
Mousse: A System for Selective Symbolic
Execution of Programs with Untamed

Environments

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani
University of California, Irvine

1

Mousse

What are programs with untamed
environments?

2

Program environment

 Program environment
 (e.g., file systems, networks)

Program

Interactions
(e.g., read, write)

3

Untamed environment

 Untamed environment
 (e.g., device drivers, customized

hardware)

Program

Interactions
(e.g., ioctl)

4

Example programs with untamed environments

5

OS services

Example programs with untamed environments

OS services
Software

frameworks for
accelerators

6

Example programs with untamed environments

customized
applications

7

OS services
Software

frameworks for
accelerators

Programs with untamed environments are growing

Copyright: https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf8

Selective Symbolic Execution (SSE)

“Selective symbolic execution is a way to specify which parts of this big “program” should run
concretely and which ones should run symbolically.”

“Selective symbolic execution makes symbolic execution practical for large software that runs
in real environments.”

- Selective symbolic execution [HotDep’09]

9

Existing approaches for analyzing programs
with untamed environments using SSE

10

Existing approach - symbolic environment

11

RevNIC [EuroSys’10]
DDT [USENIX ATC’10]
SymDrive [OSDI’12] Symbolic environment

Program

write

“drop”

read

Symbolic variable

Symbolic execution engine

Device

Existing approach - symbolic environment

12

● False positives
● Path explosion
● Fail to initialize Symbolic environment

Program

write

“drop”

read

Symbolic variable

Symbolic execution engine

Device

Existing approach - decoupled execution

13

 Memory Sync

External machine

 Symbolic execution engine

Program

Concrete execution engine

 Untamed environment

Program

Device with the env.

Avatar [NDSS’14]
Avatar2 [BAR’18]
Symbion

Existing approach - decoupled execution

14

 Memory Sync

External machine

 Symbolic execution engine

Concrete execution engine

Program

Device with the env.

 Untamed environment

Existing approach - decoupled execution

15

 Memory Sync

 Symbolic execution engine
Concrete execution engine

Device with the env.External machine

Program

 Untamed environment

Existing approach - decoupled execution

16

 Memory Sync

External machine

 Symbolic execution engine

Concrete execution engine

Device with the env.

Program

 Untamed environment

17

Significant
overhead

 Memory Sync

External device

Symbolic execution engine

Program

Concrete execution engine

Program

Device with the env.

Existing approach - decoupled execution

 Untamed environment

Mousse
is tailored for programs with untamed

environments achieving three important goals

18

Mousse

Mousse’s goals

Real
environments

19

High
performance

Ease of use

Mousse’s solutions

Process-level SSE

Environment-aware concurrency

Distributed execution

21

Process-level SSE

Environment-aware concurrency

Distributed execution

Mousse’s solutions

VM-level SSE

S2E [ASPLOS’11]

VM

User space
kernel

Hypervisor

SSE engine

VM-level SSE

Program

22

Device without the env.

VM-level SSE

It does not work for
programs with untamed
environments because it
requires virtualization.

23

VM

User space
kernel

Hypervisor

SSE engine

VM-level SSE

Program

Device without the env.

Process-level SSE: key idea
Device with the env.

OS process

Process-level SSE 24

 Untamed environment

User space

VM

User space
kernel

Hypervisor

SSE engine

VM-level SSE

Program

Device without the env.

Process-level SSE: key idea
Device with the env.

OS process

Process-level SSE 25

 Untamed environment

User space

VM

User space
kernel

Hypervisor

SSE engine

VM-level SSE

Program

Device without the env.

Process-level SSE: key idea
Device with the env.

OS process

Process-level SSE 26

 Untamed environment

User space

VM

User space
kernel

Hypervisor

SSE engine

VM-level SSE

Program

Device without the env.

Program

SSE engine

27

Real
environments

High
performance

Ease of use

Goals

Process-level SSE: benefits

Process-level SSE

Environment-aware
concurrency

Distributed execution

Process-level SSE

Environment-aware concurrency

Distributed execution

Mousse’s solutions

29

User space

Process-level SSE

Execution path 1

 Untamed environment

Path 1

Environment-aware concurrency: key idea

30

User space

Process-level SSE

Execution path 1

 Untamed environment

Process-level SSE

Execution path 2Path 1

Environment-aware concurrency: key idea

User space

Process-level SSE

Execution path 1

31

 Untamed environment

Process-level SSE

Execution path 2

Path 1

ecall A

Path 2

Environment-aware concurrency: key idea

32

ecall A

User space

Process-level SSE

Execution path 1

 Untamed environment

Process-level SSE

Execution path 2

ecall A ecall A

Blind concurrency
does not work

Path 1 Path 2

Environment-aware concurrency: key idea

33

User space

Process-level SSE

Execution path 1

 Untamed environment

Execution path 2

 Env. aware Conc.

Process-level SSE

 Env. aware Conc.

Q: Is this ecall A
allowed in the
process?

ecall A ecall A

ecall A

Path 1 Path 2

Environment-aware concurrency: key idea

34

User space

Process-level SSE

Execution path 1

 Untamed environment

Execution path 2

 Env. aware Conc.

