
LETTER Communicated by Tom Heskes

Learning Curves for Stochastic Gradient Descent in Linear
Feedforward Networks

Justin Werfel
jkwerfel@mit.edu
Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, MA 02139, U.S.A.

Xiaohui Xie
xhxie@mit.edu
Broad Institute of Massachusetts Institute of Technology and Harvard University,
Cambridge, MA 02141, U.S.A.

H. Sebastian Seung
seung@mit.edu
Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Gradient-following learning methods can encounter problems of imple-
mentation in many applications, and stochastic variants are sometimes
used to overcome these difficulties. We analyze three online training
methods used with a linear perceptron: direct gradient descent, node per-
turbation, and weight perturbation. Learning speed is defined as the rate
of exponential decay in the learning curves. When the scalar parameter
that controls the size of weight updates is chosen to maximize learning
speed, node perturbation is slower than direct gradient descent by a fac-
tor equal to the number of output units; weight perturbation is slower
still by an additional factor equal to the number of input units. Paral-
lel perturbation allows faster learning than sequential perturbation, by
a factor that does not depend on network size. We also characterize how
uncertainty in quantities used in the stochastic updates affects the learn-
ing curves. This study suggests that in practice, weight perturbation may
be slow for large networks, and node perturbation can have performance
comparable to that of direct gradient descent when there are few output
units. However, these statements depend on the specifics of the learning
problem, such as the input distribution and the target function, and are
not universally applicable.

Neural Computation 17, 2699–2718 (2005) © 2005 Massachusetts Institute of Technology

2700 J. Werfel, X. Xie, and H. Seung

1 Introduction

Learning in artificial systems can be formulated as optimization of an objec-
tive function that quantifies the system’s performance. A typical approach
to this optimization is to follow the gradient of the objective function with
respect to the tunable parameters of the system. Frequently this is accom-
plished directly, by calculating the gradient explicitly and updating the
parameters by a small step in the direction of locally greatest improvement.

In many circumstances, however, attempts at direct gradient following
can encounter problems. In VLSI and other hardware implementations,
computation of the gradient may be excessively unwieldy, if not impos-
sible, due to unavoidable imperfections in manufacturing (Widrow & Lehr,
1990; Jabri & Flower, 1992; Flower & Jabri, 1993; Cauwenberghs, 1993, 1996).
In some cases, as with many where the reinforcement learning framework
is used, there may be no explicit form for the objective function and hence
no way of calculating its gradient (Fiete, Fee, & Seung, 2004). And in bi-
ological systems, any argument that direct gradient calculation might be
what the system is actually doing typically encounters severe obstacles. For
instance, backpropagation, the standard method for training artificial neu-
ral networks (ANNs), requires two-way, multipurpose synapses, units with
global knowledge about the system that are able to recognize different kinds
of signals and treat them in very different ways, and (in the case of trajectory
learning) the ability to run backward in time, all of which strain the bounds
of biological plausibility (Widrow & Lehr, 1990; Bartlett & Baxter, 1999). For
reasons such as these, there has been broad interest in stochastic methods
that approximate the gradient on average.

Compared to a method that follows the true gradient directly, we might
intuitively expect a stochastic gradient-following approach to learn more
slowly. In this study (based on analysis of ANNs, for which the tunable
parameters are the network weights), the stochastic algorithms use a re-
inforcement learning framework with a single reward signal, which is as-
signed based on the contributions of all the network weights. That single
reward is all that is available to evaluate how every one of the weights
should be updated, in contrast to a true gradient method where the opti-
mal updates are all calculated exactly. If calculation of the gradient is not
computationally expensive enough to represent a bottleneck, and the error
landscape is sufficiently well behaved that following the gradient is typi-
cally the quickest way to decrease error, then the significant advantage that
explicit gradient methods have in general in terms of the amount of infor-
mation available to them for each update could be expected to allow much
faster learning. Moreover, if the network is made larger and the number
of weights thereby increased, the problem of spatial credit assignment be-
comes still more difficult; thus, we would tend to expect the performance
of stochastic gradient methods to scale up with network size more poorly
than that of deterministic methods. However, under some circumstances,

Learning with Stochastic Gradient Descent 2701

stochastic methods can be equally as effective as direct ones in training
even large networks, generating nearly identical learning curves (see, e.g.,
Figure 3 below). Under what circumstances, then, will stochastic gradient
descent have performance comparable to that of the deterministic variety?
And how good can that performance be?

In this letter, we investigate these issues quantitatively by analytically
calculating learning curves for a linear perceptron using a direct gradient
method and two stochastic methods, node perturbation and weight pertur-
bation. We find that the maximum learning speed for each algorithm scales
inversely with the first power of the dimensionality of the noise injected
into the system; this result is in contradiction to previous work, which re-
ported maximum learning speed scaling inversely with the square root of
the dimensionality of the injected noise (Cauwenberghs, 1993). Weight per-
turbation, which depends on the use of higher-dimensional noise, scales
more poorly than node perturbation, which in turn scales more poorly than
the noiseless direct gradient method. Further, parallel variation of the net-
work weights in the stochastic algorithms allows learning to take place at
a higher speed than does sequential variation, by a constant factor. We also
consider how uncertainty in quantities used to calculate the weight updates
affects learning speed and lowest mean error attainable by a stochastically
trained network.

