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Abstract

For a broad class of multi-level models, there exist two well-known competing parameter-
izations, the centered parametrization (CP) and the non-centered parametrization (NCP),
for effective MCMC implementation. Much literature has been devoted to the questions of
when to use which and how to compromise between them via partial CP/NCP. This paper
introduces an alternative strategy for boosting MCMC efficiency via simply interweaving—
but not alternating—the two parameterizations. This strategy has the surprising property
that failure of both the CP and NCP chains to converge geometrically does not prevent the
interweaving algorithm from doing so. It achieves this seemingly magical property by taking
advantage of the discordance of the two parameterizations, namely, the sufficiency of CP
and the ancillarity of NCP, to substantially reduce the Markovian dependence, especially
when the original CP and NCP form a “beauty and beast” pair (i.e., when one chain mixes
far more rapidly than the other). The ancillarity-sufficiency reformulation of the CP-NCP
dichotomy allows us to borrow insight from the well-known Basu’s theorem on the indepen-
dence of (complete) sufficient and ancillary statistics, albeit a Bayesian version of Basu’s
theorem is currently lacking. To demonstrate the competitiveness and versatility of this
Ancillarity-Sufficiency Interweaving Strategy (ASIS) for real-world problems, we apply it to
fit 1) a Cox process model for detecting changes in source intensity of photon counts observed
by the Chandra X-ray telescope from a (candidate) neutron/quark star, which was the prob-
lem that motivated the ASIS strategy as it defeated other methods we initially tried; 2) a
probit model for predicting latent membranous lupus nephritis; and 3) an interval-censored
normal model for studying the lifetime of fluorescent lights. A bevy of open questions are
presented, from the mysterious but exceedingly suggestive connections between ASIS and
fiducial/structural inferences to nested ASIS for further boosting MCMC efficiency.

Keywords: ancillary augmentation; Basu’s theorem; centered parametrization; data augmentation;
EM; GLMM; interval censoring; latent variables; MCMC; missing data; non-centered parametriza-
tion; parameter-driven model; Poisson time series; probit regression; sufficient augmentation.
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1 Coupling is More Promising Than Compromising

As a powerful set of tools for simulating complex distributions, MCMC methods, such as the

Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith 1990; Smith and Roberts 1993) and

the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970), have revolutionized

statistics, especially Bayesian statistics. An early idea in the statistical literature is the data aug-

mentation (DA) algorithm (Tanner and Wong, 1987), a stochastic counterpart of the popular EM

algorithm (Dempster, Laird and Rubin 1977; Wu 1983). Both EM and DA work under the missing

data formulation by specifying a joint distribution p(Ymis, Yobs|θ) whose marginal p(Yobs|θ) is the

observed-data model of interest. By purposefully introducing missing data/auxiliary variables,

EM and DA achieve their goals through iterative schemes that are usually easy to implement.

Nevertheless, their potential slow convergence has been a concern for their users and a challenge

for their designers. Among many developments, Meng and van Dyk (1997, 1999) and van Dyk

and Meng (2001) propose efficient data augmentation, where the key observation is that often a

model under the missing data formulation can be written in a variety of ways. Mathematically,

any joint model p(Yobs, Ymis|θ, α) qualifies as a DA model if

∫
p(Yobs, Ymis|θ, α)µ(dYmis) = p(Yobs|θ), for all Yobs, (1.1)

where α is the “working parameter”, only identifiable from Yaug = {Ymis, Yobs}. We emphasize

that it is the specification p(Yaug|θ, α) that constitutes a DA scheme. The common notation Ymis

is merely for convenience, and there are cases where it is not appropriate (see Section 4).

Each formulation in (1.1), indexed by α, corresponds to a (potentially) different EM or DA.

Therefore we can choose a formulation that results in fast convergence and easy implementation.

In the context of Bayesian hierarchical models, seeking efficient DA is known as a reparame-

terization issue (e.g., Hills and Smith 1992; Gelfand et al. 1995, 1996; Roberts and Sahu 1997;

Papaspiliopoulos et al. 2003, 2007), because both the missing data Ymis and the parameter θ are

viewed as “parameters”. Meng and van Dyk (1998), for example, investigate several rules for

choosing an appropriate parameterization for mixed-effects models for faster EM. For MCMC,

Papaspiliopoulos et al. (2007) discusses the importance of effective parameterizations and the

strategies for constructing such parameterizations in hierarchical models.

This paper introduces an ancillarity-sufficiency interweaving strategy (ASIS) for boosting

2



MCMC efficiency. Instead of choosing a single DA scheme, ASIS singles out two special DA

schemes, the ancillary augmentation (AA) and the sufficient augmentation (SA), and couples them

by “going back and forth” between them within each iteration of an MCMC sampler. Specifically,

in SA, the missing data are a sufficient statistic for the parameter of interest, whereas in AA,

the missing data are an ancillary statistic. It has been long observed that between AA and SA

(though not using these terms; see below), if one leads to fast convergence, the other is usually

slow, depending on the observed data (e.g., Gelfand et al. 1995, Meng and van Dyk, 1998, Pa-

paspiliopoulos et al., 2007). Therefore, it is not surprising that by combining the two in some way,

such as alternating between them, one might achieve some compromise, or at least avoid disasters.

What is surprising, at least to us initially, is that there exists an interweaving strategy, to be

defined in Section 2, that does not compromise but takes the advantage of this beauty-and-beast

contrasting feature of the two DA algorithms; the resulting algorithm can often outperform both,

sometimes very substantially. Furthermore, when the two DA schemes being interwoven form an

AA-SA pair, we can show theoretically that in some cases ASIS provides the fastest converging

algorithm within a general class as defined by Liu and Wu (1999).

On the application side, our motivating problem came from X-ray astrophysics: modeling

changes in source intensity for photon counts. We built a parameter-driven Poisson time series

model (Cox, 1981), but the required computation was very challenging until the interweaving

strategy was applied (Yu, 2005). Here we apply our general strategy to this and another two

real-world problems to demonstrate its competitiveness and flexibility.

We emphasize that the notions of SA and AA are mathematically equivalent to the centered

parametrization (CP) and non-centered parameterization (NCP), respectively (see Gelfand et al.

1995, 1996; Roberts and Sahu 1997; Papaspiliopoulos et al. 2003, 2007; Papaspiliopoulos and

Roberts, 2008). We believe the sufficiency and ancillarity terminology better captures the essence

of these methods, because centering and non-centering might leave the false impression that

the methods are only applicable to location families. Indeed, the awkwardness of the CP/NCP

nomenclature has been noted, e.g., by Christensen in his discussion of Papaspiliopoulos et al.

(2003): “The authors use the terminology ‘non-centered’ and ‘partially non-centered’ for the

latter two types of parameterisations, which suggest that they find them un-natural. I think these

two types of parameterisations deserve better names.” More importantly, the connection with the
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classical notions of ancillarity and sufficiency reminds us a theoretical insight suggested by Basu’s

theorem (Basu, 1955); see Section 2. Nevertheless, our central contribution is not about these two

notions individually, but about coupling them in a particularly efficient way.

The rest of the paper is organized as follows. Section 2 defines the ASIS and more generally

the component-wise ASIS, and uses examples from Liu and Wu (1999) and Papaspiliopoulos

et al. (2003, 2007) to show how, why and when ASIS works. Section 3 describes how we use

component-wise ASIS in our motivating astrophysics problem. Section 4 further demonstrates the

competitiveness and versatility of ASIS using probit regression and a normal model with interval

censoring. Section 5 establishes four theorems, three on the robustness of the interweaving strategy,

and one on the optimality of ASIS under further conditions. Section 6 concludes with a discussion

of limitations and open problems. Due to space limitation, most proofs and technical details are

deferred to an on-line appendix, available at the journal website http://pubs.amstat.org/toc/jcgs/.

2 Defining and Explaining ASIS

2.1 Ancillary and Sufficient DA Schemes

Consider the simplest two-level normal hierarchical model (Liu and Wu, 1999)

Yobs|(θ, Ymis) ∼ N(Ymis, 1), (2.1)

Ymis|θ ∼ N(θ, V ), (2.2)

where θ is the parameter, Yobs (a scalar) is the observed datum, Ymis is the missing datum or latent

variable, and V > 0 is a known constant. With a constant prior distribution on θ, the posterior is

θ|Yobs ∼ N(Yobs, 1 + V ), which is our target density.

Treating Ymis directly as the missing data, the standard DA algorithm iterates between drawing

Ymis|(θ, Yobs) and drawing θ|(Ymis, Yobs):

Ymis|(θ, Yobs) ∼ N

(
θ + V Yobs

1 + V
,

V

1 + V

)
, (2.3)

θ|(Ymis, Yobs) ∼ N(Ymis, V ). (2.4)

Because the right hand side of (2.1) is free of θ, we call such a DA scheme p(Ymis, Yobs|θ) sufficient

augmentation (SA), since Ymis is a sufficient statistic for θ in the augmented-data model. In a
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Bayesian setting, this implies that the augmented-data posterior of θ depends on Ymis alone.

On the other hand, if we let

Ỹmis = Ymis − θ, (2.5)

and treat Ỹmis as the missing data, then the model can be rewritten as

Yobs|(θ, Ỹmis) ∼ N(Ỹmis + θ, 1), (2.6)

Ỹmis|θ ∼ N(0, V ), (2.7)

which gives a different DA algorithm:

Ỹmis|(θ, Yobs) ∼ N

(
V (Yobs − θ)

1 + V
,

V

1 + V

)
, (2.8)

θ|(Ỹmis, Yobs) ∼ N(Yobs − Ỹmis, 1). (2.9)

We call such a DA scheme ancillary augmentation (AA), because the distribution of Ỹmis, as in

(2.7), is free of θ, that is, Ỹmis is an ancillary statistic for θ. In Bayesian terms, Ỹmis and θ are

independent a priori.

Though both schemes have the same target distribution p(θ|Yobs), their convergence rates are

usually different. For EM-type algorithms, the convergence rates are governed by “the fraction

of missing information” (Dempster, Laird and Rubin, 1977; Meng and Rubin, 1991; Meng, 1994;

Meng and van Dyk, 1996, 1997), which also provides insights into the convergence behavior of

DA-type algorithms (Liu, 1994; van Dyk and Meng, 2001, 2010). In the current problem, for SA

as in (2.2), the smaller the (conditional) variance V , the more informative Ymis is about θ, and

hence the more missing information when we treat Ymis as missing data. In contrast, for (2.7), the

smaller the value of V , the more we know about Ỹmis (as it gets closer to zero stochastically), and

hence the less the missing information when we treat Ỹmis as missing data. Consequently, when

V is small, we expect SA to be slow but AA to be fast; the situation reverses when V is large.

This intuition is indeed correct. Let us recall that for a general DA algorithm, its geometric

rate of convergence is the square of the maximal correlation between Ymis and θ under the joint

posterior distribution p(Ymis, θ|Yobs); see Liu, Wong and Kong (1994, 1995). This is both the

L1 and L2 geometric rate, because for time reversible Markov chains such as the DA algorithm,

geometric L1 convergence and L2 convergence are equivalent (see Roberts and Tweedie, 2001).

The usual definition of the Lp geometric rate is the smallest constant r such that the Lp distance
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between the distribution of θ(t) and the target distribution is bounded above by c(θ0)r
t, where

c is a (non-negative) function of θ(0). When 0 ≤ r < 1, we say {θ(t)} is geometrically ergodic;

otherwise it is non-geometric or sub-geometric (all with respect to the chosen Lp norm). If, in

addition to r < 1, c(θ0) is bounded above, we say {θ(t)} is uniformly ergodic. See Meyn and

Tweedie (1993) and Papaspiliopoulos and Roberts (2008). In this paper we will adopt the L2

norm mainly because our theoretical results (Section 5) are established via maximal correlations,

as in Liu, Wong and Kong (1994, 1995). We note, however, that the L2 geometric convergence

implies L1 geometric convergence in general (e.g., when we move beyond the original DA setting).

For the current case, the rate is rSA = 1/(1 + V ) for the SA chain and rAA = V/(1 + V ) for

the AA chain (the larger the rate, the slower the convergence). These rates can also be visualized

by noting the slope in the stochastic recursion for the SA chain (obtained by combining (2.3) and

(2.4) via their stochastic representations):

θ
(t+1)
SA =

1

1 + V
θ

(t)
SA +

V

1 + V
Yobs +

√
V 2 + 2V

1 + V
Z

(t)
1 , (2.10)

and for the AA chain (obtained by combining (2.8) and (2.9)):

θ
(t+1)
AA =

V

1 + V
θ

(t)
AA +

1

1 + V
Yobs +

√
2V + 1

1 + V
Z

(t)
2 , (2.11)

where Z
(t)
1 and Z

(t)
2 are i.i.d. N(0, 1). Because rAA + rSA = 1, when one algorithm converges fast,

the other has to be slow, and either one can be arbitrarily slow on its own, depending on the value

of V . Gelfand et al. (1995), Papaspiliopoulos et al. (2003, 2007), and Papaspiliopoulos and Roberts

(2008) discuss this issue for general classes of Bayesian hierarchical models. A key contribution

of our paper is to show that, by interweaving the two schemes, we can create a potentially much

better algorithm. Indeed, for the toy example, our proposed strategy will lead to i.i.d draws and

hence the rate r is zero. This is in contrast with the simple alternating scheme, which has a rate

of rAArSA even though the alternating scheme requires four steps (i.e., (2.3)-(2.4) and (2.8)-(2.9))

at each iteration whereas the interweaving strategy uses only three, as detailed below.

2.2 Interweaving AA and SA

To define interweaving, suppose we have a pair of DA schemes Ymis and Ỹmis (not necessarily an

SA-AA pair) such that their joint distribution p(Ymis, Ỹmis|θ, Yobs), conditional on both θ and Yobs,
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is well defined. We emphasize that this joint distribution is often degenerate in the sense that

Ỹmis = M(Ymis; θ) where M(·; θ) is a one-to-one (deterministic) mapping for given θ. In our toy

example, M(Ymis; θ) = Ymis − θ, and M−1(Ỹmis; θ) = Ỹmis + θ. However, there are important

applications that call for more general stochastic relationships. Consider the example provided

by Papaspiliopoulos et al. (2007), where Ymis ∼ Bernoulli(θ) is a latent class indicator, and

is an SA because the membership probability θ is the only parameter in their model. An AA

is obtained by specifying Ỹmis ∼ Uniform(0, 1) and letting Ymis be the indicator of the event

Ỹmis ≤ θ. Although Ymis is a deterministic function of Ỹmis (for fixed θ), the inverse relationship

is stochastic: given θ, Ỹmis ∼ Uniform(0, θ) if Ymis = 1 and Ỹmis ∼ Uniform(θ, 1) if Ymis = 0.

As emphasized by Papaspiliopoulos et al. (2007), such many-to-one mappings are necessary for

“state-space expansion”, an important technique for constructing AA (i.e., NCP) for discretely

observed diffusion processes (Papaspiliopoulos et al., 2003; Beskos et al., 2006).

The two DA schemes lead to two algorithms: one iterates between Step 1: Draw Ymis ∼
p(Ymis|θ) and Step 2: Draw θ ∼ p(θ|Ymis); and the other between Step 1̃: Draw Ỹmis ∼ p(Ỹmis|θ)
and Step 2̃: Draw θ ∼ p(θ|Ỹmis). (For simplicity of notation, conditioning on Yobs is suppressed

henceforth unless otherwise noted.) A straightforward alternating scheme would execute one

iteration from each algorithm in turn, that is, we form a combined iteration by carrying out

Steps 1, 2, 1̃ and 2̃ in that order and treat these four steps as one iteration:

[Ymis|θ(t)] −→ [θ|Ymis] −→ [Ỹmis|θ] −→ [θ(t+1)|Ỹmis]. (2.12)

For comparing different schemes, we only index (via the superscript) those draws that will form

the chain {θ(t), t = 1, 2, . . .}; all un-indexed draws serve as intermediate vehicles for moving from

θ(t) to θ(t+1). For example, the middle two steps in (2.12) facilitate the transfer from Ymis to Ỹmis.

(A subtle point: (2.12) does not require {Ymis, Ỹmis} to have a joint distribution given θ and Yobs.)

