
CS142B Language Processor Construction

Java Bytecode Interpreter

Yeoul Na
UCI

April 9, 2019



Recap the project
Phase 1: Parsing .class file

Phase 2: 
Building a Java Bytecode 

Interpreter

Phase 3: Building SSA

Phase 4: SSA-based 
optimizations

Phase 5: Register 
allocation

Phase 6: Generating x86 
machine code

Interpreter Compiler

Representations of symbols 
(methods, classes, and fields)

SSA IR

Optimized IR

Low-level IR



Recap parsing the .class file

• Parse Constant table
• Methods
• Method name
• Get bytecode instructions from the “Code” attribute



Bytecode interpreter

• Dispatching the instruction
• Accessing the operands
• Performing the computation



Stack machine vs. Register 
machine

• Shi, Yunhe, et al. "Virtual machine showdown: Stack versus registers." 
ACM Transactions on Architecture and Code Optimization (TACO) 4.4 
(2008): 2.



Stack machine vs. Register 
machine
• Stack machine – JVM, CPython
• Operands are on stack
• Results are pushed to stack
• No need to specify the operand’s address in instruction

• Simpler bytecode format
• Simpler implementation

• Register machine – Lua, SpiderMonkey
• Need to specify the address of the operands

• Bigger per instruction size
• Require fewer number of instructions



Java Virtual Machine (JVM)

• An abstract computing machine
• has an instruction set and manipulates various memory 

areas at run time
• Stack-based machine
• Knows nothing of the java programming language, 

only of a particular binary format, the class file 
format



JVM Data types

• JVM distinguishes its operand types by using 
instructions intended to operate on values of 
specific types
• E.g., iadd, ladd, fadd, and dadd. Each is specialized for its 

operand type: int, long, float and double.
• Int : 32-bit signed integers



JVM Run-Time Data Areas

• Java Virtual Machine stack
• Stores frames 
• Analogous to the stack of languages like C

• Holds local variables and partial results
• Plays a part in method invocation and return

• Run-time constant pool
• Loaded from .class file
• Serves a function similar to that of a symbol table



Frames

• Allocated from the Java Virtual Machine stack
• Is used to store data and partial results, as well as 

return values / pass arguments for methods
• A new frame is created each time a method is 

invoked
• A frame is destroyed when its method invocation 

completes
• Has its own array of local variables, its own 

operand stack



Frames – Local Variables and 
Operand Stacks
• Max sizes are determined at compile-time
• Local Variables
• Are used to pass parameters
• Addressed by indexing
• JVM uses local variables to pass parameters on method 

invocation
• Starting from local variable 0 for static methods

• Operand Stacks (last-in-first-out)
• Are used to store temporary results and return values
• JVM instructions take their operands from the operand 

stack, operate on them, and push the result back onto 
the operand stack



Format of instruction description

• Format (zero or more operands)

• Representation in the bytecode stream
• Each line is 1 byte (8-bit) value 
• mnemonic = opcode

• Operand Stack

mnemonic
operand1
operand2
...

..., value1, value2→

..., value3

https://docs.oracle.com/javase/specs/jvms/se12/html/jvms-6.html

https://docs.oracle.com/javase/specs/jvms/se12/html/jvms-6.html


How to interpret Java bytecode

• E.g. iload_0
• Operand Stack

• Description: The value of the local variable at <n> is 
pushed onto the operand stack.

... →

..., value



How to interpret Java bytecode

• E.g. if_icmpeq
• Format 

• Operand Stack

• Description
• if_icmpeq succeeds if and only if value1 = value2
• If succeeds, (branchbyte1 << 8) | branchbyte2 constructs a 

signed 16-bit offset
• Execution proceeds at that offset from the address of this 

instruction 

if_icmp<cond>
Branchbyte1
branchbyte2

..., value1, value2→

...



Bytecode Instructions

• We are interested in…
• Load/Store : iconst_<i>, iload_<i>, istore_<i>
• Arithmetic : iadd, iinc, isub, imul, ishl, ishr
• Control Transfer : if_icmpne, if_icmpeq, if_icmpgt,if_cmpge, 

if_icmplt, if_icmple, ifeq, ifne, ifgt, ifge, iflt, ifle
• goto
• bipush
• invokestatic, invokevirtual (only for println)
• return, ireturn

• Load and Store Instructions
• Load a local variable/constant on to the operand stack
• Store a value from the operand stack into a local variable



Example Implementation

while (pc < end_addr) {
switch (pc[0]) {

case iload_0: {
Frame.push(Frame.getLocal(0)); pc += 1;
break;

}
case if_cmpeq: {

value2 = Frame.pop();
value1 = Frame.pop();
if (value1 == value2) {

offset = signext((pc[1] << 8) | pc[2]);
pc += offset;

} else {
pc += 3;

}
break;

}
. . . 

}
}



Handling of Methods

• We are handling static methods only
• Interpret the main method
• Check if the method name matches “main”
• If so, start interpreting bytecode instructions of the main 

method
• Invokevirtual #index
• Look up the method name from ConstantTable[index]
• Check if the name matches “println”
• Call C++ cout or C printf instead with the argument on 

the stack top



Tips

terminal> javac Test1.java
terminal> javap –v Test1.class > Test1.txt

== Test1.txt ==
Constant pool:

#4 = Methodref #5.#23 // Test1.printInt:(I)V
#11 = Utf8 printInt
#12 = Utf8 (I)V
#13 = Utf
#23 = NameAndType #11:#12 // printInt:(I)V

Public static void main(…);
Code:

0: iconst_0
1: istore_1
…