These exact results depend on the specifics of the learning model, in-
cluding the linearity of the network, the distribution of inputs it receives,
the target function we train it to approximate, and the objective function
that quantifies its performance. Under other conditions, the results may be
qualitatively different, as we discuss. (Some of the results in this letter were
presented in preliminary form in Werfel, Xie, & Seung, 2004.)

2 Perceptron Comparison

Direct and stochastic gradient approaches are general classes of training
methods. We study the operation of exemplars of both on a feedforward
linear perceptron, which has the advantage over the nonlinear case that the
learning curves can be calculated exactly (Heskes & Kappen 1991; Baldi
& Hornik, 1993; Biehl & Riegler 1994; Mace & Coolen 1998). We have N
input units and M output units, connected by a weight matrix w of MN
elements; outputs in response to an input x are given by y = wx. For the
ensemble of possible inputs, we want to train the network to produce desired
corresponding outputs y = d; in order to ensure that this task is realizable
by the network, we assume the existence of a teacher matrix w∗ such that
d = w∗x. For objective function, we use the squared error

E = 1
2
|y − d|2 = 1

2
|(w − w∗)x|2 = 1

2
|Wx|2, (2.1)

2702 J. Werfel, X. Xie, and H. Seung

where we have defined the matrix W ≡ w − w∗. We train the network with
an online approach, choosing at each time step an input vector x with com-
ponents drawn from a gaussian distribution with mean 0 and variance γ 2,
and using it to construct a weight update according to one of the three
prescriptions below.

The online gradient-following approach explicitly uses the gradient of
the objective function for a given input to determine the weight update,

�WOL = −η∇E,

where η > 0 is the learning rate. This is the approach taken, for example, by
backpropagation.

In the stochastic algorithms, the gradient is not calculated directly; in-
stead, some noise is introduced into the system, affecting its error for a given
input, and the difference between the error with and without noise is used
to estimate the gradient. The simplest case is when noise is added directly
to the weight matrix:

E ′
WP = 1

2
|(W + ψ)x|2 .

Such an approach has been termed “weight perturbation,” frequently with
only one weight being varied at a time (Jabri & Flower, 1992; Cauwenberghs,
1993). We choose each element of the noise matrix ψ from a gaussian dis-
tribution with mean 0 and variance σ 2. Intuitively, if the addition of the
noise lowers the error, that perturbation to the weight matrix is retained,
which will mean lower error for that input in future. Conversely, if the noise
leads to an increase in error, the opposite change is made to the weights;
the effect of small noise on error can be approximated as linear, and the
opposite change in weights will lead to the opposite change in error, again
decreasing error for that input in future. These two cases can be combined
into the single weight update,

�WWP = − η

σ 2 (E ′
WP − E)ψ.

A more subtle way to introduce stochasticity involves adding the noise to
the output of each output unit rather than to every weight:

E ′
NP = 1

2
|Wx + ξ |2.

Such an approach is sometimes called “node perturbation,” though that
term has traditionally referred to a serial approach where noise is added to
one output unit at a time (Widrow & Lehr, 1990; Flower & Jabri, 1993). Here,

Learning with Stochastic Gradient Descent 2703

if the addition of the noise ξ leads to a decrease in error, the weights are
adjusted in such a way as to move the outputs in the direction of that noise.
The degree of freedom for each output unit corresponds to the adjustment
of its threshold, making the unit more or less responsive to a given pattern
of input activity. The elements of ξ are again chosen independently from a
gaussian distribution with variance σ 2; here, ξ has M elements, whereas ψ

in the previous case had MN. The REINFORCE framework (Williams, 1992)
gives for the weight update

�WNP = − η

σ 2 (E ′
NP − E)ξxT .

These stochastic frameworks produce weight updates identical to that of
direct gradient descent on the objective function when averaged over all
values of the noise (Williams, 1992; Cauwenberghs, 1993), which is the sense
in which they constitute stochastic gradient descent. This result is easy to
verify in the particular forms taken by �WNP and �WWP here, shown below.
It is worth emphasizing that not only will they give a decrease in error on
average, but every update will decrease the error, so long as the noise is
small (compared to Wx for node perturbation, W for weight perturbation).

2.1 Reducing the Dimensionality of the Space of Learning Constants.
Three constants affect the course of learning for the system as formulated
above: learning rate η, variance of input distribution γ 2, and variance of
injected noise σ 2. We can simplify the problem by rewriting the expressions
in the previous section. For true gradient descent, �WOL = −(ηγ 2)W x

γ
x
γ

T ,
where x

γ
is drawn from a gaussian distribution with variance 1. Hence,

any change in γ in the original formulation can be offset by a correspond-
ing change in η, and the relevant space of learning constants is only one-
dimensional.