Our interweaving strategy, in a nutshell, replaces Step 2 and Step 1̃ by a single step: drawing

Ỹmis from p(Ỹmis|Ymis) (no conditioning on θ); schematically, we have

[Ymis|θ(t)] −→ [Ỹmis|Ymis] −→ [θ(t+1)|Ỹmis]. (2.13)

It is usually more convenient to draw p(Ỹmis|Ymis) by drawing θ ∼ p(θ|Ymis) and then drawing

Ỹmis ∼ p(Ỹmis|Ymis, θ). Hence (2.13) becomes

[Ymis|θ(t)] −→ [θ|Ymis] −→ [Ỹmis|Ymis, θ] −→ [θ(t+1)|Ỹmis]. (2.14)
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Viewed this way, the only difference between interweaving and alternating is that we replace the

third step in (2.12) by the conditional draw Ỹmis ∼ p(Ỹmis|Ymis, θ). Ironically, although replacing

p(Ỹmis|θ) by p(Ỹmis|Ymis, θ) appears to introduce more dependence (often Ỹmis is completely deter-

mined by {Ymis, θ}!), the resulting algorithm usually possesses less dependence between θ(t) and

θ(t+1) and hence improves convergence, as demonstrated in later sections.

To explain the name interweaving, consider (2.14) again but this time we omit the second step,

[θ|Ymis]. The scheme then becomes

[Ymis|θ(t)] −→ [Ỹmis|Ymis, θ
(t)] −→ [θ(t+1)|Ỹmis]. (2.15)

But this is trivially the same as

[Ỹmis|θ(t)] −→ [θ(t+1)|Ỹmis], (2.16)

which is just the original DA algorithm based on Ỹmis alone. So in this sense the new scheme

(2.13)—or equivalently (2.14)—just interweaves (or injects) the [θ|Ymis] step from the DA algo-

rithm based on Ymis into the DA algorithm based on Ỹmis (or vice versa).

2.3 Global Interweaving Strategy and Its Potential

To summarize, each iteration of the resulting global interweaving strategy (“global” is used to

distinguish from “component-wise” introduced later) performs the following steps, where non-

integer superscripts index intermediate draws.

Global Interweaving Strategy (GIS)

Step 1. Draw Ymis given θ: Y
(t)
mis|θ(t).

Step 2. Draw θ given Ymis: θ(t+.5)|Y (t)
mis.

Step 2̃. Redraw θ given Ỹmis: θ(t+1)|Ỹ (t+1)
mis , where Ỹ

(t+1)
mis ∼p(Ỹmis|Y (t)

mis; θ
(t+.5)).

To verify that this GIS chain preserves the stationary density p(θ) as shared by the original

two DA algorithms, we note, from (2.13), that its transition density is

k(θ′|θ) =

∫ ∫
p(θ′|Ỹmis)p(Ỹmis|Ymis)p(Ymis|θ)dYmisdỸmis. (2.17)
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For simplicity of presentation we assume all distributions involved have densities with respect to

Lebesgue measure. Assuming that p(Ymis, Ỹmis, θ) is a well-defined joint density and its margins

p(Ymis, θ) and p(Ỹmis, θ) are the (joint) stationary densities of the original two DA chains such

that they share the same margin p(θ), we have, by Fubini’s theorem,

∫
k(θ′|θ)p(θ)dθ =

∫ ∫
p(θ′|Ỹmis)p(Ỹmis|Ymis)

[∫
p(Ymis|θ)p(θ)dθ

]
dYmisdỸmis

=

∫
p(θ′|Ỹmis)

[∫
p(Ỹmis|Ymis)p(Ymis)dYmis

]
dỸmis

=

∫
p(θ′|Ỹmis)p(Ỹmis)dỸmis = p(θ′).

Hence p(θ) is the stationary density; see Tierney (1994) for a general theory for ensuring valid

target distributions in MCMC. When the two DAs form an AA-SA pair, we call the resulting GIS

an Ancillarity-Sufficiency Interweaving Strategy (ASIS).

We note here that the kernel expression (2.17) is closely related to the “sandwiched” kernel

given in Hobert and Marchev (2008). The difference is that the kernel in Hobert and Marchev

(2008), using our notation, can be written as

kHM(θ′|θ) =

∫ ∫
p(θ′|Y ′

mis)p(Y ′
mis|Ymis)p(Ymis|θ)dYmisdY ′

mis, (2.18)

where (θ′, Y ′
mis) and (θ, Ymis) have the same joint distribution; when Y ′

mis = Ymis, (2.18) becomes

the standard DA. Such a setup is general enough to subsume both marginal augmentation and

PX-DA, but is still less general than (2.17), where (θ′, Ỹmis) and (θ, Ymis) do not (necessarily) have

the same distribution precisely because we want to take advantage of the “beauty-and-beast”

nature of the Ỹmis and Ymis pair. Technically, the reason that we can relax the restriction that

(θ′, Y ′
mis) and (θ, Ymis) have the same distribution is that we only aim to preserve the stationary

distribution for the θ margin.

If Ỹmis and Ymis are linked by a one-to-one transformation Ỹmis = M(Ymis; θ), then geometri-

cally each conditional draw in Steps 1–2̃ can be viewed as sampling along a certain direction in

the (θ, Ymis) space. In this case GIS falls within the framework of alternating subspace-spanning

resampling (Liu, 2003). Which combination of directions produces an algorithm that is both effi-

cient and easy to implement is a critical issue, and the current paper demonstrates that ASIS is

a promising and surprisingly simple recipe.
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Figure 1: Sampling directions (solid lines) for ASIS in the toy model with Yobs = 1 and V = 1.

Left: Step 1, conditional draw along the lines θ = const. Center: Step 2̃, conditional draw along

Ymis− θ = const. Right: Step 2, conditional draw along Ymis = const. The ellipses are contours of

the posterior distribution p(θ, Ymis|Yobs).

Figure 1 illustrates the three directions for the toy model. Remarkably, by sampling in these

particular directions, ASIS converges immediately, i.e., rASIS = 0, as can be verified from its

stochastic recursion (derived in a similar way as for (2.10) or (2.11))

θ
(t+1)
ASIS = Yobs + Z1 +

√
V Z2, (2.19)

where Z1 and Z2 are i.i.d. N(0, 1). That is, the ASIS chain produces i.i.d. draws from the target

distribution N(Yobs, 1 + V ).

Contrary to what one might suspect, this phenomenon of i.i.d. draws has nothing to do with

the normality assumptions in (2.1) or in (2.2), as we will show in the next section. However, the

change of the distribution shape can affect substantially the convergence behaviors of the original

SA chain or the AA chain, as proved by Papaspiliopoulos and Roberts (2008). In particular, if we

change the normal distribution in (2.1) to a Cauchy distribution, but keep the normality for (2.2),

then the SA chain is not geometric ergodic, whereas the AA chain is uniformly ergodic. On the

other hand, if we retain the normality for (2.1) but adopt a Cauchy distribution in (2.2), then the

SA chain will be uniformly ergodic but the AA chain will fail to be geometric ergodic. However,

regardless which original chain fails, the ASIS sampler delivers i.i.d. draws.

Most strikingly, let us consider a bivariate extension of (2.1)-(2.2), where the first component

{Yobs,1, Ymis,1, θ1} follows the Cauchy-Normal pair version of (2.1)-(2.2), and the second component

{Yobs,2, Ymis,2, θ2} follows the Normal-Cauchy pair version of (2.1)-(2.2), and the two components

are independent (including independent priors p(θ1, θ2) ∝ 1). Since this bivariate model is just
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two independent univariate models, obviously Ymis ≡ (Ymis,1, Ymis,2) is SA for θ ≡ (θ1, θ2) and

Ỹmis ≡ (Ymis,1 − θ1, Ymis,2 − θ2) = Ymis − θ is AA for θ. Both the SA chain for θ and the AA

chain for θ fail to be geometrically ergodic because each has a component that fails to be so by

construction, yet the ASIS sampler will still produce i.i.d draws for θ since each of its component

does so. Although this extreme example is not indicative at all of what ASIS can achieve in

practice, it shows that the power of ASIS comes not so much from the individual behaviors of

SA and AA but rather from their contrasting relationship. It also signifies the difference between

interweaving and alternating; the latter clearly will fail to be geometrically ergodic if both chains

being alternated are not geometrically ergodic.

2.4 So Where Does the Magic Come From?

Although achieving i.i.d. sampling is wishful thinking for general MCMC (albeit with effort even

negatively associated draws are possible; see, e.g., Craiu and Meng (2005)), our empirical and the-

oretical results demonstrate that achieving substantial improvements via ASIS is a real possibility.

In particular, in Section 5 we establish the following result (the simplest among several):

Theorem 1. Given a posterior distribution of interest p(θ|Yobs), θ ∈ Θ, suppose we have two

augmentation schemes Ymis,1 and Ymis,2 such that their joint distribution, conditioning on both θ

and Yobs, is well defined for θ ∈ Θ (almost surely with respect to p(θ|Yobs)). Denote the geometric

rate of convergence of the DA algorithm under Ymis,i by ri, i = 1, 2, which are allowed to take

value 1 (i.e., being sub-geometric). Then

r1&2 ≤ R1,2

√
r1r2, (2.20)

where r1&2 is the geometric rate of the GIS sampler interweaving Ymis,1 and Ymis,2, and R1,2 is the

maximal correlation between Ymis,1 and Ymis,2 in their joint posterior distribution p(Ymis,1, Ymis,2|Yobs).

This theorem establishes that minimally the interweaving strategy leads to an algorithm that

is better than the worse of the two, because (2.20) trivially implies that r1&2 ≤ max{r1, r2}.
Theorem 1 therefore sharpens Hobert and Marchev’s (2008) result that the Markov chain defined

by their “sandwiched” kernel (2.18) is no slower than the original chain determined by Ymis. This

is because when (θ, Ymis,1) and (θ, Ymis,2) have the same distribution (which is the case for (2.18)),

11



r1 = r2, and hence (2.20) improves Hobert and Marchev’s (2008) result by the factor R1,2 ≤ 1.

Although R1,2 is typically difficult to calculate—so this improvement has little use in evaluating

the bound—it is the key for understanding the power of the interweaving strategy because it brings

the posterior dependence of Ymis,1 and Ymis,2 into the picture, which provides a new direction for

boosting MCMC efficiency. For example, Theorem 1 says that as long as R1,2 < 1 (see Theorem 2

of Section 5 when this fails), the interweaving strategy will be geometrically convergent, even

if neither of the original two algorithms is (as illustrated in Section 2.3). The theoretical and

empirical evidence in later sections demonstrates that ASIS often converges noticeably faster than

the original two (issues such as time per iteration will be discussed in the context of real examples).

Theorem 1 also says that when R1,2 = 0, i.e., when Ymis,1 and Ymis,2 are a posteriori inde-

pendent, then r1&2 = 0 and hence the interwoven algorithm will provide i.i.d. draws. As (2.13)

depicts, if Ymis(= Ymis,1) and Ỹmis(= Ymis,2) are independent, then so are θ(t+1) and θ(t). Although

independence is generally not achievable, Theorem 1 provides a critical insight as to which pairs

of Ymis,1 and Ymis,2 we should seek. The classical theorem of Basu (1955) says that a complete

sufficient statistic is independent of any ancillary statistic given the parameter. Although this

does not imply that sufficient and ancillary DAs should be independent a posteriori (and usually

they are not), it does suggest that they are good candidates for interweaving.

In many common models, Ymis, the “default” DA, is the SA or CP, as emphasized by Gelfand

et al. (1995, 1996) and Papaspiliopoulos et al. (2003, 2007). How should we construct its partner

via Ỹmis = M(Ymis; θ)? Regardless of the choice of the (one-to-one) mapping M(·; θ), the joint

posterior density of Ỹmis and θ can be expressed as

p(θ, Ỹmis|Yobs) ∝ p(Yobs|Ỹmis, θ)p(Ỹmis|θ)p0(θ), (2.21)

where p0(θ) is the prior. If θ and Ymis are one-to-one given Ỹmis, we can directly form a one-to-one

transformation from (θ, Ỹmis) to (Ỹmis, Ymis), where Ymis = M−1(Ỹmis; θ), with M(·; θ) one-to-

one but otherwise to be determined. Noting that p(Yobs|Ỹmis; θ) = p(Yobs|Ymis; θ) = p(Yobs|Ymis)

because Ỹmis = M(Ymis; θ) is one-to-one and Ymis is sufficient, we have

p(Ỹmis, Ymis|Yobs) ∝ p(Yobs|Ymis)p(Ỹmis|θ)p0(θ)J(Ỹmis, Ymis), (2.22)
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where θ = θ(Ỹmis, Ymis) is determined by Ỹmis = M(Ymis; θ) and

J(Ỹmis, Ymis) =

∣∣∣det
{

∂M(Ymis;θ)
∂Ymis

}∣∣∣
∣∣∣det

{
∂M(Ymis;θ)

∂θ

}∣∣∣
. (2.23)

In all examples of Section 2.3 p0(θ) ∝ 1 and M(Ymis; θ) = Ymis − θ, so that J(Ỹmis, Ymis) = 1.

Consequently, (2.22) suggests that if Ỹmis is ancillary for θ, then Ỹmis and Ymis are a posteriori

independent because (2.22) then factors as a function of Ỹmis and Ymis:

p(Ỹmis, Ymis|Yobs) ∝ p(Yobs|Ymis)p(Ỹmis). (2.24)

Hence R1,2 = 0, explaining why ASIS led to i.i.d. draws in all examples of Section 2.3.

Achieving such complete factorization is of course rare. Nevertheless, as long as Ỹmis is an AA,

we still have the factorization of the first two terms in the right hand side of (2.22):

p(Ỹmis, Ymis|Yobs) ∝ p(Yobs|Ymis)p(Ỹmis)p0(θ(Ỹmis, Ymis))J(Ỹmis, Ymis). (2.25)

Therefore, the a posteriori dependence is determined only by the form of the prior and the Jacobian

of our transformation. This is largely good news, because in practice priors tend to be weak (for

likelihood computation via MCMC, for example, the prior is constant), and the transformation

is for us to make, at least to a certain extent. For example, suppose θ is a scale parameter

for Ymis, which is an SA for θ, and we use the usual constant prior on log θ. If we choose

Ỹmis = M(Ymis; θ) = Ymis/θ, which is an AA, then we have

∆(Ỹmis, Ymis) ≡ p0(θ(Ỹmis, Ymis))J(Ỹmis, Ymis) = θ−1 × θ−1/(Ymisθ
−2) = Y −1

mis. (2.26)

Hence p(Ỹmis, Ymis|Yobs) factors, leading again to i.i.d. draws. We remark that it does not seem a

coincidence that the location map M(Ymis; θ) = Ymis− θ works with a constant prior on θ and the

scale map M(Ymis; θ) = Ymis/θ works with a constant prior on log θ; see Section 6.

A perceptive reader must wonder if there is something too good to be true here. It may seem

possible to choose M(·; θ) (as a functional of the prior p0) such that ∆(Ỹmis, Ymis) in (2.26) factors.

However the resulting parameterization is not guaranteed to be an AA. More critically, (2.22) is

correct only when θ and Ymis are of the same dimension (and one-to-one given Ỹmis). Otherwise

the joint density of Ỹmis and Ymis is of a more complicated form, and much less likely to factor.

Nevertheless, we shall demonstrate both empirically and theoretically that, ASIS, particularly

with its component-wise implementation described in the next section, holds good promise for

boosting MCMC efficiency because of its simplicity, generality, and flexibility.
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2.5 Component-wise Interweaving Strategy

When GIS is difficult to implement, it is natural to consider partitioning θ into θ = {θ1, . . . , θJ}.
The usual Gibbs sampler draws Ymis given θ, and then each θj in turn given Ymis and all other

components of θ, at each iteration. The component-wise interweaving strategy (CIS) modifies it

by drawing each θj using interweaving, conditional on all other components. Thus we only need

a conditional AA and a conditional SA for each component of θ, treating all other components as

known. Specifically, let YS,j and YA,j be the conditional SA and conditional AA schemes for θj

respectively, j = 1, . . . , J , such that the joint distribution of all {YS,j, YA,j; j = 1, . . . J} given θ

and Yobs is well defined. Generalizing (2.14), an iteration of CIS with J = 2 is as follows.