Process-level SSE

 Env. aware Conc.

ecall A ecall A

A: This ecall A is
rejected to keep the
environment
consistent with path 1.

A: This ecall A is a
state-mutating ecall and
is allowed for path 1.

State-mutating
ecall A

Path 1 Path 2

Environmentally
consistent paths

Environmentally
inconsistent paths

Environment-aware concurrency: key idea

35

User space

Execution path 1

 Untamed environment

Process-level
SSE

Env. aware
Conc.

Path 1

Path 2

Environmentally
consistent paths

Environmentally
inconsistent paths

Process-level
SSE

Env. aware
Conc.

Path 4

Path 3

Execution path 4

… …

Environment-aware concurrency: key idea

36

Real
environments

High
performance

Ease of use

Goals

Environment-aware concurrency: benefits

Process-level SSE

Environment-aware
concurrency

Distributed execution

Mousse’s solutions

37

Process-level SSE

Environment-aware concurrency

Distributed execution

38

Device 1

User space

Process-level SSE

 OS process(es)

 Untamed environment

 Env. aware Conc.

State-mutating
ecall A

Path 1 Path 2

Environmentally
consistent paths

Environmentally
inconsistent paths

Distributed execution: key idea

39 Device 1

User space

Process-level SSE

 OS process(es)

Untamed environment

 Env. aware Conc.

State-mutating
ecall A

Path 1 Path 2

Environmentally
consistent paths

Environmentally
inconsistent paths

Distributed execution: key idea

Server

40 Device 1

User space

Process-level SSE

 OS process(es)

Untamed environment

 Env. aware Conc.

User space

Process-level SSE

 OS process(es)

Untamed environment

 Env. aware Conc.

Device 2

Environmentally consistent paths

Distributed execution: key idea

Server

41

Real
environments

High
performance

Ease of use

Goals

Distributed execution: benefits

Process-level SSE

Environment-aware
concurrency

Distributed execution

Mousse’s goals

42

Real
environments

High
performance

Ease of use

Evaluation

43

❖ AudioServer and AudioProvider services in Pixel 3

❖ CameraService and CameraDaemon services in Nexus 5X

❖ OpenGLES graphics libraries in Nexus 5

44

Evaluated Mousse on five Android OS services

Env. aware conc. improves execution time

AudioProvider API: adev_set_parameters
 (no state-mutating ecalls)

45

5.143

2.102

59% improvement

46

AudioProvider API: out_write
 (issues state-mutating ecalls)

24%
improvement5.507

4.179

Env. aware conc. improves execution time

Distributed execution improves execution time

AudioProvider API: adev_set_parameters
 (no state-mutating ecalls)

47

2.235

0.819

63% improvement

Distributed execution improves execution time

AudioProvider API: out_write
 (issues state-mutating ecalls)

48

4.137

1.493

64% improvement

49

API name
Execution time
(no concurrency, no

distributed execution)

Execution time
(max concurrent paths as 9,

5 smartphones)
Improvement

adev_set_parameters 5.143 hrs 0.819 hrs 84%

out_write 5.507 hrs 1.493 hrs 73%

Env. aware conc. & distributed execution improve
execution time

More evaluation results

50

● Bugs and vulnerabilities

○ Two null-pointer dereferences

○ Two double-free vulnerabilities

● Taint analysis

● Performance profiling

Coverage evaluation

Execution time of more APIsAnalysis results

❖ We introduced Mousse, a system for analyzing programs with untamed

environments using SSE.

❖ Mousse outperforms alternative solutions in terms of performance and code

coverage.

❖ Mousse opens the opportunity to perform various analyses on programs with

untamed environments.

Mousse is open sourced: https://trusslab.github.io/mousse/

Summary

51

Back up slides

52

/* Audio service out_write API */

1 static ssize_t out_write(struct audio_stream_out *stream, const void *buffer, size_t bytes) {
2 struct stream_out *out = (struct stream_out *)stream;

...
3 lock_output_stream(out); //This function calls pthread_mutex_lock(&out->lock);

...
4 long ns = (frames * (int64_t) NANOS_PER_SECOND) / out->config.rate;
5 request_out_focus(out, ns);

...
6 ret = pcm_write(out->pcm, (void *)buffer, bytes_to_write);

...
7 pthread_mutex_unlock(&out->lock);

...
8 }

53

Example to show blind concurrency does not work

/* Code in the audio driver where the error happens */

1 void *q6asm_is_cpu_buf_avail(int dir, struct audio_client *ac, uint32_t *size, uint32_t *index)
2 {
3 void *data;
4 unsigned char idx;
5 struct audio_port_data *port;

...
6 // dir 0: used = 0 means buf in use
7 // dir 1: used = 1 means buf in use
8 if (port->buf[idx].used == dir) {
9 // To make it more robust, we could loop and get the
10 // next avail buf, its risky though
11 pr_err("%s: Next buf idx[0x%x] not available, dir[%d]\n", __func__, idx, dir);
12 mutex_unlock(&port->lock);
13 return NULL;
14 }

...
15 }

54

Example to show blind concurrency does not work