For node perturbation, �WNP = (η

σ 2 γ
4)(ξ

γ

T
W x

γ
+ 1

2
ξ

γ

T ξ

γ
) ξ

γ
x
γ

T , where ξ

γ
is

drawn from a gaussian distribution with variance σ
γ

, and x
γ

has variance 1.
Here too, a change in γ can be compensated for by appropriate changes in
the other two parameters, and the relevant learning constant space has two
dimensions.

For weight perturbation, �WWP = (η

σ 2 γ
2)(x

γ

T
ψT W x

γ
+ 1

2
x
γ

T
ψTψ x

γ
)ψ .

Once again changes in γ can be subsumed into changes in the other pa-
rameters, and we need consider only a two-dimensional learning constant
space.

Without loss of generality, therefore, we set γ = 1 to simplify the remain-
der of this discussion.

2.2 Learning Curves. The appendix gives derivations for the following
learning curves and convergence conditions on η, where the parenthesized

2704 J. Werfel, X. Xie, and H. Seung

superscript is a time index, and the angle brackets indicate a mean taken over
both noise and inputs at every time step. For the online gradient method,

〈
E (t)

OL

〉 = (1 − 2η + (N + 2)η2)t E (0)

ηOL <
2

N + 2
.

In a single online learning run, E (t) would depend on the particular values
of x that were randomly chosen; averaging over the ensemble of possible
inputs x removes this variation. We therefore use this averaged error 〈E (t)〉
as the learning curve measuring the performance of the system.

The limit on η depends on N because of the randomness inherent in an
online training regimen; the exact gradient for error due to a given single
input x will not in general match that for error averaged over the entire
ensemble of inputs. (More details appear in the appendix.) This “gradient
noise” (Widrow & Lehr, 1990) is common to all three algorithms considered
here.

For node and weight perturbation:

〈
E (t)

NP

〉 = (
E (0) − ησ 2(M + 2)(M + 4)MN

8(2 − (N + 2)(M + 2)η)

)

· (1 − 2η + (M + 2)(N + 2)η2)t + ησ 2(M + 2)(M + 4)MN
8(2 − (M + 2)(N + 2)η)

ηNP <
2

(M + 2)(N + 2)

〈
E (t)

WP

〉 = (
E (0) − ησ 2 MN(MN(M + 2)(N + 2) + 12(MN + 2))

8(2 − (N + 2)(MN + 2)η)

)

· (1 − 2η + (N + 2)(MN + 2)η2)t

+ ησ 2 MN(MN(M + 2)(N + 2) + 12(MN + 2))
8(2 − (N + 2)(MN + 2)η)

ηWP <
2

(MN + 2)(N + 2)

3 Comparison of Learning Curves

All three of the above learning curves 〈E (t)〉 take the form

Ē(α(η))t + β(η, σ),

Learning with Stochastic Gradient Descent 2705

E

E

β

τ~−1/ln(α)

E

t

(0)

Figure 1: Sketch of a sample learning curve, converging from initial error E (0)

to residual error β at speed − ln(α).

where β is the residual error that the network will approach as t → ∞ if
learning converges, Ē ≡ E (0) − β is the transient error, and α is a multi-
plicative factor by which Ē changes at each time step. The magnitude of α,
which depends on the parameter η but not on σ , determines whether the
average error will converge and the speed at which it will do so.1 Figure 1
illustrates schematically these quantities, by which we will be comparing
the algorithms.

For the online gradient method, β = 0; a network trained this way, if it
converges, will approach zero error as t → ∞. The stochastic algorithms
have positive β, which is a result of the noise: when W is far from the mini-
mum of the objective function, the noise will typically be small in compari-
son to the term to which it is added, but close to the minimum, the noise will
prevent the system from attaining arbitrarily low error. The residual error
depends on both η and σ ; in the limit σ → 0, this residual error vanishes. Of
course, σ cannot be set directly to 0, or the stochastic algorithms will cease
to function.

3.1 Equal Average Updates. One way to compare these different algo-
rithms with respect to performance is to choose learning rates η such that all
three have the same weight update on average. As noted above, choosing
the same value of η in all three cases will ensure this condition. That com-
mon value of η must be small enough that all three algorithms converge.
If we take η 	 1

MN2 , the learning curves, to highest order in η, M, and N,

1 Note the important distinction between learning rate η, which is a constant affecting
the magnitude of individual weight updates, and speed of learning, a property of a given
learning curve associated with this multiplicative factor α(η). The latter is the relevant
measure of performance when comparing learning curves.

2706 J. Werfel, X. Xie, and H. Seung

become

〈
E (t)

OL

〉 = Ē(1 − 2η)t

〈
E (t)

NP

〉 = Ē (1 − 2η)t + 1
16

ησ 2 M3 N

〈
E (t)

WP

〉 = Ē (1 − 2η)t + 1
16

ησ 2 M3 N3.