[YA,1|θ(t)] −→ [θ1|YA,1; θ
(t)
2 ] −→ [YS,1|YA,1, (θ1, θ

(t)
2 )] −→ [θ

(t+1)
1 |YS,1; θ

(t)
2 ]

−→ [YA,2|YS,1; (θ
(t+1)
1 , θ

(t)
2 )] −→ [θ2|YA,2; θ

(t+1)
1 ] −→ [YS,2|YA,2; (θ

(t+1)
1 , θ2)] −→ [θ

(t+1)
2 |YS,2, θ

(t+1)
1 ].

In general, for each j, CIS simply adds a step based on Ỹmis,j to the (j+1)th step of the original

Gibbs sampler. Typically the DA Ymis used by the original Gibbs-type sampler is either an AA or

SA for each θj, and hence only its complementary Ỹmis,j is needed to complete the AA-SA pair.

For each j, let θ<j and θ>j denote the components of θ before and after θj respectively. Adopting

the previous conventions, we can express the general CIS scheme as follows.

Component-wise Interweaving Strategy (CIS)

Step 1. Draw Ymis ∼ p(Ymis|θ(t)).

For j = 1, . . . , J , perform the following J cycles in turn:

Step (j + 1). Draw θ
(t+.5)
j ∼ p(θj|θ(t+1)

<j , θ
(t)
>j; Ymis).

Step ˜(j + 1). Update Ỹmis,j ∼ p(Ỹmis,j|θ(t+1)
<j , θ

(t+.5)
j , θ

(t)
>j; Ymis), and then draw

θ
(t+1)
j ∼ p(θj|θ(t+1)

<j , θ
(t)
>j; Ỹmis,j);

update Ymis by drawing it from p(Ymis|θ(t+1)
<j , θ

(t+1)
j , θ

(t)
>j; Ỹmis,j).

In Step ˜(j + 1), the two draws updating Ỹmis,j and Ymis are typically simple deterministic

transformations, i.e., Ỹmis,j = Mj(Ymis; θ) and its inverse; they are not on equal footing with

Step 1, the real sampling step as called for by the original Gibbs sampler. By including these
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extra draws in Step ˜(j + 1), it becomes clear that once Step ˜(j + 1) is removed from the jth

cycle for all j, CIS reduces to the original Gibbs sampler. (This simple observation is helpful for

understanding Theorem 3 in Section 5, which links the convergence rate of CIS to that of the

original Gibbs sampler.) Also, for simplicity, we have chosen to link all Ỹmis,j to a common Ymis,

although we could have used a more general notation Ymis,j.

The CIS is valid because every step maintains the invariance of the target density; the proof is

the same as the one for GIS in Section 2.3. Specifically, if we denote the output of θ immediately

after Step ˜(j + 1) by

θ(t+ j

J
) = (θ

(t+1)
<j , θ

(t+1)
j , θ

(t)
>j), (2.27)

then θ(t+ j

J
) follows the target distribution π for all j = 1, . . . , J as long as θ(t) does. This holds

regardless of whether the DA schemes form ancillary-sufficient pairs. As a consequence, CIS is

amenable to the so-called Metropolis-within-Gibbs strategy, which replaces certain intractable

conditional draws by Metropolis-Hastings (M-H) steps. (A subtle point: the final draw of Ymis in

Step ˜(J + 1) is redundant if Step 1 is exact, but is needed if a Metropolis-within-Gibbs strategy

is implemented in Step 1, so that the Metropolis-Hastings moves are correctly updated.)

Like the Gibbs sampler, the convergence rate of CIS may depend on the ordering of the steps.

If we switch Step (j + 1) with Step ˜(j + 1) for certain values of j, then the convergence rate (but

not the validity) may be affected. Which ordering is more efficient is theoretically interesting.

However, our experiences in this and the related ECM-type algorithms (e.g., van Dyk and Meng,

1997) indicate that the difference is often minor, at least relative to the difference between using

and not using the interweaving strategy. We shall therefore not pursue this issue of ordering, but

refer interested readers to Amit and Grenander (1991) for investigations in the context of Gibbs

sampling.

The theoretical insight from Theorem 1 for GIS suggests that CIS may achieve efficiency by

reducing, in turn, the dependence between θ
(t+1)
j and θ

(t)
j conditional on the rest of the components.

Theorem 3 of Section 5 supports this intution. Theorem 3 uses the notion of the minimal speed

of a Gibbs sampler or more generally an MCMC algorithm, which circumvents certain theoretical

difficulties in dealing with the geometric rate of convergence of non-reversible Markov chains (e.g.,

Gibbs samplers with more than two components). Empirical evidence will be provided in Section 3

to demonstrate the flexibility and power of the component-wise ASIS.
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2.6 The Simplicity, Generality and Flexibility of ASIS and CIS

A central advantage of ASIS, or more generally CIS, is its simplicity. It is a simpler construction

than the marginal DA algorithm of Meng and van Dyk (1999), or the PX-DA algorithm of Liu

and Wu (1999), where the model is expanded to include a parameter α that is unidentifiable from

observed data. Under certain conditions, Liu and Wu (1999) prove that the optimal prior on the

expansion parameter α (i.e., the prior that produces the fastest sampler) is the Haar measure.

Meng and van Dyk (1999) show that while a proper prior on α always gives a valid algorithm, an

improper prior (excluding the Haar measure) may result in an algorithm that does not have the

correct target distribution. In contrast, ASIS does not require an expansion parameter or a prior

associated with it; one simply identifies an SA and a corresponding AA and samples the parameter

under both schemes, in the way as described in Section 2.3 and more generally in Section 2.4.

Another advantage is its generality. Clearly GIS or CIS is as generic as EM or the Gibbs

sampler, in that the recipe is by no means limited to any particular problem. Incidentally, GIS/CIS

is also analogous to EM in another sense. Before its general formulation by Dempster, Laird and

Rubin (1977), special cases of EM had already existed (see Meng and van Dyk, 1997, for a historical

review). For particular problems, the interweaving strategy was used independently in at least

two Ph.D. theses (Yu, 2005; Kypraios, 2007), suggesting how easy it is to “stumble upon” such a

method even without the general formulation and theory provided in the current paper.

To identify an SA is usually easy, much like identifying sufficient statistics (more precisely,

minimal sufficient statistics) in classical settings. It is common to seek exponential family models as

our augmented-data model—without altering the observed-data model—for easy implementation

of EM and DA. Hence (minimal) complete-data sufficient statistics are readily available, especially

when we use the component-wise strategy; see Sections 3 and 4 for real-data examples. This

easiness was also emphasized by Papaspiliopoulos et al. (2007), who provide about a dozen

examples, ranging from repeated measurements models to diffusion processes models.

Once an SA scheme is identified, the construction of a corresponding AA scheme is typically

even easier, often by “standardizing/pivotizing” the identified SA. This is the same strategy used

by Liu and Wu (1999), Meng and van Dyk (1997, 1999), van Dyk and Meng (2001), and Pa-

paspiliopoulos et al. (2007). “Standardizing/pivotizing” is not restricted to continuous missing

data. For example, when the SA is a latent homogeneous Poisson process {X(t), t > 0} with
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rate θ, as in certain diffusion processes problems (Papaspiliopoulos et al., 2007), we can construct

an AA process by setting X̃(t) = X(t/θ), for all t, which has unit rate and is therefore ancillary.

In the simpler case of a univariate and continuous Ymis ∼ F (Ymis|θ), the CDF transformation

Ỹmis = F (Ymis|θ) leads to an AA, because Ỹmis ∼ Uniform(0, 1).

The third advantage of the interweaving strategy is its flexibility ; there are many variations

and modifications at the user’s disposal for reaching a desirable balance between theoretical speed,

computational efficiency (e.g., CPU time), and ease of programming. The full CIS as described

in Section 2.5 has 2J + 1 steps within each iteration. However, if some of the steps are difficult

to implement, or costly in terms of CPU time, then one can easily omit them. (We shall call the

resulting algorithm a partial CIS algorithm.) In general, the space filling condition of Meng and

Rubin (1993) is satisfied if we include Step 1 and, for each j, at least one of the Steps (j + 1)

and ˜(j + 1) (since both update θj). The space-filling condition simply means that the entire space

of {θ, Ymis} lies in the span of the directions searched collectively by the steps executed within

one iteration. These directions are not required to be orthogonal; indeed, as illustrated in Fig. 1,

ASIS purposefully searches for an “over-complete representation” (borrowing a term from the

wavelets literature) or an “over-saturated design” (borrowing a term from experimental design)

to achieve rapid mixing. With the space filling condition satisfied, it is typically as easy to verify

the irreducibility of any partial CIS as that of the original Gibbs-type sampler, even if some steps

themselves become “incomplete”; see Section 4.2. We emphasize that, after accounting for CPU

time or programming cost, partial CIS algorithms may be more desirable than the full CIS, as the

real examples in Section 4 will demonstrate.

3 Component-wise ASIS for a Poisson Time Series Model

3.1 A Parameter-driven Poisson Time Series Model

The scientific problem that motivated our work came from X-ray astrophysics, where it is common

to model (binned) photon counts observed from a source by a Poisson distribution. Questions of

scientific interest are whether source intensity is changing over time, and if so, how. The data set

plotted in Fig. 2 is one of a few for which we were asked to determine if there is any statistical

evidence for the change of intensity over the observation period.
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Figure 2: Photon counts observed by the Chandra X-ray telescope High Resolution Camera from a

point source, the isolated neutron star/quark star candidate RX J1856.5-3754. The total exposure

time is 55476 seconds, which is divided into 1000 equal bins.

For such data, we consider the following time series model (subscript “t” indexes time)

Yt|(ξt, β)
ind∼ Poisson

(
dte

Xtβ+ξt
)
, (3.1)

ξt|(ξ<t, ρ, δ) ∼ N(ρξt−1, δ2), t ≥ 2, and ξ1 ∼ N(0, δ2/(1− ρ2)), (3.2)

where Y = {Yt} denotes observed counts at time t, t = 1, . . . , T , Xt is a 1×p vector of covariates,

dt is a known positive constant (e.g., the width of bin t), ξ = {ξt} is a latent stationary AR(1)

process, and ξ<t = {ξj, j = 1, . . . , t− 1}. Marginally ξt ∼ N(0, τ 2), where τ 2 = δ2/(1− ρ2). The

parameters of interest are β = (β1, . . . , βp)
⊤, ρ, and δ. In our case p = 2 and Xt = (1, t), and the

key interest is to infer whether the trend parameter β2 is away from zero.

This model belongs to a broad class of parameter-driven time series models (Cox 1981). Perhaps

due to its flexibility and ease of interpretation, it is commonly used in medical and social studies

(e.g., Zeger 1988, Chan and Ledolter 1995, and Frühwirth-Schnatter and Wagner 2006). However,

the analytically intractable likelihood is a serious challenge for estimating model parameters; the

MLE admits no simple formula. See Davis and Rodriguez-Yam (2005) for numerical methods

to approximate such a likelihood. Whereas Zeger (1988) uses generalized estimating equations,

Chan and Ledolter (1995) adopt a Monte Carlo EM approach. For Bayesian estimation, Frühwirth-

Schnatter and Wagner (2006) propose an interesting (approximate) Gibbs sampler.

To demonstrate the effectiveness of ASIS, we shall perform a Bayesian analysis with both

synthetic and real data. Further illustrations using a data set of Zeger (1988) can be found in an

earlier version of this paper (Yu and Meng 2008).
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3.2 Data Augmentation and Algorithms

The standard Gibbs sampler for simulating from the posterior, assuming a prior p(β, ρ, τ) ∝ 1, has

three blocks of steps. In our implementation, ρ is constrained between −0.99 and 0.99 to avoid

numerical problems. Conditions derived by Michalak (2001) can be adapted to verify posterior

propriety in all our examples. Technically we do not have a Gibbs sampler because we use

Metropolis-Hastings to carry out some of its steps, but we nevertheless refer to it as “the standard

Gibbs sampler” to emphasize that its key structure is still drawing from all full conditionals.

Standard Gibbs Sampler

Step 1. Draw ξ|(β, ρ, δ, Y ). Because ξ’s are autocorrelated, we update ξt given ξt−1 and

ξt+1 for t = 1, . . . , T in turn via an one-dimensional M–H algorithm. The details of this and the

following steps can be found in Appendix A.

Step 2A. Draw β|(ξ, ρ, δ, Y ), or equivalently β|(ξ, Y ) due to conditional independence. This

step is equivalent to posterior sampling of a Poisson generalized linear model (GLM), and we use

an M–H move similar to that in Step 1.

Step 3S. Draw (ρ, δ)|(ξ, β, Y ), or equivalently (ρ, δ)|ξ. This step, which is in closed form,

is equivalent to a Bayesian fitting of an AR(1) model, treating ξ as observed data.

As shall be evident from simulations as well as real data examples, the standard sampler

may perform very poorly. To design more efficient algorithms, we first identify the sufficient

and ancillary augmentation schemes for the parameters. It is easy to check that the standard

augmentation, ξ, is an AA for β but an SA for (ρ, δ) – hence the subscripts in “Step 2A” and

“Step 3S”. Therefore we only need to find an SA for β and an AA for (ρ, δ).

SA for β

Observe that if we treat η = {ηt}, where

ηt = ξt + Xtβ, t = 1, . . . , T, (3.3)

as the missing data, then the model can be rewritten as

Yt ∼ Poisson (dte
ηt) ; (3.4)

ηt|η<t ∼ N
(
ρηt−1 + (Xt − ρXt−1)β, δ2

)
, t ≥ 2; and η1 ∼ N

(
X1β,

δ2

1− ρ2

)
. (3.5)
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Figure 3: Change in dependence structure among the variables after introducing η. Left: structure

of the original model, where ξ is the missing data and is an AA for β. Right: structure of the

transformed model (3.4)-(3.5), where η is the missing data and is an SA for β. The arrows indicate

how data could have been generated by sampling from the relevant conditional distributions (e.g.,

Y is generated conditional on ξ1, . . . , ξT and β in the standard augmentation).

Although the posterior distribution of (β, ρ, δ) remains the same, the augmented-data model has

changed. See Fig. 3 for a comparison of the two hierarchical model structures, i.e., (3.1)-(3.2)

versus (3.4)-(3.5). In particular, p(Y |η, β, ρ, δ) is now free of β (and in fact free of (β, ρ, δ)). The

new missing data η is therefore an SA for β (and for (ρ, δ)).

Since the standard Gibbs sampler uses the AA for β, we may improve it by adding a step that

samples β under the SA:

Step 2S. Draw β|(η, ρ, δ, Y ). (In addition to Steps 1, 2A and 3S.)

This step happens to be simple and inexpensive, because only linear regression is involved; see

Appendix A. Since Step 2S treats η as missing data, we need to invert (3.3) to keep ξ updated,

i.e., we set ξnew
t = ηt −Xtβ

new at the end of Step 2S.

AA for (ρ, δ)

Since the standard Gibbs sampler draws (ρ, δ) jointly using an SA, here we seek a joint AA

for (ρ, δ), via “standardizing/pivotizing”. Let

κ1 =

√
1− ρ2

δ
ξ1, and κt =

ξt − ρξt−1

δ
, t ≥ 2. (3.6)

Because κt’s are i.i.d. N(0, 1), κ = {κt, t ≥ 1} is an AA for both β and (ρ, δ). We therefore add

Step 3A. Draw (ρ, δ)|(κ, β, Y ), via a random-walk type M–H step.
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Table 1: The DA schemes used by five samplers for each parameter.

Scheme A Scheme B Scheme C Scheme D Scheme E

β AA SA SA & AA SA & AA SA & AA

ρ SA SA SA SA & AA SA & AA

δ SA SA SA SA & AA SA & AA

Similar to Step 2S, we need to invert (3.6) at the end of Step 3A to keep ξ updated:

ξnew
1 = δnewκ1/

√
1− (ρnew)2, ξnew

t = ρnewξnew
t−1 + δnewκt, t ≥ 2. (3.7)

A variation of Step 3A is to further break it into two Gibbs steps:

Step 3′A. Draw ρ|(κ, β, δ, Y ) via a random-walk type Metropolis step.

