
Multi-Tenant Multi-Objective Bandwidth Allocation
in Datacenters Using Stacked Congestion Control

Chen Tian†, Ali Munir‡, Alex X. Liu†‡, Yingtong Liu�, Yanzhao Li†, Jiajun Sun†, Fan Zhang§, Gong Zhang§
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Department of Computer Science and Engineering, Michigan State University, USA
�Department of Computer Science, University of California, Irvine, USA

§Future Network Theory Lab, Huawei, Hong Kong, China

Abstract—In datacenter networks, flows can have different
performance objectives. We use a tenant-objective division to
denote all flows of a tenant that share the same objective.
Bandwidth allocation in datacenters should support not only
performance isolation among divisions but also objective-oriented
scheduling among flows within the same division. This paper
studies the Multi-Tenant Multi-Objective (MT-MO) bandwidth
allocation problem. To our best knowledge, no existing practical
work support performance isolation and objective scheduling
simultaneously. We propose Stacked Congestion Control (SCC),
a distributed host-based bandwidth allocation design, where an
underlay congestion control (UCC) layer handles contention
among divisions, and a private congestion control (PCC) layer for
each division optimizes its performance objective. Via the tenant-
objective tunnel abstraction, SCC achieves weighted bandwidth
sharing for each division in a distributed and transparent way.
By adding a rate-limiting send queue in the ingress of each
tunnel, mechanisms between performance isolation and objective
scheduling are completely decoupled. We evaluate SCC both
on a small-scale testbed and with large-scale NS-2 simulations.
Compared to the direct coexistence cases, SCC reduces latency
by up to 40% for Latency-Sensitive flows, deadline miss ratio
by up to 3.2× for Deadline-Sensitive flows, and average flow-
completion-time by up to 53% for Completion-Sensitive flows.

I. INTRODUCTION

Motivation: In datacenter networks, flows can have different

performance objectives. A private datacenter is shared by vari-

ous tenants, such as search engine, advertising and e-Business

applications. Each tenant can run many service entities (e.g.,
Virtual Machines, Containers, Java processes) that communi-

cate over the underlying network. The flows generated by these

services have different performance objectives due to their

service requirements. Some flows are Latency-Sensitive (LS):
service can enqueue copies of a task in multiple servers to

combat computation time variability [1]; to minimize resource

wastage, a cancelation message should be sent to the counter-

part servers as soon as the first replica is finished. On the other

hand, some flows are Deadline-Sensitive (DS): the partition-

aggregate architecture of Online Data Intensive applications

(OLDI) [2], [3] and real-time analytic [4], [5] enforce deadline

semantics for every leaf-to-parent flow. Furthermore for many

other applications, minimizing average flow-completion-time

(AFCT) can significantly improve their performance [6], [7],

[8], and we call these flows as Completion-Sensitive (CS)

flows. We use a tenant-objective division to denote all the

flows of a tenant that share the same performance objective.

Bandwidth allocation in datacenters should support not only

performance isolation among divisions but also objective-

oriented scheduling among flows within the same division.

Bandwidth allocation design, in essence, defines how flows

behave when congestion happens. Most datacenter networks

are oversubscribed [9] and congestion is not uncommon:

packet drops due to congestion can be observed when the

whole network utilization is around only 25% [10]. To achieve

performance isolation, administrators can assign weights to

different divisions that share the underlying network [11]. For

example, upon congestion, an administrator may prefer tenant

A’s DS flows over tenant B’s DS flows, or all tenants’ LS

flows over their CS flows. Various techniques can be used to

support objective-oriented flow scheduling: some reduce tail

latency of messages [12], [13], [14], [15], some add deadline

awareness [7], [16], [17], [18], and others focus on reducing

AFCT [7], [19], [20], [6], [8], [21], [22], [23], [24].