In section 1, we outlined an argument that because of the problem of
determining updates to many weights based on a single reward signal, a
stochastic gradient-following approach might be expected to learn more
slowly than a direct one, which has no such credit assignment problem.
However, for equal small η, the average error for all three algorithms con-
verges at the same speed. Weight perturbation approaches a larger value
of residual error than does node perturbation, unless a value of σ at least
a factor of N larger for the latter than for the former is chosen; however, in
the σ → 0 limit, the residual error vanishes for both.

3.2 Maximal Learning Speeds. The usual way to choose the learning
rate in applications of training networks is to use the value of η for which the
error experimentally turns out to have the fastest speed of convergence. In
this light, the previous comparison may be of more theoretical than practical
interest. Arguably a more practical way to compare the algorithms, then, is
to choose the “optimal” learning rate for each, here defined as that value of
η for which the average error converges most quickly.2 The learning curves,
to highest order in M and N, are then

〈
E (t)

OL

〉 = Ē
(

1 − 1
N

)t

〈
E (t)

NP

〉 = Ē
(

1 − 1
MN

)t

+ 1
8
σ 2 M2

〈
E (t)

WP

〉 = Ē
(

1 − 1
MN2

)t

+ 1
8
σ 2 M2 N.

Direct gradient descent, then, can train a network faster than can node
perturbation, which in turn is faster than weight perturbation.

2 Other definitions for what is to be considered optimal are possible, for example, the
amount of time taken for error to fall below some specified threshold, or the level to which
error falls within a specified number of updates. We use the present definition because
the rate of convergence of error to its asymptotic value seems arguably the most relevant
quantity, and is analytically tractable under this framework.

Learning with Stochastic Gradient Descent 2707

The noise takes different forms in the two stochastic variants. For node
perturbation, ξi is added directly to the ith output unit; for weight perturba-
tion, the quantity added to the same output unit is

∑
i j ψi j x j . By the central

limit theorem, the latter approaches a gaussian with mean 0 and variance
Nσ 2 for large N. For the most direct comparison of the two stochastic vari-
ants, therefore, the variance of ξ should be chosen a factor N larger than
that of ψ . With this choice, the residual error for the two stochastic variants
becomes identical, and the learning curves differ only in their speeds of
convergence.

3.3 Parallel vs. Sequential Update. The terms node and weight perturba-
tion have been most often used to refer to sequential variation of the tunable
system parameters. We can apply the node perturbation approach as de-
scribed here, but add noise to only a single output unit at a time and update
only the corresponding weights; or apply weight perturbation, varying and
adjusting only one weight at a time, where the one output unit or one weight
is chosen at random with uniform probability. Similar analysis then gives
for the convergence condition and learning curves

ηNP <
2

3(N + 2)

〈
E (t)

NP

〉 = Ē
(

1 − 2
M

η + 3(N + 2)
M

η2
)t

+ 15ησ 2 MN
4(2 − 3(N + 2)η)

ηWP <
2

3(N + 2)

〈
E (t)

WP

〉 = Ē
(

1 − 2
MN

η + 3(N + 2)
MN

η2
)t

+ 45ησ 2 MN
4(2 − 3(N + 2)η)

for this serial update strategy. Choosing the optimal learning rates makes
the learning curves

〈
E (t)

NP

〉 = Ē
(

1 − 1
3M(N + 2)

)t

+ 5
4
σ 2 MN

N + 2

〈
E (t)

WP

〉 = Ē
(

1 − 1
3MN(N + 2)

)t

+ 15
4

σ 2 MN
N + 2

.

3.4 Uncertainty in Weight Updates. In practice, any of the quantities
used to calculate weight updates may have some associated uncertainty,
due, for instance, to poor estimation or VLSI manufacturing imperfections
(G. Cauwenberghs, personal communication, November 2003). Treating
these uncertainties as gaussian random variables, a very general case can

2708 J. Werfel, X. Xie, and H. Seung

be written

�W = − η

σ 2 (E(x + a , ζ + b) − E(x + c, 0 + e) + d) ε(x + f, ζ + g),

where E is the squared error; ε is the eligibility; ζ is either ξ or ψ ac-
cording to whether node or weight perturbation is being considered; and
a . . . g are tensors, with dimensions matching those of their addends, whose
components are normally-distributed variables with means µa ,i . . . µg,i and
variances σ 2

a ,i . . . σ 2
g,i (where the second index is over components). Ex-

panding this full expression according to the treatment above gives a set
of equations too lengthy to report here, as well as a set of constraints
on a . . . g that must hold in order for the recursive approach described
here to be applicable (e.g., a must be identical to c; certain pairs of vari-
ables must not both have nonzero mean). Because these general results
are not particularly illuminating, we will discuss only two special cases
here.

With uncertainty only on the offset error (only d nonzero), for both node
and weight perturbation, only the residual error is affected, not the maxi-
mum rate of convergence or bound on η. The new learning curves are

〈
E (t)

NP

〉 = Ē(1 − 2η + (M + 2)(N + 2)η2)t

+ ηMN
(
σ 4(M + 2)(M + 4) + 4

(
σ 2

d + µ2
d + µdσ

2(M + 2)
))

8σ 2(2 − (M + 2)(N + 2)η)〈
E (t)

WP

〉 = Ē(1 − 2η + (N + 2)(MN + 2)η2)t

+ [
ηMN

(
σ 4(MN(M + 2)(N + 2) + 12(MN + 2)) + 4

(
σ 2

d

+ µ2
d + µdσ

2(MN + 2)
))]/

[8σ 2(2 − (N + 2)(MN + 2)η)].