Step 3′′A. Draw δ|(κ, β, ρ, Y ) via a random-walk type Metropolis step on the scale of log(δ).

With all the steps defined above, we can design a variety of Gibbs-type samplers, among which

Schemes A–E below will receive special attention.

Scheme A The standard Gibbs sampler, i.e., using only Steps 1, 2A and 3S.

Scheme B Each iteration cycles through Steps 1, 2S, and 3S.

Scheme C Each iteration cycles through Steps 1, 2A, 2S, and 3S.

Scheme D Each iteration uses all five Steps: 1, 2A, 2S, 3A and 3S.

Scheme E Same as Scheme D except that Step 3A is further split into Steps 3′A and 3′′A.

Table 1 summarizes the DA schemes for each parameter used by the five samplers. By com-

paring Scheme C with Scheme A or Scheme B, we can assess the effect of interweaving SA and

AA on β; by comparing Scheme D with Scheme C we can assess this effect on ρ and δ. The most

comprehensive among the first four is Scheme D, which uses both SA and AA for every parameter.

Scheme E is a variation of Scheme D, with a trade-off between computational load (which is a bit

less for Scheme E because of the one-dimensional M-H for drawing ρ and δ) and convergence rate

(Scheme D may converge faster as it draws (ρ, δ) together). In our simulations Scheme E turns

out to be a good compromise, and is therefore included in the comparisons.
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Table 2: Time consumed to complete 15000 iterations for Schemes A–E on DATA2.

Scheme A Scheme B Scheme C Scheme D Scheme E

CPU time (secs) 42 31 42 56 47
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Figure 4: Comparing Scheme A with Scheme C, which adds Step 2S to each iteration of Scheme A.

Displayed are the trajectories of the Monte Carlo draws (excluding the burn-in period) produced

by the two schemes on DATA1.

3.3 Computational Performance with Simulated and Real Data

Two datasets are simulated, each with T = 200 observations, p = 2, and Xt = (1, t/T ). The five

schemes are run for 15000 iterations each, with the first 5000 as burn-in, and the remaining 10000

draws for displaying their trajectories and autocorrelations for all parameters of interest.

The first simulated dataset, DATA1, is intended to show the poor performance of the standard

Gibbs sampler. DATA1 is generated according to dt = 5000 and (β1, β2, ρ, δ) = (0, 1, 0.5, 0.1).

The counts generated are large, i.e., in the order of thousands. From Fig. 4 (trajectories of

the draws) and Fig. 12 (autocorrelations; Appendix A), it is clear that Scheme C is a dramatic

improvement. The improvement is dramatic even after accounting for CPU time, as hinted by

Table 2, which is for DATA2 discussed next but the pattern is similar for DATA1.
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Figure 5: Trajectories under Schemes B, C, and D on DATA2, after burn-in period.
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Figure 6: Trajectories under Schemes A, D and E on the Chandra X-ray data, after the burn-in

period.
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Figure 7: Posterior inference of the Chandra X-ray data, with the draws produced by Scheme E.

Since adding Step 2S to Scheme A performs so well, and with little increase in computational

load, one is tempted to simply substitute Step 2S for Step 2A in the standard Gibbs sampler,

which gives Scheme B. Indeed, for DATA1 the performance of Scheme B is almost identical to

that of Scheme C (hence the plots are not shown).

To show that Scheme B does not always work well, a second dataset (DATA2) is generated

according to dt = 10 and (β1, β2, ρ, δ) = (0, 1, 0, 0.01). The counts are much smaller (in tens).

The first two columns of Fig. 5 (trajectories) and Fig. 13 (autocorrelations; Appendix A) compare

Scheme B with Scheme C, which can also be viewed as adding Step 2A to Scheme B. Although

draws for ρ and δ behave equally badly for both schemes, convergence of β1 and β2 is improved

considerably after adding Step 2A, i.e., when Scheme C is used.

Scheme C is far from perfect: for DATA2 the draws of ρ and δ still exhibit heavy autocorre-

lations. The draws of δ, in particular, tend to stay near zero for long periods of time. The third

columns of Fig. 5 and Fig. 13 (Appendix A) display the performance of Scheme D, which adds

Step 3A (corresponding to the AA for (ρ, δ)) to Scheme C. Observe that Scheme D does as well

as Scheme C for β, but improves considerably for ρ and δ. Again using both SA and AA pays off.

Scheme E (not shown) performs slightly poorer than Scheme D, but it is computationally faster

per iteration, as shown in Table 2. Scheme B is the least costly per iteration, but overall Scheme

E is arguably the most efficient strategy, taking into account both the convergence rate and the

computing time per iteration. (Scheme A, not shown, performs no better than Scheme C.)
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Finally, we model our motivating real data (Fig. 2) according to (3.1)–(3.2) with T = 1000. We

take dt as the width of the time bin (in seconds), and specify the covariates as Xt = (1, t/1000),

which allows for a linear trend in the log Poisson intensity. Fig. 6 (trajectories) and Fig. 14

(autocorrelations; Appendix A) compare MCMC Scheme A with Schemes D and E. Evidently,

draws for β parameters have little autocorrelations under all three schemes; draws for ρ and δ,

however, mix very slowly under Scheme A, but their convergence is much improved under Scheme

D or Scheme E. (The results were confirmed through replications.)

Fig. 7 displays some plots of the posterior distribution calculated by Scheme E. The marginal

posterior of β2, the trend parameter, is centered around zero with a small posterior variance, and

the posterior of δ, the parameter that captures extra-Poisson variation, is very close to zero. Our

inference, therefore, has to be that there is little evidence in this dataset to suggest that source

intensity varies, given our modeling assumptions.

As a closing remark on this application, we note that the improvement for each component

appears to be brought in by a specifically designed ASIS for that component, which may or

may not have much impact on other components. That is, CIS seems to work in a piecemeal

fashion. Mathematically this is difficult to formalize, because an algorithm converges only if all

its components converge. Nevertheless, Theorem 3 of Section 5 provides a theoretical insight

that this piecemeal phenomenon perhaps can be expected in many applications because of the

multiplicative nature of a lower bound on the speed of CIS. Roughly speaking, CIS is effective if

(i) interweaving is effective for each component conditional on other components, and (ii) after

marginalizing over the missing data, the dependence between components of θ is not extreme.

4 Competitiveness and Flexibility of Partial ASIS/CIS

4.1 Application: Probit Regression

Consider the widely used probit regression model

Yi = sgn(φi), φi|(θ,X)
ind∼ N(Xiθ, 1), (4.1)

where Yi is the observed binary (±1) outcome, the sign of the latent score φi, Xi is a 1× p vector

of covariates, and θ is a p × 1 vector of regression coefficients. Write Y = (Y1, . . . , Yn)⊤, φ =
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(φ1, . . . , φn)⊤, and X⊤ = (X⊤
1 , . . . , X⊤

n ). For Bayesian inference, a standard non-informative prior

is p(θ) ∝ 1. The model formulation (4.1) leads to

φi|(θ, Y ) ∼ TN(Xiθ, 1, Yi), (4.2)

θ|(φ, Y ) ∼ N(θ̂, (X⊤X)−1), (4.3)

where θ̂ = (X⊤X)−1X⊤φ, and TN(µ, σ2, Yi) denotes a N(µ, σ2) distribution truncated to the

interval (0,∞) if Yi = 1 and to (−∞, 0) if Yi = −1. Although in this example it is more

appropriate to express the latent variable φ as Yaug instead of Ymis, because Y is determined by

φ, we retain the Ymis notation for simplicity, even it cannot be “separated” from Yobs.

The standard DA algorithm (Albert and Chib, 1993), which treats φ as Ymis, iteratively draws

φ|θ according to (4.2) and θ|φ according to (4.3). Though convenient, this algorithm is sometimes

very slow. To apply ASIS, we first note that φ is already an SA for θ in (4.1). To find a

corresponding AA, we simply set ηi = φi − Xiθ and treat η = (η1, . . . , ηn)⊤ as Ỹmis, using our

generic notation. Our model then becomes

Yi = sgn(ηi + Xiθ), ηi|θ ∼ N(0, 1). (4.4)

We can then follow the ASIS recipe defined in Section 2.2.

This simple construction is only slightly compromised by the fact that drawing from p(θ|η, Y ),

albeit a uniform distribution on the convex set {θ : Yi = sgn(ηi + Xiθ), i = 1, . . . , n}, might

require some bookkeeping because of potentially complicated boundaries. This problem can be

dealt with, perhaps with a slight loss of mixing efficiency, by implementing a “nested Gibbs”.

That is, we draw each coordinate of θ uniformly conditional on the other coordinates and subject

to the boundary constraints. The resulting variation of the ASIS sampler then becomes

Step 1 Draw φ according to (4.2).

Step 2S Draw θ according to (4.3).

Step 2A Compute η = φ−Xθ, and draw in turn each θj, j = 1, . . . , p, from a uniform distribution

on the interval {θj : Yi = sgn(ηi + Xiθ), i = 1, . . . , n} with η and the rest of θ fixed.

To see its effectiveness, we compare it with the optimal marginal augmentation algorithm of

van Dyk and Meng (2001), or equivalently the PX-DA algorithm of Liu and Wu (1999) (PX stands
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for “Parameter Expanded”). This algorithm introduces a working parameter α:

Yi = sgn(wi), wi|(θ,X) ∼ N(Xiθα, α2). (4.5)

The key is that the working parameter is only identifiable from the augmented-data model; the

observed-data model p(Y |θ) remains the same. One then assigns a working prior on α and alter-

natingly draws (θ, α)|(w, Y ) and (w,α)|(θ, Y ). This is in theory equivalent to drawing θ|(w, Y )

and w|(θ, Y ) alternatingly, with α integrated out.

The choice of the working prior clearly will affect the rate of convergence, and indeed it can

even affect the validity of the resulting algorithm when improper working priors are involved (see

Meng and van Dyk, 1999). Liu and Wu (1999) show that the optimal choice is the improper prior

p(α) ∝ α−1, optimal in the sense of achieving the fastest geometric rate among a class (which

includes the standard DA) as defined by Liu and Wu (1999). Each iteration of this optimal

algorithm consists of the following three steps:

1. Draw φ according to (4.2).

2. Draw α ∼ RSS/χ2
n where RSS =

∑
i(φi −Xiθ)

2.

3. Draw θ according to N
(
θ̂/α, (X⊤X)−1

)
, where θ̂ = (X⊤X)−1X⊤φ.

Van Dyk and Meng (2001) provide a real-data example showing considerable improvement of

this optimal algorithm over the algorithm of Albert and Chib (1993). The data set considered

by van Dyk and Meng (2001) (their Table 1) concerns two clinical measurements (i.e., covariates)

that are used to predict the occurrence of latent membranous lupus nephritis. We extend this

comparison by including the interwoven sampler described above. Figures 8 and 9 display the

trajectories and autocorrelations of the draws of θ1, θ2, and θ3 for standard Gibbs, the optimal

PX-DA, and the ASIS sampler to fit (4.1) with both covariates, i.e., p = 3. Each algorithm is run

11000 iterations and the autocorrelations are calculated from the last 10000 iterations.

Both optimal PX-DA and ASIS offer considerable improvement over the standard Gibbs for

all three parameters. While the optimal PX-DA performs slightly better in terms of the autocor-

relation, the ASIS sampler is also doing very well. In terms of the CPU time, the ASIS sampler,

as we implemented it, is about 40% more costly than the optimal PX-DA, though each is within a

total of 0.8 seconds for all 11000 iterations, and hence the difference in CPU time is not a practical
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concern. The major cost of ASIS appears to be our brute force way of determining the boundary of

the convex set in Step 2A, a problem to which others may have more efficient solutions. However,

even without such efficient implementations, in terms of improving standard Gibbs, ASIS is very

competitive. The significance of this competitiveness lies in that ASIS boosts MCMC efficiency

without going beyond interweaving two readily available SA and AA algorithms – the ASIS algo-

rithm does not require any steps that are not required by the original SA or AA algorithm, other

than the (often trivial) transformations between Ỹmis and Ymis, as in all our applications.

4.2 Application: Normal Regression with Interval Censoring

Consider the following regression model

Yi|(β, σ2)
ind∼ N(Xiβ, σ2), Yi ∈ (Y l

i , Y r
i ), i = 1, . . . , n, (4.6)

where the intervals (Y l
i , Y r

i ), i = 1, . . . , n, are observed data, Yi’s are the latent response, X =

(X⊤
1 , . . . , X⊤

n )⊤ is the n× p matrix of explanatory variables, and {β, σ2} are the parameters. This

model was used by Hamada and Wu (1995) to analyze an experiment of improving the lifetime of

fluorescent lights (Liu and Sun 2000; Liu 2003); data can be found in Table 1 of Liu (2003).

Following Liu (2003), let Yi = log(ui) − 3, where ui is the lifetime (in days) of unit i, for

i = 1, . . . , n. The prior on {β, σ2} is specified by p(σ2) = Invχ2(ν0, ν0s0), i.e., a scaled inverse

χ2 with the density proportional to (σ−2)ν0/2+1 exp[−ν0s0/(2σ
2)], and by p(β|σ2) = N(0, σ2Ip/τ0).

The hyperparameters are ν0 = 1, s0 = 0.01, and τ0 = 0.0001, as in Liu (2003).

We emphasize that for (4.6) to make scientific sense, we have assumed that the interval censor-

ing mechanism is ignorable (Rubin, 1976). This point is also important for properly defining what

is missing. Here interval censoring occurs because inspection of the working status of a light can

only be done at a finite number of times, say Ti ≡ {Ti,1, · · · , Ti,mi
}. The ignorability assumption

requires that the selection mechanism for Ti does not depend on any knowledge of the unobserved

lifetime itself, conditional on the covariate X. In the actual experiment, the inspection was every

other day over 20 days, and hence the ignorability assumption is reasonable.

Under such an assumption, the correct likelihood can be specified by conditioning on the

value of Ti, and the observed data are given by the binary vector Wi = {Wi,1, · · · ,Wi,mi
}, where
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Figure 8: Comparing standard Gibbs with the optimal PX-DA and the interwoven sampler for

the lupus nephritis data: trajectories of the draws.
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Wi,j = 1{Yi≥Ti,j}, j = 1, · · · ,mi. Clearly, Wi can be summarized by

Y l
i = max

j
{Ti,j : Wi,j = 1} and Y r

i = min
j
{Ti,j : Wi,j = 0}, (4.7)

with no loss of information. In this sense we can treat Y l and Y r as the observed data. We

can then formulate a DA scheme by treating Y = (Y1, . . . , Yn)⊤ as the missing data, because

p(Y l, Y r, Y |T,X, β, σ) is a well-defined DA model. Under this model, the standard DA algorithm

consists of the following two steps (Liu, 2003):

Standard Gibbs Sampler

Step 1 Draw Y |(Yobs, β, σ) where Yobs denotes all observed data, including (Y l
i , Y r

i ) and X. This

conditional distribution is a product of n independent truncated normal distributions, each

Yi having a mean parameter Xiβ, a variance σ2, and truncation bounds Y l
i and Y r

i .

Step 2S Draw (β, σ)|Y , which amounts to a Bayesian linear regression of Y on X.

Although both steps are in closed form, the standard sampler is extremely slow for the data set

considered by Hamada and Wu (1995); see the left column of Fig. 10, which displays the trajec-

tories of the draws of {β1, β2, β3} for standard Gibbs. The right column displays corresponding

plots from the interwoven algorithm described below. The autocorrelation plots (not shown to

save space) confirm that the new sampler produces essentially uncorrelated draws. The interwoven

sampler costs about 10% more time per iteration, which is well compensated for by the dramati-

cally improved mixing rate. Liu (2003) propose a covariance adjustment step and report similar

improvements in his Figure 1. Indeed, because both Liu’s algorithm and our algorithm improve

the standard Gibbs sampler so much, visually we are not able to tell which one improves more.

