
CS142B Language Processor Construction

Register Allocation

Yeoul Na
UCI

May 14, 2019

Intermediate Representation

IR -> Machine Code

?

IR -> Machine Code

Instruction
Selection

IR -> Machine Code

Register
Allocation

Steps for IR -> Machine Code

• Instruction Selection
• Register Allocation

Register Allocation

• Mapping an infinite number of virtual registers to a
finite number of physical registers

Basic Idea of Register Allocation

• # Virtual Registers >> # Physical Registers
• Some virtual registers must share the same physical

register
• What if there are conflicts?

Basic Example

Basic Example

Live Intervals

• A SSA value is live from its definition to its last use

A B C D
i0
i1
i2
i3

Interference Graph

• Variables that live at the same time are connected
in the graph

A B C D
i0
i1
i2
i3

K-Coloring Problem

• Color the nodes in the graph with at most k colors
• Neighbors should be assigned different colors

• Optimal solution : NP-Complete -> Use heuristics
• What if it cannot be colored with k colors? spill

Memory hierarchy

• Higher = smaller, faster, closer to CPU
• Avoid register spilling! Store variables in registers as

possible

Register Allocation in a Nutshell

• Compute live intervals
• Build an interference graph
• Solve K-coloring problem with K registers
• Output: Variables with colors (assigned physical

registers)

Liveness Analysis

• A type of data-flow analysis
• Data flow facts: Live-in / Live-out

• Use[s]: the set of variables used in s
• Def[s]: the set of variables that are assigned values in s
• Live-in[s]: the set of variables that are simultaneously live

before s is executed
• Live-out[s]: the set of variables that are simultaneously live

after s is executed
• Backward data-flow analysis
• Transfer functions

• Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])
• Lives-out[s] = ���������� Live-in[p]

Liveness Analysis Equations

• Initial Setup
• Live-out[final] = �
• Use[a:= b + c] = {b, c}
• Def[a:= b + c] = {a}

• Transfer functions
• Lives-in[s] = Use[s] 	(Lives-out[s] – Def[s])
• Lives-out[s] = 	��������� Live-in[p]

Liveness Analysis Example
L1: a = 3;

L2: b = 5;

L3: d = 4;

L4: x = 100;

L5: if a > b then

L6: c = a + b;

L7: d = 2;

L8: endif

L9: c = 4;

L10:return b * d + c;
Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])

Lives-out[s] = ���������� Live-in[p]

Live-out = {} Live-in = {b, d, c}
Live-out = {b, d, c} Live-in = {b, d}

Worklist = {L8}

Liveness Analysis Example
L1: a = 3;

L2: b = 5;

L3: d = 4;

L4: x = 100;

L5: if a > b then

L6: c = a + b;

L7: d = 2;

L8: endif

L9: c = 4;

L10:return b * d + c;
Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])

Lives-out[s] = ���������� Live-in[p]

Live-out = {} Live-in = {b, d, c}
Live-out = {b, d, c} Live-in = {b, d}

Live-out = {b, d} Live-in = {b, d}

Worklist = {L7, L5}

Liveness Analysis Example
L1: a = 3;

L2: b = 5;

L3: d = 4;

L4: x = 100;

L5: if a > b then

L6: c = a + b;

L7: d = 2;

L8: endif

L9: c = 4;

L10:return b * d + c;
Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])

Lives-out[s] = ���������� Live-in[p]

Live-out = {} Live-in = {b, d, c}
Live-out = {b, d, c} Live-in = {b, d}

Live-out = {b, d} Live-in = {b, d}

Live-out = {b, d} Live-in = {b}
Live-out = {b} Live-in = {b, a}

Worklist = {L5}

Liveness Analysis Example
L1: a = 3;

L2: b = 5;

L3: d = 4;

L4: x = 100;

L5: if a > b then

L6: c = a + b;

L7: d = 2;

L8: endif

L9: c = 4;

L10:return b * d + c;
Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])

Lives-out[s] = ���������� Live-in[p]

Live-out = {} Live-in = {b, d, c}
Live-out = {b, d, c} Live-in = {b, d}

Live-out = {b, d} Live-in = {b, d}

Live-out = {b, d} Live-in = {b}
Live-out = {b} Live-in = {b, a}

Live-out = {b, a, d} Live-in = {b, a, d}

Worklist = {L4}

Liveness Analysis Example
L1: a = 3;

L2: b = 5;

L3: d = 4;

L4: x = 100;

L5: if a > b then

L6: c = a + b;

L7: d = 2;

L8: endif

L9: c = 4;

L10:return b * d + c;
Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])

Lives-out[s] = ���������� Live-in[p]

Live-out = {} Live-in = {b, d, c}
Live-out = {b, d, c} Live-in = {b, d}

Live-out = {b, d} Live-in = {b, d}

Live-out = {b, d} Live-in = {b}
Live-out = {b} Live-in = {b, a}

Live-out = {b, a, d} Live-in = {b, a, d}
Live-out = {b, a, d} Live-in = {b, a, d}

Worklist = {L3}

Liveness Analysis Example
L1: a = 3;

L2: b = 5;

L3: d = 4;

L4: x = 100;

L5: if a > b then

L6: c = a + b;

L7: d = 2;

L8: endif

L9: c = 4;

L10:return b * d + c;
Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])

Lives-out[s] = ���������� Live-in[p]