With uncertainty on the injected noise used to calculate the eligibility (only
g nonzero), both the residual error and the bound on η are affected. For node
perturbation, the new learning curve and condition on η are

〈
E (t)

NP

〉 = Ē
(

1 − 2η + η2(N + 2)
(

M + 2 + 1
σ 2 (|σg|2 + |µg|2)

))t

+ ησ 2 MN(M + 2)((M + 4)σ 2 + |σg|2 + |µg|2)
8(2σ 2 − η(N + 2)((M + 2)σ 2 + |σg|2 + |µg|2))

ηNP <
2σ 2

(N + 2)((M + 2)σ 2 + |σg|2 + |µg|2)
.

With weight perturbation, in order for the recursive method used here to
be applied, µg,i j must be zero for all {i, j}, but σg,i j may still be nonzero in

Learning with Stochastic Gradient Descent 2709

general. To highest order in M and N, the learning curve and condition on
η become

〈
E (t)

WP

〉 = Ē
(

1 − 2η + η2

σ 2 N(MNσ 2 + ‖σg‖2)
)t

+ ησ 2 M2 N2(MNσ 2 + ‖σg‖2)
8(2σ 2 − ηN(MNσ 2 + ‖σg‖2))

ηWP <
2σ 2

N(MNσ 2 + ‖σg‖2)
.

4 Discussion

In a linear feedforward network of N input and M output units, in terms of
the maximum possible speed of convergence of average error, online gradi-
ent descent on a squared error function is faster by a factor of M than node
perturbation, which in turn is faster by a factor of N than weight pertur-
bation. The difference in the speed of convergence is the dimensionality of
the noise. Weight perturbation operates by explicit exploration of the entire
MN-dimensional weight space; only one component of a particular update
will be in the direction of the true gradient for a given input, while the other
components can be viewed as noise masking that signal. That is, an update
can be written as �W = 〈�W〉 (the “learning signal,” the actual gradient) +
(�W − 〈�W〉) (the “learning noise”), where the average is taken over all val-
ues of ψ . This learning noise will typically have magnitude

√
MN larger

than the learning signal, and so MN samples are required in order to aver-
age it away. Direct gradient descent gives weight updates that are purely
signal in this sense; while still occurring in an MN-dimensional space, they
are by definition exactly in the direction of the gradient for a given input.
Thus, no exploration of the weight space or averaging over multiple samples
is necessary, and the maximum learning speed is correspondingly greater.
Node perturbation is a stochastic algorithm like weight perturbation, but
it explores the M-dimensional output space rather than the larger weight
space; the learning noise is of lower dimension, and correspondingly fewer
samples need to be averaged to reveal a learning signal of a given size.

It has previously been argued that the maximum learning speed should
scale not with the dimensionality of the update, as shown here, but with
the square root of that dimensionality (Cauwenberghs, 1993). That claim is
based on the fact that the squared magnitude of the update goes as the num-
ber of dimensions, and for a given error landscape and position in weight
space, there will be a maximum update size, greater than which instabil-
ity will result. However, a more quantitative approach is to examine the

2710 J. Werfel, X. Xie, and H. Seung

conditions under which error will decrease, as we have done above. Rather
than stopping with the statement that the size of the weight update scales as
the square root of the number of dimensions, we have shown that this fact
implies that the restriction on convergence scales with the first power of the
dimensionality. Numerical simulations of error curves, averaged over many
individual trials with online updating, support these conclusions with re-
spect to both the quantitative shapes of the learning curves and the scaling
behavior of the conditions on convergence (see Figure 2).

4.1 Parallel vs. Sequential Update. Serial perturbation allows the use
of a larger η than does the parallel approach first discussed, by a factor
of D, the dimensionality of the noise (M for node perturbation, MN for
weight perturbation). However, the learning curves at optimal η scale with
M and N in the same way for serial as for parallel updates. Intuitively,
by the argument of the preceding section, a perturbation with only one
component (and correspondingly smaller learning-signal-to-learning-noise
ratio) allows the step size to be increased by a factor of D, but the algorithm
must then cycle through all D components, so the net learning speed is no
faster.

Further, while the fastest learning curves scale the same way with net-
work size for serial as for parallel update, the speed differs by a constant
factor: the network can learn three times faster with parallel update than
with serial. This factor comes about from a term in the parallel equations
(D + 2). With parallel updates and large networks, the constant 2 is neg-
ligible compared to D; but that term becomes 3 for serial updates, where
the effective dimensionality of the noise is 1. The 2 represents, in effect, the
“overhead cost” of the learning noise; the parallel approach minimizes the
effect of this overhead by updating all components at once, while the serial
approach encounters it with each successive component.