The construction of an ASIS sampler for this problem is a great illustration of its flexibility

and power. First, the constructions of both SA and AA are straightforward, as in many other

problems. Similar to the probit regression example, the missing data Y for the standard DA is

naturally an SA for (β, σ) (hence the subscript for Step 2S). By standardizing it in the usual way,

ηi =
Yi −Xiβ

σ
, i = 1, . . . , n,

we can re-express (4.6) as

ηi ∼ N(0, 1), ηi ∈
(

Y l
i −Xiβ

σ
,

Y r
i −Xiβ

σ

)
, i = 1, . . . , n, (4.8)
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and hence η = (η1, . . . , ηn)⊤ is an AA for (β, σ) because η is free of (β, σ) marginally. Note here

the truncation on ηi is not a part of its marginal distribution, but rather it defines the relationship

between Yobs and η given the model parameter (β, σ).

Once the AA is in place, the GIS of Section 2.3 would call for a Step 2A, which samples {β, σ}
given η (and Yobs), in addition to Steps 1 and 2S. Analogous to Step 2S, we may consider drawing

σ given η and then drawing β given σ and η. Unfortunately, because of the restrictions on η as in

(4.8), the density of the conditional distribution of σ given η is complicated, involving intractable

multiple integrals. In contrast, the two conditionals p(β|σ, η) and p(σ|β, η) are easier to handle,

since the former is a multivariate truncated normal (i = 1, . . . , n):

p(β|η, Yobs, σ) ∝ exp

{
−τ0β

⊤β

2σ2

}
, Xiβ ∈ (Y l

i − σηi, Y r
i − σηi), (4.9)

and the latter is a truncated scaled-inverse-χ

p(σ|η, Yobs, β) ∝ σ−ν0−p−1 exp

{
−ν0s0 + τ0β

⊤β

2σ2

}
, σηi ∈ (Y l

i −Xiβ, Y r
i −Xiβ). (4.10)

The availability of these full conditionals leads to a number of choices, including (I) we could

implement a nested Gibbs sampler within the planned Step 2A by iterating between (4.9) and

(4.10) until convergence, or more practically, for a fixed but large number of iterations (e.g., 100);

(II) we could just iterate between (4.9) and (4.10) once; (III) we do not even need to use both

(4.9) and (4.10); we can just use one of them, say (4.9); (IV) because sampling from multivariate

truncated normal distributions is already a nontrivial problem, we draw each coordinate of β in

turn in a Gibbs sampling fashion, as we did for θ in Section 4.1.

Interweaving (I) with the standard Gibbs sampler amounts to implementing GIS almost ex-

actly. But this can be costly, and hence it defeats the purpose of boosting computational efficiency.

As discussed in Section 2.6, however, it is not necessary that we carry out the full interweaving

strategy in order to have substantial improvement. Interweaving any one of (II)-(IV) with the

standard Gibbs may still produce substantial gains, and indeed may be better than performing

the full version (I) if it is too costly to implement (see below).

We emphasize that the decision of not carrying out full interweaving is largely governed by

computational cost. For example, option (IV) could be very ineffective, if the mass of the truncated

normal for β is highly concentrated in a lower-dimensional subset of Rp. In such a case, a rotation

β̃ = Zβ where Z is a judiciously chosen invertible matrix, may alleviate the problem. That is, it
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would be better to alternate between the components of β̃, and then transform back to β = Z−1β̃

in the end. Liu and Rubin (1996) advocate a Markov-normal analysis, based on a preliminary

run, to identify slowly converging components of β. This may help in choosing Z.

Intriguingly, for our real data, an inspection of the covariance matrix of the draws of β reveals

that β2, β5, β7 and β8 have pairwise correlation coefficients nearly 1, and yet they are heavily

negatively correlated (with correlation coefficients nearly −1) with β1, β3, β4, β6. This suggests a

modification to (IV), that is, we do not even need to draw all components of β because β effectively

lives in a one-dimensional space. We therefore reduce the full Step 2A to a very simple one: propose

a conditional move of β1 given (β1 + β2, β1 − β3, β1 − β4, β1 + β5, β1 − β6, β1 + β7, β1 + β8) and

η, Yobs, σ. Equivalently, letting V = (1,−1, 1, 1,−1, 1,−1,−1)⊤, we draw δ from

p(δ|β, η, Yobs, σ) ∝ exp

{
−τ0(β + V δ)⊤(β + V δ)

2σ2

}
, Xi(β + V δ) ∈ (Y l

i − σηi, Y
r
i − σηi),

and then set β ← β + V δ.

Although this clearly is not identical to the draw called for by the original AA (e.g., we have

ignored (4.10)), it is an extremely effective strategy for this dataset, as seen in the right column of

Fig. 10. It also greatly simplifies the algorithm because drawing δ only involves a one-dimensional

truncated normal. This is also an example of partial GIS/CIS because if we use it in place of the

original Step 2S, the resulting algorithm will not be space filling. However, when it is used as an

added step to the original Step 2S, the whole algorithm remains valid.

To examine the difference between using the full and the partial Step 2A, we also carry out a

small simulation study comparing standard Gibbs with two interweaving strategies, ASIS 1 and

ASIS 2. For ASIS 1, in addition to Steps 1 and 2S, each iteration uses a Step 2A that i) draws

each coordinate of β in turn given (η, Yobs, σ) according to (4.9), and ii) draws σ given (η, Yobs, β)

according to (4.10). In contrast, each iteration of ASIS 2 performs 100 nested iterations of the

substeps i) and ii). A major goal is to evaluate the trade-off between a nearly exact but expensive

Step 2A (Scheme ASIS 2) and a cheap surrogate of it (Scheme ASIS 1). We emphasize that both

ASIS 1 and ASIS 2 are legitimate samplers, but ASIS 2 is closer to the original global ASIS, and

would be exactly the global ASIS sampler if we run the nested iteration until convergence; this is

analogous to the ECM algorithm (Meng and Rubin, 1993), which will approach the original EM

algorithm if we perform a sufficient number of nested CM-steps.

A data set is generated with n = 16 observations and p = 8 covariates. The true parameters
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Figure 10: Comparing standard Gibbs with the interwoven sampler for the fluorescent light lifetime

data: trajectories of the draws.
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Table 3: Comparing total CPU time using the simulated data.

Standard Gibbs ASIS 1 ASIS 2

CPU time (secs) 0.62 1.00 38.55

are βi = 2, i = 1, . . . , p, and σ = 0.1. All entries of the design matrix X except for those in

the first column, which are all ones, are simulated as i.i.d. N(0, 1) variables. For the censoring

mechanism we set Y l
i = ⌊Yi⌋ and Y r

i = Y l
i + 1, where ⌊x⌋ denotes the integer part of x. The same

prior on {β, σ} as for the real data is assumed.

The trajectories of the draws of β1, β2, σ are displayed as Fig. 11. (Repeated experiments show

similar patterns.) It is clear that both versions of the interwoven sampler have considerably better

autocorrelations than standard Gibbs. Autocorrelation plots (not shown) indicate that ASIS 2

achieves near zero autocorrelation at lag 1, while ASIS 1 does so at about lag 10. After taking into

account the computing time per iteration, however, ASIS 2 is not nearly as impressive as ASIS 1.

Table 3 displays the total CPU time for completing all 11000 iterations for the three algorithms.

While ASIS 1 costs about 1.6 times more time per iteration than standard Gibbs, ASIS 2 costs

38 times more time than ASIS 1. This indicates that ASIS 1 is a good trade-off for this example.

5 Robustness and Optimality of Interweaving Strategy

5.1 Rate of Convergence and Speed of Convergence

For theoretical investigations, we first focus on robustness properties of GIS and CIS. These results

(Theorems 1-3) are established under the most general setting, that is, they are not restricted to

ASIS nor do they require the mapping between the DAs being interwoven be one-to-one. We

then prove an optimality result for global ASIS in a more restrictive setting (Theorem 4). We

emphasize that these results, given their general nature, are more useful for gaining qualitative

theoretical insights than for quantifying actual gains in mixing rates in particular applications.

The latter assessments, as with the vast majority of studies in MCMC literture, are done via

empirical investigations, as presented in Sections 3 and 4.

Before we present our main findings, however, it is important to realize that combining dif-
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ferent transition rules for Markov chain samplers does not always improve the convergence rate,

and in fact, even the irreducibility requirement, which is necessary for convergence, is not auto-

matically preserved. See Appendix B.1 for a simple example where alternating two irreducible

chains with the same stationary distribution actually results in a reducible chain. Fortunately,

for the interweaving strategy, it is typically as easy to check its irreducibility as directly checking

that of either of the original two schemes. In the following discussion we will therefore assume

irreducibility, just as with most theoretical results on MCMC.

For a Markov chain {U (t), t = 1, 2, . . .} with invariant distribution π, recall that the L2

geometric rate of convergence is the spectral radius of the forward conditional expectation operator

F in L2
0(π) = {h(u) : Eπ[h(U)] = 0; Vπ[h(U)] < ∞}, where Eπ and Vπ denote expectation and

variance with respect to π, and Fh(U (1)) = E[h(U (2))|U (1)], with its L2 norm defined as

‖F‖ = sup
h∈L2

0(π)

√
Vπ [E[h(U (2))|U (1)]]

Vπ[h(U (2))]
. (5.1)

The spectral radius of F is governed by its norm because

spec(F) = lim
t→∞
‖Ft‖1/t ≤ ‖F‖, (5.2)

where equality holds when F is self-adjoint, that is, when Cov(Fh(U), g(U)) = Cov(h(U),Fg(U))

for U ∼ π and all h, g ∈ L2
0(π). It follows that, if the Markov chain is time reversible, then its

geometric rate is exactly ‖F‖ (see Amit, 1991 and Liu, Wong and Kong, 1994, 1995).

For non-reversible MCMC, the norm ‖F‖ is typically easier to handle than the spectral radius.

Note that the right hand side of (5.1) is an equivalent expression of the maximal correlation

coefficient (MCC) between U (1) and U (2) under stationarity, i.e.,

R(U (1), U (2)) = sup
g,h∈L2

0(π)

corr{g(U (1)), h(U (2))}. (5.3)

It turns out that we need a more general notion of the maximal partial correlation (MPC).

Given three sub-σ-algebras A1, A2 and M on the same probability space, the MPC between A1

and A2 givenM is defined as

RM(A1,A2) = sup
σ(X)⊂A1,σ(Z)⊂A2

Cov(X − E[X|M], Z − E[Z|M])√
V(X − E[X|M])V(Z − E[Z|M])

, (5.4)

where the supremum is taken over all random variables X and Z such that X is A1-measurable,

Z is A2 measurable, 0 < V(X − E[X|M]) <∞, and 0 < V(Z − E[Z|M]) <∞. It is convenient
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to define RM(A1,A2) = 0 if A1 ⊂ M or A2 ⊂ M . A special case involving random variables

(X,Y, Z) (having a well-defined joint distribution) is

RY (X,Z) = Rσ(Y )(σ(X), σ(Z)).

If (X,Y, Z) is a trivariate normal, then RY (X,Z) reduces to the usual partial correlation, i.e., the

correlation between the residuals of the regressions of X on Y and Z on Y .

The following inequality on MPC is instrumental to our general bounds on ‖F‖.

Lemma 1. Let A1, A2, M and N be sub-σ-algebras on the same probability space. Assume

M⊂ N . Then

RM(A1,A2) ≤ RN (A1,A2) + [1−RN (A1,A2)]RM(A1,N )RM(A2,N ). (5.5)

A special case for random variables X,Y, Z is

R(X,Z) ≤ RY (X,Z) + (1−RY (X,Z))R(X,Y )R(Z, Y ).

The inequality is sharp, e.g., equality holds when (X,Y, Z) follows a tri-variate normal with a

common correlation. This generalizes Lemma 1 of Yu (2008), which states that

R(X,Z) ≤ R(X,Y )R(Y, Z) (5.6)

if X and Z are conditionally independent given Y . Since we are unable to locate a proof in the

literature for Lemma 1 (nor the notion of MPC), we provide one in Appendix B.

Because it is easier to work with the MCC (and more generally MPC), and because the

MCC provides a conservative measure of convergence (i.e., for the MCC to be smaller than a

certain threshold, the worst autocorrelation has to be below that threshold), we define the minimal

speed (minS) of an MCMC sequence (more precisely, any Markov chain with stationary transition

probabilities) U = {U (t), t = 1, 2, . . .} as

minSU ≡ S(U (1), U (2)) = 1−R(U (1), U (2)). (5.7)

Because of (5.2), minS is a lower bound of the actual speed, which may be defined as SU =

1 − spec(F); the bound is attained for a time reversible chain. This definition of speed can be

appreciated through the so-called mixing time, defined as τ = −[log γ]−1 ≈ (1 − γ)−1, where the
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approximation holds when γ ≡ spec(F) is close to 1, which is the case where most efforts are

needed, as emphasized by Papaspiliopoulos et al. (2007). It is then natural to view τ−1 ≈ 1−γ =

SU as a measure of speed, because it is inversely proportional to time. A deeper reason for us to

use this notion is that component-wise interweaving exerts its impact in a multiplicative fashion

on the (minimal) speed scale, not on the γ or R scale, as we shall show in the next Section. This

resembles results on the speed of EM and ECM algorithms; see Meng (1994) and Meng and Rubin

(1994). This “multiplicative effect” is already hinted by the minS version of (5.5)

SM(A1,A2) ≥ SN (A1,A2) [SM(A1,N ) + SM(A2,N )− SM(A1,N )SM(A2,N )] , (5.8)

where all S quantities are one minus their R counterparts.

5.2 General Results on the Robustness of the Interweaving Strategy

Theorem 1 (Section 2) establishes a robustness property of GIS, and provides the key insight about

how it boosts MCMC efficiency, as detailed in Section 2.3. Whereas Theorem 1 is simple, it is less

useful when R(Ymis,1, Ymis,2) = 1. This becomes a concern when the dimension of the missing data

is higher than that of the parameter, which is typical in practice. Then there may exist a function

of Ymis,1 that coincides with another function of Ymis,2, which implies R(Ymis,1, Ymis,2) = 1. Hence

we study the MPC of Ymis,1 and Ymis,2, after regressing out their common component. Theorem

2, proved in Appendix B, formalizes this idea.

Theorem 2. Given a posterior distribution p(θ|Yobs) of interest, suppose we have two augmen-

tation schemes Ymis,1 and Ymis,2 such that their joint distribution is well defined conditional on θ

and Yobs. Let N = σ(Ymis,1)∩ σ(Ymis,2), i.e., the intersection of the σ-algebras generated by Ymis,1

and Ymis,2 in the joint posterior of (θ, Ymis,1, Ymis,2). Then r1&2, the geometric rate of convergence

of GIS, satisfies

r1&2 ≤ R2(θ,N ) + (1−R2(θ,N ))RN (θ, Ymis,1)RN (Ymis,1, Ymis,2)RN (θ, Ymis,2). (5.9)

Theorem 2, though more difficult to digest than Theorem 1, is nevertheless interpretable. When

N is trivial, that is, when Ymis,1 and Ymis,2 have no common component, Theorem 2 reduces to

Theorem 1. (In general it is unclear how the bounds given by Theorems 1 and 2 compare.)

Intuitively, (5.9) says that the interweaving strategy is particularly effective when (i) R(θ,N ) is
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small, i.e., the common component between Ymis,1 and Ymis,2 untouched by GIS does not depend

heavily on θ, and (ii) either RN (Ymis,1, Ymis,2) is small, i.e., the two DAs Ymis,1 and Ymis,2 are not

heavily dependent after taking out their common component, or one of RN (θ, Ymis,i), i = 1, 2, is

small, i.e., one of the original DA schemes converges fast (after taking out the common component).

It is worth emphasizing that the bound in (5.9) never exceeds one and can reach one if and

only if at least one of the following holds:

R1 R(θ,N ) = 1;

R2 RN (θ, Ymis,1) = RN (Ymis,1, Ymis,2) = RN (θ, Ymis,2) = 1.

Because R1 and R2 are very strong conditions, especially when Ymis,1 and Ymis,2 form a “beauty-

and-beast” pair, we conjecture that under mild conditions GIS or at least ASIS will be geometri-

cally ergodic, regardless of the individual convergence behavior of the two chains being interwoven.