This paper studies the Multi-Tenant Multi-Objective (MT-

MO) bandwidth allocation problem in datacenter networks. To

our best knowledge, no existing work supports performance
isolation and objective scheduling simultaneously.
Limitations of Prior Art: Many of the existing objective-

oriented approaches [7], [12], [13], [14], [15], [19], [20],

[6], [8], [21], [22], [23], [24] are designed to achieve only

a single performance objective at a time, and there could be

severe interference if approaches of different objectives coexist

without isolation. This happens because these approaches may

detect congestion differently (e.g., packet drop, or ECN) or

react to congestion differently (e.g., the ECN co-existence

problem in production Cloud [25], [26]). pFabric [6] and

Karuna [27] evaluate the coexistence of the DS and CS

flows by setting absolute priority to DS flows over CS flows.

However, performance isolation among flows with the same

objective but of different tenants is not considered. Further-

more, existing performance isolation approaches cannot op-

timize performance objectives for individual tenant-objective

division. Neither bandwidth guarantee [28], [29], [30], [31],

[32], [33] nor proportional sharing [11] can perform bandwidth

allocation at flow-level granularity.

Bandwidth allocation design should be practical and readily-

deployable. Many works either require non-trivial switch mod-

ifications [13], [7], [19], [6], [34], or assume non-blocking

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

978-1-5090-5336-0/17/$31.00 ©2017 IEEE

network, which is not widely available in production data-

center [24]. A centralized scheduling mechanism (e.g., Fast-

pass [21]) may perform optimization for all divisions, but

requires an ideally scalable control plane and time synchro-

nization for arbitration.

Proposed Approach: In this paper, we propose Stacked

Congestion Control (SCC), a distributed host-based bandwidth

allocation framework. SCC can support both performance
isolation and objective scheduling, and is readily-deployable.

SCC has two layers to perform congestion control: (i) an

underlay congestion control (UCC) layer handles contention

among divisions (i.e. performance isolation), and (ii) a private

congestion control (PCC) layer for each division to optimize

its performance objective (i.e. objective scheduling). UCC

supports the following abstraction: a weight (obtained via

administrator policy or utility function maximization [35])

is attached with each division; each division should get a

bandwidth share that is proportional to its weight.

Technical Challenges and Solutions: The first challenge is

how to achieve weighted bandwidth allocation by controlling

the active flows within each division in a distributed and

transparent way. Irrespective of the tenant-objective division

semantic, TCP (and its variants) only allocates bandwidth

proportional to the contending flows. SCC thus introduces

tenant-objective tunnel as an edge-based abstraction (between

every eligible pair of source and destination hosts, flows of

each division are aggregated inside a dedicated point-to-point

tunnel). Each tunnel is assigned a weight (dynamically updated

by the division’s PCC) and SCC allocates the bandwidth share

to a tunnel in proportion to its weight. Because of the state-of-

the-art multi-path load balancing schemes (e.g., Presto [36])

in datacenter (e.g., Clos-network), the share of a tunnel in

each network tier is statistically proportional to its weight.

Our key insight is that the division’s bandwidth share can

be achieved by cooperatively scaling each tunnel’s network

weight if the tunnels in the same division ensure that the sum

of their weights equals the global weight of the division.

The second challenge is how to support two congestion

control mechanisms (UCC and PCC) simultaneously. For

distributed host-based bandwidth allocation, two factors define

congestion control behaviour: (i) congestion signal, i.e., what

method is used to detect network congestion, and (ii) control
law, i.e., what rate increase (decrease) law is used to grab

(yield) network bandwidth. The dilemma is that, to respect

performance isolation, all tunnels should follow the same UCC

mechanism; there is only one uniform set of congestion signal

available from the network, which reflects the contention

among tunnels; it cannot be directly exploited for objective-

oriented congestion control inside each tunnel. Our technical

contribution here is to add a rate-limiting queue in the ingress

of each tunnel to completely decouple two congestion control

mechanisms. UCC uses ECN as the congestion signal and uses

weighted network sharing algorithms (similar to Seawall [11])

to derive the tunnel rate according to network condition.

Moreover, each sender queue can locally generate desired

congestion signal for PCC layer.

Further, we develop PCC algorithms for every objective

to dynamically derive the per-tunnel weight, so that each

tunnel is allocated a weight according to the demand of its

flows as compared to other flows within the same division.