The serial curves also have a residual error smaller by a factor of D
than parallel. However, if the variance σ 2 is scaled by D to make the total
noise injected into the system directly comparable in the two cases, as in
the discussion of the difference between the residual error with node ver-
sus weight perturbation in equation 3.2 above, this difference vanishes. A
constant difference remains, but this can also be adjusted for by the choice
of variance.

4.2 Uncertainty in Weight Updates. For both node and weight pertur-
bation, with uncertainty only in the offset error (nonzero d), the residual
error is increased compared to the case without uncertainty. Moreover, in
this case, it cannot be made arbitrarily small by making σ arbitrarily small;
as σ → 0, the residual error now diverges. For a given value of σd , an op-
timal value of σ can be calculated for which residual error is a minimum.
Learning speed for a given η, and bounds on η, remain unaffected.

Learning with Stochastic Gradient Descent 2711

10
0

10
2

Online gradient method

E
rr

or
 (

ar
bi

tr
ar

y
un

its
)

10
0

10
2

10
4

E
rr

or
 (

ar
bi

tr
ar

y
un

its
)

Node perturbation

10
0

10
5

E
rr

or
 (

ar
bi

tr
ar

y
un

its
)

of examples

Weight perturbation

Figure 2: Sample learning curves for the three algorithms applied to a linear
feedforward network as described in the text, showing the agreement between
theory (black) and experiment (gray). In each case, a network of linear units
with N = 20, M = 25, σ = 10−3, and optimal η was trained on successive input
examples for the number of iterations shown. One hundred such runs were
averaged together in each case. The three gray lines show the mean (solid) and
standard deviation (dashed) of squared error among those runs.

With uncertainty only in the injected noise used in calculation of the
eligibility (nonzero g), the residual error can still be made arbitrarily low
by choosing σ sufficiently small. However, smaller σ now means a stricter
upper bound on η; there is a trade-off between residual error and learning
speed.

2712 J. Werfel, X. Xie, and H. Seung

Because the uncertainties a . . . g can be expected to be nonzero in general,
we can expect typically to encounter the limitations found in both of these
special cases, that is, uneliminable residual error and trade-off between
residual error and learning speed.

4.3 Other Issues. The analysis in this letter and the corresponding re-
sults cover the case where the objective function and distribution of inputs
are isotropic. In a sense, this constitutes a worst case, where every weight
must be learned with equal importance in the calculation of the cost func-
tion. A companion article (in preparation) discusses the more general case
of an anisotropic quadratic cost function, which can result, for example,
from a restricted set of input patterns. In such a case, different learning
modes progress at different speeds, the stochastic algorithms will in gen-
eral not scale so poorly, and parallel variation of weights may outperform
sequential variation by more than a constant factor.

An issue of considerable importance is that of baseline subtraction in
the stochastic learning rules. Both can be written as �W = −η/σ 2(Ē − B)e,
where the scalar B is the baseline. In the analysis above, we have chosen B
to be the error in the absence of noise. So long as the baseline is uncorrelated
with the noise, the stochastic updates will still match the true gradient on
average. However, while the mean updates remain the same, their variance
can be very great if the baseline is poorly chosen; individual updates will
not necessarily decrease the error, and the learning noise will mask the
learning signal to make the algorithm effectively unusable. If the baseline is
correlated with the noise, even the mean update will not in general match
the true gradient; analysis of such a case is not pursued in this study.

While the analytic approach taken here cannot be extended readily to
networks of nonlinear units, these results appear to extend at least qual-
itatively to more complicated networks and architectures. For instance,
Figure 3 shows learning curves that result from applying the three algo-
rithms to a two-layer feedforward network of nonlinear units. All three
algorithms give identical learning curves if the learning rate is set small
enough; as η is increased, the weight perturbation curve fails to converge
to low error, while the other two curves continue to match; increasing η

further leads to the node perturbation curve’s also failing to converge.
Finally, we have considered only those target functions that can be real-

ized by these networks, and have not treated the class of functions for which
no teacher weight matrix w∗ exists, where attaining zero error is impossible.

5 Conclusion

We have shown that stochastic gradient descent techniques can be expected
to scale with increasing network size more poorly than direct ones, in terms
of maximum learning speed. This result may serve as a caution regarding the
size of networks they may usefully be applied to. However, with learning

Learning with Stochastic Gradient Descent 2713

10
0

10
5

η = 4 × 10−3

E
rr

or
 (

ar
bi

tr
ar

y
un

its
)

10
0

10
5

η = 4 × 10−4

E
rr

or
 (

ar
bi

tr
ar

y
un

its
)

10
0

10
2

η = 4 × 10−2

E
rr

or
 (

ar
bi

tr
ar

y
un

its
)

of examples

Figure 3: Sample learning curves for the three algorithms applied to a two-layer
nonlinear feedforward network (gradient descent, dotted; node perturbation,
dashed; weight perturbation, solid). The input, hidden, and output layers each
had 10 units, with output equal to the hyperbolic tangent of their weighted
input. Inputs and noise were drawn from the same distributions as in the linear
case; σ = 10−3, η had the value shown for all three algorithms in each panel. In
each case, the network was trained on successive input examples for the number
of iterations shown. Error was evaluated based on the total squared difference
between the output of the network and that of a teacher network with randomly
chosen weights; the test error was the mean of that for 100 random inputs not
used in training. Curves show averages over 100 independent runs.