For CIS, we can apply Lemma 1 to each of the components conditional on the rest. To make

this statement precise, we need the notion of minimum partial speed. Following the notation in

Section 2.5, let σj, j = 0, . . . , J, denote the sub-sigma algebra generated by θ(t+ j

J
) in the joint

space of {θ(t), θ(t+1)}, where θ(t+ j

J
), defined in (2.27), is the output of the chain right after its

jth component is updated from θ
(t)
j to θ

(t+1)
j . The iteration index t is immaterial because our

calculations below assume the chain has reached stationarity. The minimum partial speed for the

jth component is defined as

Sj = 1−Rσj−1∩σj
(σj−1, σj). (5.10)

The difference between σj−1 and σj is only in the jth component. In this sense, Sj measures the

minimum speed for the jth component because it takes out the impact of σj−1 ∩ σj.

Given a Gibbs sampler involving Ymis and multiple components of θ, we can, at least in

theory, integrate out all the missing data Ymis (be they a single set or multiple sets introduced by

interweaving), resulting in a Gibbs sampler alternating between p(θj|θ 6=j; Yobs), j = 1, . . . , J . In

the terminology of Liu et al. (1994, 1995), this is a collapsed algorithm. Let SG be the minimum

speed of this algorithm; if there is only one component then SG = 1, since the collapsed version

then produces i.i.d. draws from the target p(θ|Yobs). In a sense, the CIS aims to make its minimal

speed as close to SG as possible, just as the GIS strives to reach SG = 1, that is, to produce i.i.d.

draws. The following theorem is our best result to support this intuition. Its proof, which uses

(5.8) repeatedly, is given in Appendix B.
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Theorem 3. Suppose the target density is π = p(θ1, . . . , θJ |Yobs). Let SCIS be the minimal speed

of CIS as defined in Section 2.5, let Sj be the minimal partial speed for the jth component as

defined in (5.10), and let SG be the minimal speed of the Gibbs sampler that samples from the J

full conditionals p(θj|θ 6=j; Yobs), j = 1, . . . , J, in the same order as in CIS. Then

SCIS ≥
(

J∏

j=1

Sj

)
S̃G, (5.11)

where

S̃G =
J−1∏

j=1

Sσj−1∩σJ
(σj−1 ∩ σj, σj ∩ σJ) (5.12)

is a lower bound on SG and is completely determined by π, and it equals SG when J = 2.

The right hand side of (5.11) is in an appealing product form. The term
∏J

j=1 Sj may be

viewed as the “within-component minimal speed”, a measure of the effectiveness of interweaving.

In particular, if all Sj = 1, then at iteration t, the jth interweaving substep is such that θ
(t)
j and

θ
(t+1)
j are conditionally independent given other components of θ (and Yobs). In other words, CIS

reduces to collapsed Gibbs, with the missing data integrated out. The term S̃G is a natural lower

bound for the minimal speed of this collapsed Gibbs sampler, and, in the case of two components,

the bound is attained. Hence S̃G can be viewed as (the lower bound of) a measure of the “between-

component minimal speed”.

We remark that the bound in (5.11) is sharp in the sense that it is achievable in certain

non-trivial cases, e.g., when J = 2 and {Ymis, θ1, θ2} have a trivariate normal with a common

correlation. We, however, have no theoretical result to rule out SCIS > SG. That is, we do not

preclude the possibility that CIS can actually outperform the collapsed sampler; this is analogous

to the phenomenon that ECM can outperform EM (Meng, 1994).

The multiplicative form of
∏J

j=1 Sj suggests that we should make Sj as close to one as possible,

separately for each j. That is, when updating θ
(t)
j to θ

(t+1)
j , it is desirable to make Ymis,j and

Ỹmis,j as independent as possible (conditioning on θ 6=j). But this is the same strategy as global

interweaving, except that it is applied to each component in turn, lending us greater flexibility.

Theorem 3 is also intimately connected with the following bound on SG, which comes from the

theory of alternating projections (see Deutsh, 2001, or Diaconis et al. 2007) but is rephrased in
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our terms:

SG ≥ 1−
(

1−
J−1∏

j=1

[
1−R2

σj−1∩σJ
(σj−1 ∩ σj, σj ∩ σJ)

])1/2

. (5.13)

Although the right hand side of (5.13) coincides with S̃G for J = 2, it is sharper for J ≥ 3 because

of the inequality

1−
[
1−

∏

j

(1− c2
j)

]1/2

≥
∏

j

(1− cj), ∀cj ∈ [0, 1]. (5.14)

However, we are unable to prove a version of (5.11) with the lower bound in (5.13) in place of S̃G;

perhaps this is the price for the product form in (5.11). Since CIS is in the form of alternating

projections, we can also apply the generic projection inequality underlying (5.13). The end result,

however, turns out to be rather messy and does not allow us to separate the “within-component

speed”, as represented by
∏J

j=1 Sj, and the “between-component speed”, as represented by S̃G or

more ideally by SG. We therefore settle for (5.11), given the clearer theoretical insight it provides.

There may well be room for improvement for (5.11), and we look forward to such results from

domain experts. Here we simply point out that Theorem 3 actually is not restricted to CIS, but

is applicable to any MCMC for updating θ(t) to θ(t+1) such that θ
(t+1)
≤j is independent of θ

(t)
<j when

conditional on θ(t+ j−1
J

), for all j (see Appendix B).

5.3 An Optimality Result for the Global ASIS

The next result says that not only is ASIS robust, under certain conditions, it also produces the

optimal algorithm among a broad class of DA schemes. Specifically, in Theorem 4, we establish

this optimality result by drawing a correspondence between (global) ASIS and the optimal DA

algorithm obtained under the working/expanded parameter approach (Liu and Wu, 1999; Meng

and van Dyk, 1999; van Dyk and Meng, 2001; Hobert and Marchev, 2008), even though the

interweaving strategy does not involve any working or expanded parameter.

To establish this correspondence, let us first review the working or expanded parameter ap-

proach already mentioned in Section 4.1. Suppose the original DA model is p(Ymis, Yobs|θ), and we

introduce a working parameter α so that the augmented model is p(Y α
mis, Yobs|θ, α)p(α), where p(α)

is our working prior. (The notation for the missing data is switched from Ymis to Y α
mis to highlight

the dependence on α.) Any choices of Y α
mis and p(α) are legitimate as long as the marginal model
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p(Yobs|θ) is preserved. Then we can implement the standard Gibbs sampler on the expanded space,

yielding the so-called PX-DA algorithm:

1. Draw (α, Y α
mis)|(θ, Yobs).

2. Draw (α, θ)|(Y α
mis, Yobs).

An intriguing result is that the optimal choice of p(α) typically is an improper prior, in which

case the PX-DA chain itself is not positive recurrent, but the sub-chain on θ is positive recurrent,

with the fastest convergence rate among a broad class of DA chains. (See Meyn and Tweedie (1993)

for a definition of positive recurrence.) Such results have generated some general interests (e.g.,

Hobert 2001a, 2001b; Lavine, 2003; Marchev and Hobert, 2004; Hobert and Marchev, 2008). In

particular, using group-theoretic arguments, Liu and Wu (1999) show that under mild conditions

the Haar measure (typically improper) is the prior that results in the fastest convergence. This is

the result which our Theorem 4 will link to. We emphasize that the link is established when the

working parameter used in PX-DA corresponds to the map between SA and AA in the way as

defined below. This is the reason that the PX-DA and ASIS in Section 4.1 do not coincide with

each other because there the working parameter was introduced in (4.5) as a scale parameter,

whereas the map from SA to AA is formed by subtracting a location parameter, as in (4.8).

Let us assume that the parameter space Θ is a locally compact Euclidean space. Moreover,

suppose GΘ ≡ {Mθ, θ ∈ Θ} is a collection of one-to-one mappings that forms a group (the group

operator being the composition of mappings). Let Θ be endowed with the same group structure

as GΘ, i.e., its operator “·” and inverse are specified by Mθ·θ′ = Mθ(Mθ′) and Mθ−1 = M−1
θ ,

respectively. Assume that both the operator (θ, θ′)→ θ ·θ′ and the inverse θ → θ−1 are continuous

functions, i.e., Θ is a topological group. A right Haar measure H(dθ) on Θ is a measure that is

invariant under group acting on the right, that is, for any θ0 ∈ Θ and any measurable set B ⊂ Θ,

H(B) =

∫

B

H(dθ) =

∫

Bθ0

H(dθ) = H(Bθ0),

where Bθ0 = {θ · θ0 : θ ∈ B}, that is, the set obtained by “multiplying” θ0 from the right to every

element in B. A left Haar measure is defined similarly. If the right Haar measure H(dθ) is also

the left Haar measure, then we say GΘ is unimodular. For example, in the toy model in Section 2,

we have M(Ymis; θ) = Ymis−θ, and hence GΘ is the additive group on the real line, with Lebesgue

measure being its unimodular Haar measure.
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Theorem 4. For a given posterior distribution of interest, p(θ|Yobs) ∝ p(Yobs|θ)p0(θ), suppose we

have an SA Ymis and an AA Ỹmis linked by a one-to-one and continuously differentiable transfor-

mation Ỹmis = M(Ymis; θ) ≡Mθ(Ymis) (for fixed θ). In addition, assume that

C1 Θ forms a group (as induced by the mappings Mθ) with a unimodular Haar measure;

C2 the model prior density p0(θ) with respect to the Haar measure satisfies p0(θ·θ′) ∝ p0(θ)p0(θ
′),

where “·” is the group operator.

Then the ASIS algorithm is identical to the optimal PX–DA algorithm, i.e., PX–DA with the Haar

measure prior, for the expanded model (θ, α, Y α
mis, Yobs), where α is the working parameter and

Y α
mis = Mα(Ymis), that is, M(Ymis; θ) with θ replaced by α.

The proof of this Theorem is given in Appendix B. The only truly restrictive condition in

Theorem 4 is Condition C2, because it concerns the model prior. Currently we can neither

explain intuitively why this condition is needed nor know whether it can be relaxed. The former

is not completely unexpected, since in Section 2.4 we have shown that whether we can minimize

R1,2 depends on the form of the prior. It is also not as restrictive as one might first believe,

especially for Bayesian inference under non-informative priors. For example, it is always satisfied

by the constant prior p0(θ) ∝ 1, or equivalently the Haar measure itself (assuming the propriety

of the resulting posterior, of course). This applies to, for example, all likelihood computation via

DA. But the Haar measure is not the only measure that satisfies Condition C2. If Mθ is a scale

group M(Ymis; θ) = Ymis/θ (the operator of the group is the usual multiplication), then priors

such as p0(θ) ∝ θδ for any constant δ also satisfy Condition C2. This is indeed the class of “locally

invariant scale priors” suggested by Berger (1985) as desirable noninformative priors (see also

Meng and Zaslavsky, 2002).

These connections cry out for a“missing link”: why invariant priors that are good for “objec-

tive” Bayesian inference are also good for fast MCMC? We do not believe this is a coincidence,

but rather a reflection of a deep connection between the inference model and the computational

model, perhaps along the lines of fiducial inference or structural inference (see Liu and Wu 1999,

and Hannig et al. 2006, Hannig 2009). Additional open problems are discussed below.
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6 Limitations and Open Problems

Whenever one is already able to implement AA and SA, there is little reason not to try ASIS,

global or component-wise. That one of AA and SA is particularly slow is not a reason for not

using it; on contrary, it is this very beauty-and-beast discordance that renders most of the power

of ASIS. However, if such a discordance is still not enough to overcome the “stickiness” of the

chain, then we may need more advanced interweaving strategies.

A possibility is the following “nested ASIS”. Consider a model with parameter θ, two layers

of latent variables X and Y , and observed data Z such that θ → X → Y → Z are Markov

dependent. If we treat (θ,X) as parameters, then Y is an SA for (θ,X); we may construct an AA,

Ỹ for (θ,X), and implement an interweaving strategy. Part of this strategy will involve drawing

(θ,X) given Y and drawing (θ,X) given (Ỹ , Z). If drawing (θ,X) jointly given Y is infeasible,

then, as an alternative to CIS described earlier, we may consider a nested interweaving strategy

for θ, with Y now playing the role of observed data. Noting that X is an SA for θ for this sub-

problem, we just need to construct an AA, X̃ for θ, and use one iteration of interweaving for this

sub-problem. Similarly, nested interweaving may be implemented for drawing (θ,X) given (Ỹ , Z).

It can be shown that, for the multi-layer extension of the toy model, i.e.,

p(θ) ∝ 1, X|θ ∼ N(θ, σ2
1), Y |(θ,X) ∼ N(X, σ2

2), Z|(θ,X, Y ) ∼ N(Y, σ2
3),

a well-constructed nested interweaving strategy also leads to convergence in one step, that is, i.i.d

draws. The usefulness of nested ASIS for realistic models seems worth investigating.

On the theoretical side, an important open problem for GIS is whether an AA-SA pair

{Ymis,A, Ymis,S} minimizes RN (Ymis,1, Ymis,2) among a suitable class of DA pairs {Ymis,1, Ymis,2},
where N = σ(Ymis,1)∩σ(Ymis,2). All evidence we have so far, empirical and theoretical (e.g., The-

orem 4), supports this, but we surmise nontrivial conditions are needed to make it a mathematical

theorem. A more challenging problem is to extend such results to CIS, for which we do not even

have a result that parallels Theorem 4. Furthermore, for CIS, we yet need to determine if it is

possible to replace the lower bound S̃G in (5.11) by the actual Gibbs sampler speed SG.

Another theoretical problem is to either relax Condition C2 in Theorem 4, or to identify two

schemes to be interwoven that could lead to an optimal algorithm without Condition C2. Despite

the restrictiveness of Theorem 4, it provides a great starting point for this exploration, which
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ultimately may lead to a Bayesian counterpart of Basu’s theorem. As discussed in Section 2.4, we

may need to incorporate prior information into SA and AA in some way, in order to decrease the

impact of the “non-factoring” part of (2.22). Even when this is not feasible and C2 fails, the ASIS

sampler can still be nearly optimal, or at least faster than both of the original algorithms, as all

our current evidence suggests. Moreover, Theorem 4 reveals an interesting relationship between

reparameterization and parameter-expansion: the best parameter expansion scheme sometimes

corresponds to interweaving two special parameterizations: SA and AA. See Appendix C for an

example that suggests possible extensions to Theorem 4.

Whereas much remains to be done, we hope we have unearthed a general strategy for efficient

MCMC, guided by the classical concepts of sufficiency and ancillarity. Our strategy is analogous

to boosting algorithms (e.g., Schapire 1990 and Fruend, 1995) in that interweaving a set of weaker

learners/algorithms may lead to a much stronger one. We believe that there is a vast “efficiency via

boosting” MCMC kingdom yet to be explored, and that our ASIS is only one of many “sesames”

that can open its door.
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[15] Frühwirth-Schnatter, S. and Wagner, H. (2006). Gibbs sampling for parameter-driven models

of time series of small counts with application to state space modelling, Biometrika 93, 827–

841.

45



[16] Gelfand, A. E. and Carlin, B. P. (1995). Comment on paper by Besag, Green, Higdon and

Mengersen. Statistical Science 10, 43–46.

[17] Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1995). Efficient parameterisations for normal

linear mixed models. Biometrika 82, 479–488.

[18] Gelfand, A. E., Sahu, S. K. and Carlin, B. P. (1996). Efficient parametrizations for generalized

linear mixed models. In Bayesian Statistics 5, (J.M. Bernardo, J.O. Berger, A.P. Dawid and

A.F.M. Smith, eds.) Oxford Univ. Press, 165–180.

[19] Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating

marginal densities. J. Amer. Statist. Assoc. 85, 398–409.

[20] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis,

2nd ed. London: CRC Press.

[21] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine In-

telligence 6, 721–741.

[22] Hamada, M. and Wu, C. F. J. (1995). Analysis of censored data from fractionated experi-

ments: a Bayesian approach. Journal of the American Statistical Association 90 467-477.

[23] Hannig, J. (2009). On generalized fiducial inference. Statistica Sinica, 19, 491–544.

[24] Hannig, J., Iyer, H. K. and Patterson, P. (2006). Fiducial generalized confidence intervals.