Besides existing objective-oriented scheduling approaches, we

also develop new in-tunnel scheduling algorithms to exploit

the extra flexibility provided by SCC.

We implement SCC as a Linux kernel module using Net-

Filter. We evaluate SCC on a small-scale testbed with 16 Dell

servers and a commodity PICA-8 Gigabit Ethernet switch with

ECN enabled. To complement our small-scale testbed experi-

ments, we further conduct large-scale simulations using NS-2.

SCC can meet requirements of performance objectives, when

flows of different objectives coexist in the datacenter networks.

Compared to the direct coexistence cases, SCC reduces latency

by up to 40% for Latency-Sensitive flows, deadline miss ratio

by up to 3.2× for Deadline-Sensitive flows, and average flow-

completion-time by up to 53% for Completion-Sensitive flows.

II. BACKGROUND AND MOTIVATION

In this section, we first summarize the existing work done

to improve the performance of applications with different

objectives (§II-A). Next, via toy scenarios, we demonstrate

that, when sharing the same network, existing approaches

can interfere with each other and degrade the performance

(§II-B). Lastly, we discuss a range of techniques that share the

high-level similarities but are insufficient to support coexisting

performance objectives in datacenter networks (§II-C).

A. Related Work
Latency Sensitive (LS): Silo [14] proposes a placement algo-

rithm and a hypervisor-based packet pacing to provide latency

guarantees. HULL [13] trades bandwidth for ultra-low latency

and it requires modification to switch ASIC. Fastpass [21]

uses a centralized arbiter to decide when and which path each

packet should be sent. QJUMP [15] uses multiple physical

switch queues to provide different combinations of latency

and throughput. DCTCP can keep switch queue length at a

low level to reduce packet latency [12].

Deadline Sensitive (DS): D3 pioneers the idea of incor-

porating deadline awareness into network scheduling [16].

However, D3 and RACS [37] are not deployment friendly as

they require modifications to the commodity switch hardware.

D2TCP [17] is a distributed deadline-sensitive protocol, which

uses both ECN feedback and deadlines to modulate the con-

gestion window.

Completion Sensitive (CS): PDQ [7] uses preemptive

flow scheduling to minimize average FCT. pFabric [6] and

PASE [8] assume flow size is known a priori, and attempt

to approximate Shortest Job First (SJF), which is the optimal

scheduling for minimizing average FCT in a single bottleneck

scenario. L2DCT [20] and PIAS [22], without prior knowledge

of flow size information, reduce AFCT by approximating the

Least Attained Service (LAS) scheduling discipline.

B. Interference when Sharing Network
To demonstrate interference, when flows with different objec-

tives coexist in the same network, we use a single bottleneck

topology as shown in Fig. 1(a). We set the switch ECN

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

DS Flows

CS Flows

DS Flows
SRC 2

CS Flows
SRC 3

DST 2

DST 3
L2DCT

LS FlowsLS Flows
SRC 1

DST 1

D2TCP

DCTCP

(a) Example topology

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 0.05 0.1 0.15 0.2

In
st

an
ta

ne
ou

s
R

TT
 (m

s)

Time (sec)

LS Only
LS w/ DS

(b) LS flows’ RTT

 20

 40

 60

 80

 100

Light Medium High

D
ea

dl
in

es
 M

is
se

d
(%

)

Network Load

DS Only
DS w/ LS
DS w/ CS

(c) DS flows’ missing ratio

 10
 20
 30
 40
 50
 60
 70

Light Medium High

AF
C

T
(m

se
c)

Network Load

CS Only
CS w/ DS

(d) CS flows’ finish time

Fig. 1. Interference demonstration, when alone and coexist.

marking threshold to 20, the switch buffer size to 250 packets

and the round trip time to 300 us. We consider traffic from

a LS application (from SRC1 to DST1), a DS application

(from SRC2 to DST2), and a CS application (from SRC3
to DST3). We use the instantaneous end-to-end packet RTT,

fraction of missed deadlines, and average FCT (AFCT) as the

performance metrics for evaluating the LS, DS and CS flows,

respectively. We use NS-2 for performance evaluation.

