
CS142B Language Processor Construction

Overview

Yeoul Na
UCI

April 2, 2019



General Information

• A heavy project class 
• Drop the class immediately 
• If you don’t like programming
• If you take more than one project classes

• Prerequisites
• Background knowledge about compilers
• C/C++ programming skills

• Expectations
• Research yourself 
• Don’t rely on lectures!



Reminder on Language Processing 

Compilation Interpretation



Haven’t we solved the problem yet?

• New languages: Rust, Go, …
• New hardware: GPU, FPGA, Neural Processor, …
• Cybersecurity
• Technology innovation
• Big Data
• Internet Of Things (IoT) 
• Artificial Intelligence (AI)

• Lack of compiler experts



About this course

• Language processor construction
• Implement a mini Java Virtual Machine (JVM)



Java Language Processing



Java Language Processing



Project Phases



Expected Outcome

• After you this course, you will have hands-on 
experience with
• What is inside a JVM
• How interpreter works
• Dataflow analysis and optimizations
• X86 assembler
• How to implement a real-world compiler

• You will become very proud of what you just 
implemented



Lecture Schedule
Week Date Lectures

Tuesday Thursday
1 Apr 2 / Apr 4 Overview & Parsing .class file No lecture – working on the project

2 Apr 9 / Apr 11 Bytecode interpreter No lecture – working on the project

3 Apr 16 / Apr 18 Single-static assignment (SSA) No lecture – working on the project

4 Apr 23 / Apr 25 No lecture – working on the project No lecture – working on the project

5 Apr 30 / May 2 SSA-based optimizations No lecture – working on the project

6 May 7 / May 9 No lecture – working on the project No lecture – working on the project

7 May 14 / May 16 Register allocation No lecture – working on the project

8 May 21 / May 23 No lecture – working on the project No lecture – working on the project

9 May 28 / May 30 x86 machine code generation No lecture – working on the project

10 Jun 4 / Jun 6 Advanced Topic - Security No lecture – working on the project

Final Jun 8 ~ Jun 13 Project Demo (appointment-base)



Grading Policy

• You will receive at least a B if your compiler can 
parse and interpret the bytecode and generate SSA.
• You will receive at least an A if your compiler can 

generate x86 machine code and passes all my test 
cases.
• You will receive an A+ if your compiler does 

everything and has one additional dataflow 
optimization implemented.



Resources

• Office hour

• CS Building 444

• Thursdays 9:30-10:50, or Make an appointment

• Our slack channel  - UCI-CS142b.slack.com

• Announcements

• Help each other (Q&A)

• Resource updates 

• https://www.ics.uci.edu/~yeouln/course/cs142b

https://www.ics.uci.edu/~yeouln/course/cs142b


Overview of the .class file 

• Contain Java bytecode that can be executed on the 
JVM
• Platform independent
• In binary format (not in ASCII) 
• be careful when reading a binary format

• Include 10 basic sections



Sections in the .class file

Sections Description
Magic number 0xCAFEBABE
Class file version info The minor and major versions
Constant pool Pool of constants for the class
Access flags abstract, static, etc.
This class the name of the current class
Super class the name of the super class
Interfaces any interfaces in the class
Fields any fields in the class
Methods any methods in the class
Attributes any attributes of the class 

(e.g., the source file name)



.class file – high-level 
representation

https://en.wikipedia.org/wiki/Java_class_file

https://en.wikipedia.org/wiki/Java_class_file


Example

• vim Test.class -> :%!xxd

• 0: Magic number (u4) - 0xcafebabe
• 4: Minor version (u2) - 0x0000 (0)
• 6: Major version (u2) – 0x0034 (52)
• 8: Constant pool count (u2) – 0x001e (30) 
• …



Constant pool

• Constant pool entry format:

• Tag indicates the type of constant pool entry
• Size of info[] varies across the type of entry

cp_info {
u1 tag;
u1 info[];

}

Tag = 10 (MethodRef)
CONSTANT_Methodref_info {

u1 tag;
u2 class_index;
u2 name_and_type_index;

}

Tag = 3 (Integer)
CONSTANT_Integer_info {

u1 tag;
u4 bytes; // big-endian

}

https://docs.oracle.com/javase/specs/jvms/se12/html/jvms-4.html#jvms-4.4

https://docs.oracle.com/javase/specs/jvms/se12/html/jvms-4.html


Example: your representation of a 
constant pool entry
class cp_info {
uint8_t tag;
uint8_t info[];

public:
uint8_t getInfo(int i) {
return info[i];

}
};

class cp_methodref_info : cp_info {
public:

uint16_t get_class_index() {
return (getInfo(0) << 8)|getInfo(1);

}
};



Your internal representation

class ClassInfo {
MethodInfo [] methods;   
Field[] fields;  
Attribute[] attributes;   
ClassInfo[] superclasses;    
…

};

Class MethodInfo {
Qualifier[] qualifiers;
uint8_t [] bytecodes;

};



Where is bytecode of a method?

• Read attribute_info in the method
• Consult the constant pool[attribute_name_index] to get the 

name string, and if the name is “Code”.
method_info {    

u2             access_flags;    
u2             name_index;    
u2             descriptor_index;    
u2             attributes_count;    
attribute_info attributes[attributes_count];}

attribute_info {
u2 attribute_name_index;
u4 attribute_length;
u1 info[attribute_length];

}



Code attribute

• Ignore the exception table and the attribute
Code_attribute {

u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{   u2 start_pc;

u2 end_pc;
u2 handler_pc;
u2 catch_type;

} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];

}



Make it simple!

• Bytecode has too much information
• We are only interested in ConstantPool, ThisClass, 

Methods (and Method Parameters, and Code)
• You can just skip and ignore all other information
• Ignore exceptions and run-time components
• Ignore super classes
• Start with what you need!



Again, research your self.
Don’t solely rely on the lecture.