2714 J. Werfel, X. Xie, and H. Seung

rates small, equal learning curves in each of the three will follow from equal
learning rates, although individual weight updates will typically be con-
siderably different. This is because for correspondingly small adjustments
to the weights, only the component parallel to the gradient will have a sig-
nificant effect on error; orthogonal components will not affect the error to
first order. Moreover, node perturbation can have performance comparable
to that of direct gradient descent even in training very large networks, so
long as the number of output units is small (Fiete et al., 2004). Thus, these
stochastic methods may be of considerable utility for training networks
in some situations, particularly in reinforcement learning frameworks and
those where the gradient of the objective function is difficult or impossible
to calculate, for mathematical or practical reasons.

Appendix: Derivations

Here we give in detail the calculation of the learning curves and convergence
conditions stated in the text.

A.1 Online Gradient Method. Taking the gradient of the objective func-
tion of equation 2.1 gives

�WOL = −ηWxxT (A.1)

as the individual weight update for particular values of W and x. Given the
weight matrix at time t = 0 and an input vector x, we can apply one such
update and square each element of the result, obtaining

W (1)2
i j =

(
W (0)

i j − η
∑

k

W (0)
ik xk xj

) (
W (0)

i j − η
∑

l

W (0)
il xl x j

)
. (A.2)

Averaging over the distribution of possible inputs,

〈
W (1)2

i j

〉 = (1 − 2η + 2η2)W (0)2
i j + η2

∑
k

W (0)2
ik .

If we sum over rows (i.e., over all inputs to a given output unit),

∑
j

〈
W (1)2

i j

〉 = (1 − 2η + (N + 2)η2)
∑

j

W (0)2
i j .

Summing over columns as well (i.e., over all output units) gives

∑
i j

〈
W (1)2

i j

〉 = (1 − 2η + (N + 2)η2)
∑

i j

W (0)2
i j .

Learning with Stochastic Gradient Descent 2715

This result gives us a recursion relation specifying 〈‖W‖2〉 as a function of
time: after t updates,

∑
i j

〈
W (t)2

i j

〉 = (1 − 2η + (N + 2)η2)t
∑

i j

W (0)2
i j .

We then have as the condition for convergence of the average error

ηOL <
2

N + 2
,

and the learning rate for which the average error converges most quickly
on this quadratic landscape is

η∗
OL = 1

N + 2
. (A.3)

The learning curve can be written

〈
E (t)

OL

〉 = (1 − 2η + (N + 2)η2)t E (0),

where the parenthesized superscript indicates the number of updates. An-
other way to write equation A.2 is explicitly in terms of “gradient signal”
(term multiplying W (0)

i j) plus “gradient noise” (Widrow & Lehr, 1990) (con-
tamination from other components of W due to projection onto x):

W (1)2
i j =

(
W (0)

i j

(
1 − ηx2

j

) − η
∑
k �= j

W (0)
ik xk xj

)2

Expanding the multiplication, the cross terms vanish when the average is
taken, giving

∑
i j

〈
W (1)2

i j

〉 =
∑

i j

W (0)2
i j (1 − 2η + 3η2) + η2(N − 1)

∑
i j

W (0)
i j ,

where the first term is due entirely to the signal and the second to the noise.
Choosing η � 1/N allows the signal to be revealed via averaging over � N
samples (see also section 4).

A.2 Node Perturbation. The weight update for a given ξ and x is

�WNP = − η

σ 2

(
ξT Wx + 1

2
ξTξ

)
ξxT .

2716 J. Werfel, X. Xie, and H. Seung

Averages are taken at each step not only over the inputs but also over the
noise. Taking the same approach as before, we have

〈
W (1)2

i j

〉 = W (0)2
i j (1 − 2η + 4η2)

+ η2

(∑
kl

W (0)2
kl + 2

∑
k

W (0)2
k j + 2

∑
l

W (0)2
il

)

+ 1
4
η2σ 2(M2 + 6M + 8).

Summing over all elements, we obtain∑
i j

〈
W (1)2

i j

〉 = ∑
i j

W (0)2
i j (1 − 2η + η2(M + 2)(N + 2))

+ 1
4
η2σ 2 MN(M2 + 6M + 8).

The condition for convergence is

ηNP <
2

(M + 2)(N + 2)
,

so that average error will converge fastest for

η∗
NP = 1

(M + 2)(N + 2)
. (A.4)

The learning curve is

〈
E (t)

NP

〉 = (
E (0) − ησ 2(M + 2)(M + 4)MN

8(2 − (N + 2)(M + 2)η)

)
(1 − 2η + (M + 2)(N + 2)η2)t

+ ησ 2(M + 2)(M + 4)MN
8(2 − (N + 2)(M + 2)η)

.