We consider state-of-the-art deployment-friendly protocols

for each of the performance goals and implement them in

NS-2. Specifically, we use DCTCP for LS flows, D2TCP for

DS and L2DCT for CS flows. For LS flows, we generate

small (2 KB) flows that arrive at intervals following a Poisson

distribution and require an aggregate bandwidth of 400 Mbps

on average. For DS and CS, the flows are generated uniformly

within the range 2 KB-198 KB with deadlines in the range

5-25 ms (for DS only). Flows arrive at intervals generated

following Poisson distribution and incurring low (20%), medi-

um(50%) and high (80%) load on the link.

1) Performance in Isolation: We first evaluate the appli-

cation performance in a scenario where each protocol has

exclusive access to the underlying network. When used in

isolation, we represent flows as Base-LS, Base-DS, and Base-

CS respectively. In these experiments, the bottleneck link

capacity is 500 Mbps.

Base-LS: As shown in Fig. 1(b), the LS flow packets experi-

ence almost zero queuing delay and the round-trip latency is

very close to the RTT (300 us).

Base-DS: Fig. 1(c) demonstrates the deadline missing rate of

DS flows across a range of loads. We can see that for light to

moderate loads, almost no flows miss deadlines. However, at

high load many flows miss deadlines.

Base-CS: Fig. 1(d) shows the AFCT under different network

load conditions.

2) Coexistence of Different Objectives: Next, we evaluate

the scenarios with two performance objectives coexisting in

the network. The bottleneck link capacity is 1000 Mbps, which

is large enough to meet the demands of both types of flows.

Coexist-LS/DS: In this scenario, the performance of LS flows

is severely affected as shown in Fig. 1(b). LS flows experience

large queuing delays and, as a result, their tail latency increases

by more than 300%; the average latency increases by more

than 50%. On the other hand, DS flows also experience

performance degradation and many flows miss their deadlines,

as shown in Fig. 1(c).

Coexist-DS/CS: We consider the coexistence of DS and CS

flows in the network. In this scenario, DS flows experience

performance degradation, as shown in Fig. 1(c): even at low

loads, some of the flows miss their deadline due to interference

from CS flows and the degradation increases up to 4x for

medium and higher network loads. Similarly, the completion

times of CS flows is also affected and flows take longer to

finish compared to the scenario with only CS flows in the

network (Fig. 1 (d)). Specifically, at higher loads, the AFCT

of CS flows increases by more than 2x.

3) Same Objective Different Tenants: We also consider

the scenarios where multiple tenants with the same perfor-

mance objective coexist. We evaluate both Coexist-LS/LS and

Coexist-DS/DS scenarios, where the bottleneck capacity is not

large enough to meet the requirements of all flows. Lacking

the ability to favor one tenant over another, flows of both the

tenants experience performance degradation. We omit results

due to space limitation.

C. Current Isolation won’t Work
An intuitive solution is to segregate application flows with

different objectives to separate physical queues in a switch.

Such an segregation approach requires a large number of traffic

classes, which are not supported by currently available CoS

tags in packet formats; existing commodity switches also do

not have sufficient number of queues [11].

Bandwidth Guarantee: Several bandwidth guarantee ap-

proaches have been proposed, which provide network ab-

straction models and placement algorithms for tenants or

applications to express their bandwidth requirements [28],

[11], [29], [30], [31], [32]. Bandwidth guarantee are coarse

grained: they should meet the peak requirements, which is

either inefficient, or is suboptimal in terms of flow objectives.

Proportional Sharing: Seawall provides per-entity weight

enforcement for each VM-to-VM tunnel [11]. However, it

does not support bandwidth allocation at flow-level granularity,

hence cannot optimize the performance objectives of individ-

ual flow divisions. Further, it does not support tenant level

network sharing.

III. SCC DESIGN

A. Design Overview
Network Mode: This paper targets the prevalent Clos-

network fabrics. We assume the adoption of state-of-the-art

load balancing works such as Presto [36]: a large flow can

be divided into fine-grained, near-uniform units of data (i.e.,
flowcells) and load is balanced across almost every available

path between two neighboring tiers of network switches.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Fig. 2. SCC framework with tenant-objective tunnel abstraction.