Journal of American Statistical Association 101, 254–269.

[25] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their ap-

plications. Biometrika 57, 97–109.

[26] Hills, S. E. and Smith, A. F. M. (1992). Parameterization issues in Bayesian inference.

Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith,

eds.) Oxford University Press, 227–246.

[27] Hobert, J. P. (2001a). Discussion of paper by van Dyk and Meng. Journal of Computational

and Graphical Statistics 10, 59–68.

46



[28] Hobert, J. P. (2001b). Stability relationships among the Gibbs sampler and its subchains.

Journal of Computational and Graphical Statistics 10, 185-205.

[29] Hobert, J. P. and Marchev, D. (2008). A theoretical comparison of the data augmentation,

marginal augmentation and PX-DA algorithms, The Annals of Statistics, 36, 532-554.

[30] Kypraios, T. (2007). Efficient Bayesian Inference for Partially Observed Stochastic Epidemics

and A New class of Semi-Parametric Time Series Models. Ph.D. Thesis, Department of

Mathematics and Statistics, Lancaster University.

[31] Lavine, M. (2003). A marginal ergodic theorem. Bayesian Statistics 7 (J. M. Bernardo, M.

J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.)

Oxford University Press, 577–585.

[32] Liu, C. H. (2003). Alternating subspace-spanning resampling to accelerate Markov chain

Monte Carlo simulation. J. Amer. Statist. Assoc. 98, 110–117.

[33] Liu, C. H. and Rubin, D. B. (1996). Markov-normal analysis of iterative simulations before

their convergence. Journal of Econometrics 75, 69–78.

[34] Liu, C. H., Rubin, D. B. and Wu, Y. N. (1998). Parameter expansion to accelerate EM—the

PX-EM algorithm. Biometrika 85, 755–770.

[35] Liu, C. H. and Sun, D. X. (2000). Analysis of interval-censored data from fractionated exper-

iments using covariance adjustments. Technometrics 42, 353-365.

[36] Liu, J.S. (1994). Fraction of missing information and convergence rate of data augmenta-

tion. In Computing Science and Statistics: Proc 26th Symposiom on the Interface, 490–496.

Interface Foundation of North America, Fairfax Station, VA.

[37] Liu, J.S., Wong, W. H. and Kong, A. (1994). Covariance structure of the Gibbs sampler with

applications to comparisons of estimators and augmentation schemes. Biometrika 81, 27–40.

[38] Liu, J.S., Wong, W. H. and Kong, A. (1995). Correlation structure and convergence rate of

the Gibbs sampler for various scans. J. Roy. Statist. Soc. B 57, 157–169.

47



[39] Liu, J. S. and Wu, Y. N. (1999). Parameter expansion for data augmentation. J. Amer.

Statist. Assoc. 94, 1264–1274.

[40] Marchev, D. and Hobert, J. P. (2004). Geometric ergodicity of van Dyk and Meng’s algorithm

for the multivariate student’s t model. Journal of the American Statistical Association 99,

228–238.

[41] Meng, X.-L. (1994). On the rate of convergence of the ECM algorithm. The Annals of Statis-

tics 22, 326–339.

[42] Meng, X.-L. and Rubin, D.B. (1991). Using EM to obtain asymptotic variance-covariance

matrices: the SEM algorithm. Journal of the American Statistical Association 86, 899–909.

[43] Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm:

a general framework. Biometrika 80, 267–278.

[44] Meng, X.-L. and van Dyk, D.A. (1996). Minimum information ratio and relative augmen-

tation function. Proceedings of the Statistical Computing Section of the American Statistical

Association, 73–78.

[45] Meng, X.-L. and van Dyk, D. A. (1997). The EM algorithm — an old folk song sung to a fast

new tune (with discussion). J. Roy. Statist. Soc. B 59, 511–567.

[46] Meng, X.-L. and van Dyk, D. A. (1998). Fast EM implementations for mixed-effects models.

J. Roy. Statist. Soc. B 60, 559–578.

[47] Meng, X.-L. and van Dyk, D. A. (1999). Seeking efficient data augmentation schemes via

conditional and marginal augmentation. Biometrika 86, 301–320.

[48] Meng, X.-L. and Zaslavsky, A. M. (2002). Single observation unbiased priors. Annals of

Statistics 30, 1345–1375.

[49] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. Journal of Chemical Physics 21,

1087–1092.

48



[50] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer-

Verlag, London.

[51] Michalak, S. (2001). Multilevel Bernoulli Models for Evaluating Medical Departments in VA

Hospitals. Ph.D. Thesis, Department of Statistics, Harvard University.

[52] Papaspiliopoulos, O. and Roberts, G. O. (2008). Stability of the Gibbs sampler for Bayesian

Hierarchical models. Annals of Statistics, 36, 95-117.

[53] Papaspiliopoulos, O., Roberts, G. O. and Skold, M. (2003). Non-centered parameterisations

for hierarchical models and data augmentation. Bayesian Statistics 7 (J. M. Bernardo, M.

J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.)

Oxford University Press, 307–326.

[54] Papaspiliopoulos, O., Roberts, G. O. and Skold, M. (2007). A general framework for the

parametrization of hierarchical models. Statist. Sci. 22, 59–73.

[55] Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, correlation structure, blocking

and parameterisation for the Gibbs sampler. J. Roy. Statist. Soc. B 59, 291–317.

[56] Roberts, G. O. and Tweedie, R. L. (2001). Geometric L2 and L1 convergence are equivalent

for reversible Markov chains. Journal of Applied Probability, 38, Probability, Statistics and

Seismology (2001), 37-41

[57] Rubin, D. B. (1976). Inference and missing data (with discussion). Biometrika 63, 581–592.

[58] Schapire, R. E. (1990). The strength of weak learnability. Machine Learning 5, 197–227.

[59] Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler

and related Markov chain Monte Carlo methods. J. Roy. Statist. Soc. B 55, 3–23.

[60] Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data

augmentation. J. Amer. Statist. Assoc. 82, 528–540.

[61] Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics

22, 1701–1727.

49



[62] van Dyk, D.A. and Meng, X.-L. (1997). On the orderings and groupings of conditional max-

imizations within ECM-type algorithms. Journal of Computational and Graphical Statistics,

6, 202-223.

[63] van Dyk, D. A. and Meng, X.-L. (2001). The art of data augmentation (with discussion).

Journal of Computational and Graphical Statistics 10, 1–111.

[64] van Dyk, D.A. and Meng, X.-L. (2010). Cross-fertilizing strategies for better EM mountain

climbing and DA field exploration: a graphical guide book. Statistical Science. To appear.

[65] Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics,

11, 95–103.

[66] Yu, Y. (2005). Three Contributions to Statistical Computing. Ph.D. Thesis, Department of

Statistics, Harvard University.

[67] Yu, Y. (2008). On the maximal correlation coefficient. Stat. Prob. Lett. 78, 1072–1075.

[68] Yu, Y. and Meng, X.-L. (2008). Espousing classical statistics with modern computation: suf-

ficiency, ancillarity and an interweaving generation of MCMC. Technical Report, Department

of Statistics, University of California, Irvine.

[69] Zeger, S. L. (1988). A regression model for time series of counts. Biometrika 75, 621–629.

50



Appendices

A Auxiliary Material for Section 3

A.1 Details of the MCMC Steps in the Poisson Time Series Example

Step 1: This step consists of T substeps, one for each t = 1, . . . , T .

For substep t, the target conditional density is

p(ξt|ξt−1, ξt+1, β, ρ, δ, Y ) ∝ exp{−(ξt − µt)
2/(2σ2

t )− dte
Xtβ+ξt},

where µt = (Ytδ
2 + (ξt−1 + ξt+1)ρ)/(1 + ρ2), σ2

t = δ2/(1 + ρ2), if t 6= 1 and t 6= T , and

µ1 = Y1δ
2 + ξ2ρ, µT = YT δ2 + ξT−1ρ, σ2

1 = σ2
T = δ2.

Define lt(ξt) = log p(ξt|ξt−1, ξt+1, β, ρ, δ, Y ). First, use Newton-Raphson to locate the

mode x of lt and then calculate l′′t (x). Then draw t5 according to a t distribution with 5

degrees of freedom, and propose ξnew
t = x + t5/

√
−l′′t (x). Draw a uniform random number

u between 0 and 1. Accept ξnew
t if

u ≤ exp{lt(ξnew
t )− lt(ξ

old
t )− h(ξnew

t ) + h(ξold
t )},

where h(·) is the log density of t5 centered at x with scale 1/
√
−l′′t (x).

Step 2A: The target conditional density is

p(β|ξ, ρ, δ, Y ) ∝ exp

{
∑

t

(YtXtβ − dte
Xtβ+ξt)

}
.

Define l(β) = log p(β|ξ, ρ, δ, Y ). First, use Newton-Raphson to locate the mode β̂ of l,

and compute I = −∂2l(β̂)/∂β∂β⊤. (This amounts to fitting a Poisson GLM and computing

the MLE and the observed Fisher information.) Draw T5 according to a p-variate t5, and

propose βnew = β̂ + I−1/2T5. Draw u ∼ U(0, 1), and accept βnew if

u ≤ exp{l(βnew)− l(βold)−H(βnew) + H(βold)},

where H(·) is the log density of T5 centered at β̂ and with scale I−1/2.
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Step 2S: The target conditional density p(β|η, ρ, δ, Y ) is multivariate normal.

Let Z⊤ = (Z⊤
1 , . . . , Z⊤

T ), where Z1 =
√

1− ρ2X1 and Zt = Xt − ρXt−1, t ≥ 2. Let η̃ =

(
√

1− ρ2η1, η2−ρη1, η3−ρη2, . . . , ηT −ρηT−1)
⊤. Compute β̂ = (Z⊤Z)−1Z⊤η̃, and then draw

βnew ∼ Np(β̂, (Z⊤Z)−1δ2). Set ξnew
t = ηt −Xtβ

new.

Step 3S: The target conditional density is

p(ρ, δ|β, ξ, Y ) ∝ δ−T exp

{
− 1

2δ2

[
(1− ρ2)ξ2

1 +
T∑

t=2

(ξt − ρξt−1)
2

]}
.

Compute ρ̂ =
∑T

t=2 ξtξt−1/
∑T−1

t=2 ξ2
t and δ̂2 = (1 − ρ̂2)ξ2

1 +
∑T

t=2(ξt − ρ̂ξt−1)
2. Draw δ2

new =

δ̂2/χ2
T−2, and ρnew ∼ N(ρ̂, δ2

new/
∑T−1

t=2 ξ2
t ), where χ2

T−2 is a χ2 random variable with T − 2

degrees of freedom. Accept δ2
new and ρnew if −0.99 ≤ ρnew ≤ 0.99.

Step 3A: The target conditional density is

p(ρ, δ|β, κ, Y ) ∝ (1− ρ2)−1/2 exp
{∑

(ξtYt − dte
ξt+Xtβ)

}
,

where ξ and κ are related by κ1 =
√

1− ρ2ξ1/δ, and κt = (ξt − ρξt−1)/δ, t ≥ 2. Define

l(ρ, δ) = log p(ρ, δ|β, κ, Y ).

Propose a random-walk type move, (ρ, δ) → (ρnew, δnew), by setting ρnew = ρ + s1u1 and

δnew = δ exp{s2u2}, where u1, u2 are i.i.d Uniform(−1/2, 1/2), and s1, s2 are suitable step

sizes (which may be tuned adaptively during the burn-in period). Draw a uniform random

number u0 between 0 and 1, and accept (ρnew, δnew) if −0.99 ≤ ρnew ≤ 0.99 and

u0 ≤ exp{l(ρnew, δnew)− l(ρ, δ) + s2u2}.

Repeat the entire procedure several times to achieve a reasonable acceptance rate. Keep ξ

updated via (3.7).

Step 3′A: Same as Step 3A, except that we fix δ, i.e., we set s2 = 0.

Step 3′′A: Same as Step 3A, except that we fix ρ, i.e., we set s1 = 0.
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Figure 12: Comparing Scheme A with Scheme C on DATA1. Autocorrelations of the Monte Carlo

draws (excluding the burn-in period) are displayed.
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Figure 13: Autocorrelations under Schemes B, C, and D on DATA2, after the burn-in period.

53



0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

AC
F

β1: Scheme A

β2: Scheme A

ρ: Scheme A

δ: Scheme A

β1: Scheme D

β2: Scheme D

ρ: Scheme D

δ: Scheme D

β1: Scheme E

β2: Scheme E

ρ: Scheme E

δ: Scheme E

Figure 14: Autocorrelations under Schemes A, D and E on the Chandra X-ray data, after the

burn-in period.

A.2 Autocorrelations Plots of the Monte Carlo Draws (Fig. 12 – Fig. 14)

B Auxiliary Material for Section 5

B.1 A Reducible Chain as a Result of Combining Two Transition Ker-

nels (Fig. 15)

B.2 Proof of Lemma 1

Proof. Let X be A1-measurable and Z be A2-measurable such that 0 < V[X − E(X|M)] < ∞
and 0 < V[Z − E(Z|M)] < ∞. Write X − E(X|M) = X0 + X⊥ with X0 = E(X|N ) − E(X|M)

and X⊥ = X − E(X|N ), and similarly for Z −E(Z|N ). Then X0 and Z0 are projections onto N
becauseM⊂ N , and hence they both are N -measurable, and

Cov(X0, X⊥) = Cov(X0, Z⊥) = Cov(Z0, Z⊥) = Cov(Z0, X⊥) = 0,

V(X0 + X⊥) = V(X0) + V(X⊥), V(Z0 + Z⊥) = V(Z0) + V(Z⊥).
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Figure 15: Alternating two irreducible Markov chains gives a reducible chain. The state space is

Ω = {I, J, K}, and the target distribution is π = (1/4, 1/4, 1/2). Left: transition probability

specification (numbers on the arrows) of one chain. Middle: transition probabilities of a second

chain with the same stationary distribution. Right: transition probabilities of the combined chain,

which becomes reducible even though the original two chains are irreducible.

Consequently,

Cov(X0 + X⊥, Z0 + Z⊥) = Cov(X0, Z0) + Cov(X⊥, Z⊥) (B.1)

≤
√

V(X0)V(Z0) +RN (A1,A2)
√

V(X⊥)V(Z⊥),

by the definition of RN (A1,A2) as in (5.4). It follows that

Corr(X0 + X⊥, Z0 + Z⊥) ≤ RXRZ +RN (A1,A2)
√

(1−R2
X)(1−R2

Z), (B.2)

where (with a bit of abuse of notation)

RX =

√
V(X0)

V(X0 + X⊥)
and RZ =

√
V(Z0)

V(Z0 + Z⊥)
,

where, without lose of generality, we have assumed V(X0) > 0 and V(Z0) > 0. By the simple

inequality
√

(1−R2
X)(1−R2

Z) ≤ 1−RXRZ , the right hand side of (B.2) is dominated by

RN (A1,A2) + [1−RN (A1,A2)]RXRZ .

Noting X0 + X⊥ = X − E(X|M) and X0 = XN − E(XN |M), where XN ≡ E(X|N ), we have

RX =
Cov(X0 + X⊥, X0)√
V(X0 + X⊥)V(X0)

≤ RM(A1,N ).

Similarly RZ ≤ RM(A2,N ). The claim then follows.
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B.3 Proof of Theorem 1

Proof. With the change of notation Ymis,1 = Ymis, Ymis,2 = Ỹmis, each iteration of GIS as defined

in Section 2.3 can be represented by a directed graph, as in (2.13),

θ(t) −→ Y
(t)
mis,1 −→ Y

(t+1)
mis,2 −→ θ(t+1).

That is, θ(t) and Y
(t+1)
mis,2 are conditionally independent given Y

(t)
mis,1, etc. Let us focus on the marginal

chain {θ(t)} and bound its spectral radius r1&2:

r1&2 ≤ R(θ(t), θ(t+1)) ≤ R(θ(t), Y
(t)
mis,1)R(Y

(t)
mis,1, Y

(t+1)
mis,2 )R(Y

(t+1)
mis,2 , θ(t+1)), (B.3)

where we apply (5.6) twice for the last inequality. Under stationarity R(θ(t), Y
(t)
mis,1) is the maximal

correlation between θ and Ymis,1 in their joint posterior distribution, and likewise forR(Y
(t+1)
mis,2 , θ(t+1)).