A.3 Weight Perturbation. Here the weight update is

�WWP = − η

σ 2

(
xTψT Wx + 1

2
xTψTψx

)
ψ.

The same approach as above gives in this case∑
i j

〈
W (1)2

i j

〉 = ∑
i j

W (0)2
i j (1 − 2η + η2((MN + 2)(N + 2)))

+ 1
4
η2σ 2(M3 N3 + 2M2 N3 + 2M3 N2 + 16M2 N2 + 24MN).

Learning with Stochastic Gradient Descent 2717

The condition for convergence is then

ηWP <
2

(MN + 2)(N + 2)
,

so that the η giving fastest convergence of average error is

η∗
WP = 1

(MN + 2)(N + 2)
. (A.5)

The learning curve is

〈
E (t)

WP

〉 = (
E (0) − ησ 2 MN(MN(M + 2)(N + 2) + 12(MN + 2))

8(2 − (N + 2)(MN + 2)η)

)

· (1 − 2η + (N + 2)(MN + 2)η2)t

+ ησ 2 MN(MN(M + 2)(N + 2) + 12(MN + 2))
8(2 − (N + 2)(MN + 2)η)

.

Acknowledgments

We thank Ila Fiete and Gert Cauwenberghs for useful discussions and com-
ments. This work was supported in part by a Packard Foundation Fellow-
ship (to H.S.S.) and NIH grants (GM07484 to MIT and MH60651 to H.S.S.).

References

Baldi, P., & Hornik, K. (1993). Learning in linear neural networks: A survey. IEEE
Transactions on Neural Networks, 6(4), 837–858.

Bartlett, P., & Baxter, J. (1999). Hebbian synaptic modifications in spiking neurons that learn
(Tech. Rep.). Canberra: Research School of Information Sciences and Engineering,
Australian National University.

Biehl, M., & Riegler, P. (1994). On-line learning with a perceptron. Europhys. Lett., 28,
525–530.

Cauwenberghs, G. (1993). A fast stochastic error-descent algorithm for supervised
learning and optimization. In C. L. Giles, S. J. Hanson, & J. D. Cowan (Eds.),
Advances in neural information processing systems, 5 (pp. 244–251). San Mateo, CA:
Morgan Kaufmann.

Cauwenberghs, G. (1996). An analog VLSI recurrent neural network learning a
continuous-time trajectory. IEEE Transactions on Neural Networks, 7(2), 346–361.

Fiete, I. R., Fee, M. S., & Seung, H. S. (2004). Neural theory of gradient learning with
empiric synapses. Manuscript submitted for publication.

Flower, B., & Jabri, M. (1993). Summed weight neuron perturbation: An O(n) im-
provement over weight perturbation. In C. L. Giles, S. J. Hanson, & J. D. Cowan

http://www.ingentaconnect.com/content/external-references?article=0295-5075()28L.525[aid=217810]
http://www.ingentaconnect.com/content/external-references?article=0295-5075()28L.525[aid=217810]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()6:4L.837[aid=2232841]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()6:4L.837[aid=2232841]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()7:2L.346[aid=6912419]

2718 J. Werfel, X. Xie, and H. Seung

(Eds.), Advances in neural information processing Systems, 5 (pp. 212–219). San
Mateo, CA: Morgan Kaufmann.

Heskes, T. M., & Kappen, B. (1991). Learning processes in neural networks. Physical
Review A, 44(4), 2718–2726.

Jabri, M., & Flower, B. (1992). Weight perturbation: An optimal architecture and learn-
ing technique for analog VLSI feedforward and recurrent multilayered networks.
IEEE Transactions on Neural Networks, 3(1), 154–157.

Mace, C. W. H., & Coolen, A. C. C. (1998). Statistical mechanical analysis of the
dynamics of learning in perceptrons. Statistics and Computing, 8, 55–88.

Werfel, J., Xie, X., & Seung, H. S. (2004). Learning curves for stochastic gradient
descent in linear feedforward networks. In S. Thrun, L. Saul, & B. Schölkopf
(Eds.), Advances in neural information processing systems, 16 Cambridge, MA: MIT
Press.

Widrow, B., & Lehr, M. A. (1990). Thirty years of adaptive neural networks: Percep-
tron, Madaline, and backpropagation. Proc. IEEE, 78(9), 1415–1442.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8, 229–256.

Received November 1, 2004; accepted March 23, 2005.

http://www.ingentaconnect.com/content/external-references?article=0960-3174()8L.55[aid=6912418]
http://www.ingentaconnect.com/content/external-references?article=0885-6125()8L.229[aid=218436]
http://www.ingentaconnect.com/content/external-references?article=1050-2947()44:4L.2718[aid=6912417]
http://www.ingentaconnect.com/content/external-references?article=1050-2947()44:4L.2718[aid=6912417]
http://www.ingentaconnect.com/content/external-references?article=1045-9227()3:1L.154[aid=6912416]
http://www.ingentaconnect.com/content/external-references?article=0018-9219()78:9L.1415[aid=2363089]

