote $E(S) = Kmne^{-\lambda S}$ - the expected number of unrelated matches with score greather than *S*.

Significane requirement: E(S) should be significantly less than 1, that is

$$S < \frac{\log(mn)}{\lambda} + \frac{\log K}{\lambda}$$