Live-out = {} Live-in = {b, d, c}
Live-out = {b, d, c} Live-in = {b, d}

Live-out = {b, d} Live-in = {b, d}

Live-out = {b, d} Live-in = {b}
Live-out = {b} Live-in = {b, a}

Live-out = {b, a, d} Live-in = {b, a, d}
Live-out = {b, a, d} Live-in = {b, a, d}

Live-out = {b, a, d} Live-in = {b, a}

Live-out = {b, a} Live-in = {a}
Live-out = {a} Live-in = { }

Worklist = {}

Liveness Analysis on SSA

• Transfer functions
• Lives-in[s] = Use[s]
(Lives-out[s] – Def[s])
• Lives-out[s] =
�	������� Live-in[p]

• Special handling of Phi functions
• Do not add Phi operands to live sets
• Lives-out[b] =
�	������� �Phi(p).inputOf(b), Lives-in[p]}

Liveness Analysis on SSA Example

Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])
Lives-out[s] = ���������� Live-in[p]

Live-out = {} Live-in = {}
Live-out = {} Live-in = {%4}

Live-out = {%6,%7} Live-in = {%6,%7}
Live-out = {%6,%7} Live-in = {%3, %6}
Live-out = {%3,%4, %6} Live-in = {%3,%4}

Live-out = {%3,%4} Live-in = {%3,%4,%5}
Live-out = {%3,%4,%5} Live-in = {%3,%4}

Live-out = {%3} Live-in = {}

Live-out = {%1,%2} Live-in = {%1}
Live-out = {%1} Live-in = {}

Live-out = {%3,%4} Live-in = {%3}

Compute Live Intervals on SSA

• Generate live intervals during liveness analysis
• Live-out(BB) : add the entire BB range
• At SSA definition : set the range start from the def
• At use : add (merge) a live range from BB to the use
• Special handling for
• Phi functions
• Loops

Liveness Analysis on SSA Example

Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])
Lives-out[s] = ���������� Live-in[p] Range(%4)= (L9, L9)

Live-out = {} Live-in = {%4}

Liveness Analysis on SSA Example

Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])
Lives-out[s] = ���������� Live-in[p] Range(%4)= (L6, L9)

Live-out = {} Live-in = {%4}

Live-out = {} Live-in = {%4}

Liveness Analysis on SSA Example

Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])
Lives-out[s] = ���������� Live-in[p] Range(%4)= (L2, L9)

Live-out = {} Live-in = {%4}

Live-out = {} Live-in = {%4}

Live-out = {%4} Live-in = {%4}

Liveness Analysis on SSA Example

Lives-in[s] = Use[s] �(Lives-out[s] – Def[s])
Lives-out[s] = ���������� Live-in[p] Range(%4)= (L3, L9)

Live-out = {} Live-in = {%4}

Live-out = {} Live-in = {%4}

Live-out = {%4} Live-in = {%4}
Live-out = {%4} Live-in = {%4}
Live-out = {%4} Live-in = {}

Christian Wimmer, and Michael Franz. "Linear scan register allocation on SSA form."
In Proceedings of the 8th annual IEEE/ACM international symposium on Code generation and
optimization, pp. 170-179. ACM, 2010.

Interference Graph

• Nodes with overlapping intervals are connected
• Using the live intervals

Allocating Registers with the
Interference Graph
• K-coloring
• Color graph nodes using up to k colors
• Adjacent nodes must have different colors

• Allocating to k registers -> finding a k-coloring of
the interference graph
• Adjacent nodes must be allocated to distinct registers

• Getting optimal solution is NP-Complete : Heuristics

Simple Greedy Algorithm

Improved Algorithm by Chaitin 81

• Idea
• Nodes with < k neighbors are guaranteed colorable

• Remove them from the graph first
• Reduces the degree of the remaining nodes

• Must spill only when all remaining nodes have
degree >= k

Example with k=4

• Degree(D) > 4 : should it be spilled?

Example

• Degree(A) < k, so remove A from G

Example

• Degree(C) < k, so remove C from G

Example

• Degree(D) < k, so remove D from G

Example – Coloring Subgraph

Example – Coloring Subgraph

Example – Coloring Subgraph

Example Coloring the graph

• Graph colored with 4 colors!

Improved Algorithm by Chaitin 81

simplify

spilling

allocate register

Register Spilling

• Allocate a new stack slot
• Store to the slot right after the definition
• Load from the slot right before all uses
• Update operands of the instructions accordingly

Register Allocation Step by Step

• Compute live intervals for SSA values based on
liveness analysis (post-order traversal)
• Construct the interference graph for SSA values

using the live intervals
• Allocate registers using the interference graph
• Solving K-coloring problem (Chaitin 81)

• Output: maps (SSA value -> Physical register)

X86 Registers

• General registers
• EAX, EBX, ECX, EDX, ESI, EDI

• Stack & base pointers
• EBP, ESP

• Never use EBP and ESP

Tips: Loop Detection

• Assume a well-structured loop
• Simply use DFS to detect a cycle (the target

becomes the loop header, the source becomes the
loop end)

Tips: Spilling

• Add Instruction classes: LoadInst and StoreInst
• Maintain stack slots in the Method class

class StackSlot : public Value {
int Index;

…
}

class Method {
…
vector<StackSlot*> NativeStack;

}