They are related to r1 and r2, the convergence rates of the two ordinary DA schemes via (see Liu

et al. 1994, 1995)

r1 = R2(Y
(t)
mis,1, θ

(t)), and r2 = R2(θ(t+1), Y
(t+1)
mis,2 ).

Under stationarity, the distribution of {Y (t)
mis,1, Y

(t+1)
mis,2 } is simply the joint posterior of {Ymis,1, Ymis,2}

(with θ integrated out). Hence Theorem 1 follows from (B.3).

B.4 Proof of Theorem 2

Proof. We use the same notation as in the proof of Theorem 1. Letting A = σ(Y
(t)
mis,1)∩σ(Y

(t+1)
mis,2 ),

and applying Lemma 1, we get

r1&2 ≤ R(θ(t), θ(t+1))

≤ RA(θ(t), θ(t+1)) + (1−RA(θ(t), θ(t+1)))R(θ(t),A)R(A, θ(t+1))

= R2(θ,N ) + (1−R2(θ,N ))RA(θ(t), θ(t+1)).

In the last equality, we have used the fact that under stationarity, R(A, θ(t+1)) = R(θ(t),A) =

R(θ,N ).

Letting B = σ(Y
(t)
mis,1), and applying Lemma 1 again, we get

RA(θ(t), θ(t+1)) ≤ RB(θ(t), θ(t+1)) + (1−RB(θ(t), θ(t+1)))RA(θ(t),B)RA(B, θ(t+1))

= RA(θ(t), Y
(t)
mis,1)RA(Y

(t)
mis,1, θ

(t+1)),
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because RB(θ(t), θ(t+1)) = 0 by conditional independence. Similarly, by taking B = σ(Y
(t+1)
mis,2 ) and

applying Lemma 1, we conclude

RA(Y
(t)
mis,1, θ

(t+1)) ≤ RA(Y
(t)
mis,1, Y

(t+1)
mis,2 )RA(Y

(t+1)
mis,2 , θ(t+1)).

Theorem 2 then follows from these three inequalities because, under stationarity, it is easy to show

that RA(θ(t), Y
(t)
mis,1) = RN (θ, Ymis,1), RA(Y

(t+1)
mis,2 , θ(t+1)) = RN (Ymis,2, θ), and RA(Y

(t)
mis,1, Y

(t+1)
mis,2 ) =

RN (Ymis,1, Ymis,2).

B.5 Proof of Theorem 3

Proof. To prove (5.11), we start by taking X = θ(t) = {θ(t)
1 , . . . , θ

(t)
J }, Z = θ(t+1) = {θ(t+1)

1 , . . . , θ
(t+1)
J },

and Y = θ
(t+1)
1 , all with respect to the joint stationary distribution {θ(t), θ(t+1)}. We then apply

the following version of the key inequality (5.8)

SW (X,Z) ≥ SY (X,Z)[SW (X,Y ) + SW (Y, Z)− SW (X,Y )SW (Y, Z)], (B.4)

where W is also a part of {θ(t), θ(t+1)} such that σ(W ) ⊂ σ(Y ). Since Y is a part of Z and hence

S(Y, Z) = 0, we first take a trivial W = 0 in (B.4) to arrive at

SCIS ≡ S(θ(t), θ(t+1)) ≥ S
θ
(t+1)
1

(θ(t), θ(t+1))S(θ(t), θ
(t+1)
1 ). (B.5)

Keeping the same X and Z, but now taking Y = θ
(t+1)
≤2 and W = θ

(t+1)
1 , we apply (B.4) again to

obtain

S
θ
(t+1)
1

(θ(t), θ(t+1)) ≥ S
θ
(t+1)
≤2

(θ(t), θ(t+1))S
θ
(t+1)
1

(θ(t), θ
(t+1)
≤2 ). (B.6)

Combining (B.5) and (B.6), we see

SCIS ≥ Sθ
(t+1)
<3

(θ(t), θ(t+1))
2∏

j=1

S
θ
(t+1)
<j

(θ(t), θ
(t+1)
≤j ). (B.7)

We continue the above argument by taking Y = θ
(t+1)
≤k and W = θ

(t+1)
<k , and applying (B.4) to

S
θ
(t+1)
<k

(θ(t), θ(t+1)) for k = 3, . . . , J − 1, to reach

SCIS ≥
J∏

j=1

S
θ
(t+1)
<j

(θ(t), θ
(t+1)
≤j ). (B.8)
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To further factor each term on the right hand side of (B.8), let us first take X = θ(t), Z =

θ
(t+1)
≤j , Y = (θ

(t)
>j, θ

(t+1)
<j ) and W = θ

(t+1)
<k , and apply (B.4) again. Note that as long as j < J ,

S
θ
(t+1)
<j

(X,Y ) = 0, and hence by (B.4), we have

S
θ
(t+1)
<j

(θ(t), θ
(t+1)
≤j ) ≥ SY (θ(t), θ

(t+1)
≤j )S

θ
(t+1)
<j

(Y, θ
(t+1)
≤j ), j = 1, . . . , J − 1. (B.9)

To deal with the first term on the right-hand side of (B.9), we need the fact that if X1 and Z2 are

conditionally independent given {X2, X3, Z1}, then

S(Z1,X3)((X1, X2, X3), Z2) ≥ S(Z1,X3)((Z1, X2, X3), Z2). (B.10)

If we let X1 = θ
(t)
<j, X2 = θ

(t)
j , X3 = θ

(t)
>j, Z1 = θ

(t+1)
<j , and Z2 = θ

(t+1)
≤j , then we can apply (B.10)

to SY (θ(t), θ
(t+1)
≤j ) because by construction, θ

(t+1)
j and hence θ

(t+1)
≤j is independent of θ

(t)
<j when

conditional on θ(t+ j−1
J

), the output of the CIS sampler just before the jth component is updated,

which is exactly (θ
(t+1)
<j , θ

(t)
j , θ

(t)
>j) ≡ {Z1, X2, X3}. Thus

SY (θ(t), θ
(t+1)
≤j ) ≥ SY (θ(t+ j−1

J
), θ

(t+1)
≤j ) ≥ Sj, j = 1, . . . , J − 1, (B.11)

where Sj is defined by (5.10). The last inequality in (B.11) is due to the easily verifiable inequality

SM(A1,A2) ≥ SM(A1, σ(A2∪M)), and the fact that σ(Y ) = σj−1∩σj and σ(σ(θ
(t+1)
≤j )∪σ(Y )) =

σj.

For j = J , (B.10) still applies as long as we take X3 = θ
(t)
>J = 0. It then becomes

S
θ
(t+1)
<J

(θ(t), θ
(t+1)
≤J ) ≥ S

θ
(t+1)
<J

((θ
(t+1)
<J , θ

(t)
J ), θ

(t+1)
≤J ) = SJ . (B.12)

Combining (B.9), (B.11) and (B.12) leads to

SCIS ≥
(

J∏

j=1

Sj

)[
J−1∏

j=1

S
θ
(t+1)
<j

((θ
(t)
>j, θ

(t+1)
<j ), θ

(t+1)
≤j )

]
. (B.13)

To show that S̃G, the second product on the right hand side of (B.13), is completely determined

by π, we note that (θ
(t+1)
<j , θ

(t+1)
j , θ

(t)
>j) is simply θ(t+ j

J
) in (2.27), which follows π assuming the CIS

chain is stationary. We can write S̃G as in (5.12) because σ(θ
(t+1)
<j ) = σj−1∩σJ and σ(θ

(t)
>j, θ

(t+1)
<j ) =

σj−1 ∩ σj, j = 1, . . . , J .

To show SG ≥ S̃G, we note that, stochastically, drawing θ
(t+1)
j directly from its full conditional

is the same as having Ymis,j and Ỹmis,j conditionally independent given θ
(t)
>j and θ

(t+1)
<j . Hence

SG ≥ S̃G is a special case of (B.13) with Sj = 1 for all j = 1, . . . , J .
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To show SG = S̃G when J = 2, we first note that when J = 2, we have SG = 1 − R(θ1, θ2),

where the MCC calculation is with respect to π (see Liu et al., 1994). However, by the definition

of S̃G, we also have S(θ1, θ2) = 1−R(θ1, θ2), and the claim follows.

B.6 Proof of Theorem 4

Proof. Because Ymis is sufficient for θ, we can write p(Yobs|Ymis, θ) as g(Yobs; Ymis). Similarly,

because Ỹmis is ancillary, we can write p(Ỹmis|θ) as f(Ỹmis). Then the joint posterior density of

(θ, Ỹmis), with respect to the joint product measure of the Haar measure H(·) for θ and Lebesgue

measure for Ỹmis, is

p(θ, Ỹmis|Yobs) ∝ p(Yobs|Ỹmis, θ)p(Ỹmis|θ)p0(θ)

∝ p(Yobs|Ymis = M−1
θ (Ỹmis), θ)p(Ỹmis|θ)p0(θ)

∝ g(Yobs; M−1
θ (Ỹmis))f(Ỹmis)p0(θ). (B.14)

Hence the conditional draw at Step 2A of the interwoven scheme is

θ|(Ỹmis, Yobs) ∼ p0(θ)g(Yobs; M−1
θ (Ỹmis)). (B.15)

Noting (B.14) and Ymis = M−1
θ (Ỹmis), the joint posterior of (θ, Ymis) is

p(θ, Ymis|Yobs) ∝ p0(θ)f(Mθ(Ymis))g(Yobs; Ymis)J(θ, Ymis),

where J(θ, Ymis) = | det [∂M(Ymis; θ)/∂Ymis] |. Hence the conditional draw at Step 2S of the

interwoven scheme is

θ|(Ymis, Yobs) ∼ p0(θ)f(Mθ(Ymis))J(θ, Ymis). (B.16)

Consider the PX–DA algorithm specified by the Theorem. According to Liu and Wu (1999),

when Condition C1 is satisfied we can equivalently implement the optimal PX–DA algorithm (with

the uniform prior density on α with respect to the Haar measure) as follows:

(1) Set α = e (identity element of the group). Draw Ymis|(θ, Yobs), which is the same as Step

1 of ASIS. Let z = Ymis.

(2) Draw (α, θ)|(Y α
mis = z, Yobs) jointly. This can be accomplished by drawing α|(z, Yobs) and

then θ|(α, z, Yobs). We first observe that the joint posterior of (α, θ) can be expressed as

p(α, θ|Y α
mis, Yobs) ∝ p(Yobs|Y α

mis, α, θ)p(Y α
mis|α, θ)p0(θ)p(α). (B.17)
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Since Y α
mis = Mα(Ymis), we have

p(Yobs|Y α
mis, α, θ) = p(Yobs|Ymis = M−1

α (Y α
mis), α, θ)

= g(Yobs; M−1
α (Y α

mis)). (B.18)

But we also have Y α
mis = Mα(Ymis) = Mα(M−1

θ (Ỹmis)) = Mαθ−1(Ỹmis). Therefore we may obtain

p(Y α
mis|θ, α) via p(Ỹmis|θ) = f(Ỹmis). That is,

p(Y α
mis|θ, α) ∝ f(Mθα−1(Y α

mis))J(θ · α−1, Y α
mis). (B.19)

Substituting (B.18–B.19) into (B.17) and noting p(α) ∝ 1, we have

p(α, θ|z, Yobs) ∝ p0(θ)f(Mθ·α−1(z))g(Yobs; Mα−1(z))J(θ · α−1, z),

where z is used as a shorthand for Y α
mis. Now integrate out θ:

p(α|z, Yobs) ∝ g(Yobs; Mα−1(z))

∫
p0(θ)f(Mθ·α−1(z))J(θ · α−1, z) H(dθ)

(letting θ′ = θ · α−1) ∝ g(Yobs; Mα−1(z))

∫
p0(θ

′ · α)f(Mθ′(z))J(θ′, z) H(dθ′)

(by Condition C2) ∝ g(Yobs; Mα−1(z))

∫
p0(θ

′)p0(α)f(Mθ′(z))J(θ′, z) H(dθ′)

∝ g(Yobs; Mα−1(z))p0(α). (B.20)

On the other hand

p(θ|α, z, Yobs) ∝ p0(θ)f(Mθ·α−1(z))J(θ · α−1, z)

∝ p0(θ)f(Mθ(M
−1
α (z)))J(θ,M−1

α (z)),

which matches equation (B.16), i.e., p(θ|Ymis, Yobs), for Ymis = M−1
α (z).

In summary, when the current iterate is θ(t), the steps of PX-DA are

Step 1. Same as Step 1 of ASIS.

Step 2a. Let z = Ymis, and draw α|(z, Yobs) according to (B.20).

Step 2b. Let z′ = M−1
α (z), and draw θ(t+1) ∼ p(θ|Ymis = z′, Yobs).
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Put α′ = θ(t) · α. Based on (B.20), Step 2a is equivalent to drawing α′ according to

p(α′|z, Yobs) ∝ g(Yobs; Mα′−1·θ(t)(z))p0([θ
(t)]−1 · α′)

∝ g(Yobs; Mα′−1(w))p0(α
′), (B.21)

where w = Mθ(t)(z). Note this w is the same as Ỹmis in Step 2A of ASIS, because z = Ymis.

Observe that (B.21) matches p(θ|Ỹmis = w, Yobs) of (B.15) when we equate θ with α′. Therefore

if we correspond α′ with θ(t+.5), which is the output of Step 2A of ASIS, then Step 2a is the same

as Step 2A. Furthermore, with α′ = θ(t+.5), in Step 2b z′ = M−1
α (z) = M−1

α′ (w) = Ymis, and we

can draw an exact correspondence between Step 2b of PX-DA and Step 2S of ASIS as well. (Note

here the Step 2A and Step 2S are in the reversed order, if we match the notation with that for

GIS, as defined in Section 2.2; but recall the order does not affect the validity.)

C Auxiliary Material for Section 6

The following example illustrates both the relevance and the limitations of Theorem 4. Consider

the univariate t model, a well known model for which PX–DA can be applied. We observe Yobs =

(y1, . . . , yn), where

yi
ind∼ N(µ, σ2/qi), qi

i.i.d.∼ χ2
ν/ν.

The parameters are θ = (µ, σ) and the missing data are q = (q1, . . . , qn)⊤. The degree of freedom

ν is assumed known. Assume the standard flat prior on (µ, log(σ)). By introducing a parameter

α, this model can be expanded into

yi
ind∼ N(µ, ασ2/wi), wi

i.i.d.∼ αχ2
ν/ν,

where wi = αqi. Each iteration of the optimal PX–DA algorithm (see Liu and Wu 1999, and Meng

and van Dyk 1999) can be written compactly as

(1) Draw qi ∼ χ2
ν+1/ [(yi − µ)2/σ2 + ν], independently for i = 1, . . . , n;

(2) Compute µ̂ =
∑n

i=1 qiyi/
∑n

i=1 qi, and then draw

σ2 ∼
[

n∑

i=1

qi(yi − µ̂)2

]
/χ2

n−1, µ ∼ N

[
µ̂, σ2/

n∑

i=1

qi

]
;

61



(3) Redraw σ2 ∼ σ2χ2
nν/(ν

∑n
i=1 qi).

These three steps are simply the following conditional draws under the original model:

(1) q|(µ, σ, Yobs);

(2) (µ, σ)|(q, Yobs);

(3) σ|(µ, z, Yobs), where z = (z1, . . . , zn)⊤ = (q1/σ
2, . . . , qn/σ2)⊤.

In other words, Step 1 draws q, the missing data, given θ = (µ, σ); Step 2 draws θ given q, which

is an AA for θ; and Step 3 draws σ given z, which is an SA for σ. If we focus on σ, ignoring

the part for µ, then the above algorithm is exactly an ASIS sampler for σ; just as Theorem 4

claims, it coincides with the optimal PX–DA algorithm. However, because z is not an SA for µ,

this scheme does not correspond to an ASIS for (µ, σ) as a whole. This suggests that there may

be a generalization of Theorem 4 that deals with a form of conditional ASIS. Such results would

also shed light on optimality properties of CIS, or reveal an even better formulation.
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