Allocation of network weights among divisions is outside

the scope of this paper. We assume each division weight is giv-

en either as input by an algorithm that enforces administrator

policy or by a utility maximization function [35], [38].

Data Path: An example data path is shown in Figure 2. There

are two CS tunnels and one DS tunnel among three pairs of

hosts: division 1 contains two CS tunnels; division 2 contains

one DS tunnel; all CS/DS flow(s) enter the CS/DS tunnel(s).

Each tunnel has a rate-limiting queue at it’s ingress port in the

endhost. A tunnel weight Wt is attached with each tunnel.

Note that tunnel is only an logical abstraction: it does not

require any additional packet headers, hence NIC offload fea-

tures such as TCP Segmentation Offload (TSO) are affected.
B. Underlay Congestion Control
Congestion Signal: UCC uses ECN as the congestion signal

and uses weighted network sharing algorithms to derive the

contemporary tunnel rate. For all outgoing packets in a tunnel,

the ECN-enable bits in IP headers are set by the tunnel. In the

receiver end of the tunnel, the ECN mark ratio is recorded;

the destination host periodically sends ECN feedback; for all

incoming TCP acknowledgement packets, ECN bit is removed

before transferring to upper transport protocols. Note that if

the upper transport protocol supports ECN, UCC should pass

this information to PCC layer.

Tunnel Rate: SCC provides the tunnel with a bandwidth

share that is proportional to its weight; This allocation is an

end-to-end and work-conserving design. Each tunnel has a

rate limiting queue attached to the ingress port in the source

host. Based on the ECN feedback, each tunnel estimates the

available bandwidth and adjusts the rate of the send queue.

Similar to Seawall, we mimic the DCTCP behaviour in tunnel

level congestion control. If there is no congestion in the

network, the rate Rt increases as:

Rt = (1 +Wt) ∗Rt, (1)

where, Wt is the weight assigned to a tunnel. Upon detecting

congestion, the rate reduces as:

Rt = (1− α ∗Wt) ∗Rt, (2)

where α is the level of congestion in the network.

Scaling Tunnel Weight: As a distributed solution, each tunnel

in SCC, periodically generates its reference tunnel weight

W ′
t according to its PCC layer algorithm. This calculation

is objective-oriented, and the corresponding algorithms are

presented in Section IV. All tunnels in the same division

should ensure that the global weight Wd allocated to this

division is respected, by cooperatively scaling each tunnel’s

self-derived reference network weight.

A tracker is elected from all the source hosts in each

division, and each source host periodically sends W ′
t to this

tracker. A scale factor are calculated as:

λd = Wd/
∑

∀t∈d

W ′
t , (3)

and λd is periodically sent back to hosts in the division.

Accordingly, each source hosts derive its contemporary weight

value as follows:

Wt = λd ∗W ′
t . (4)

In this way, the division weight is dynamically divided among

all its constituent tunnels. As shown by the example in

Figure 2, the sum of weights for CS tunnel 1 and tunnel 2

equals 3, which is equal to the division 2’s allocated weight.

Due to the impact of load balancing, in each tier of the

network, the share of bandwidth obtained by a tunnel is

statistically proportional to its weight. Since the sum of their

weights equals the global weight allocated to this division, the

division’s bandwidth share is achieved.
C. Private Congestion Control
Congestion Signal: SCC is completely transparent to the

upper layer transport protocols. The congestion signal for

objective-oriented scheduling is generated from the underlying

host send queue instead of the network. Each division tunnel

has full control of using its own congestion signal and control

law; it can either rely on existing objective-oriented transport

protocols, or directly schedule flows in the tunnel. The upper

transport protocols may enable ECN support, such as in

D2TCP, DCTCP and L2DCT. Note that in SCC, ECN bits are

used for division-level congestion control and before handing

over to upper layers, all ECN marks are removed. For this

scenario, SCC remarks the ECN bit based on concurrent queue

length and properties of flows inside the tunnel.

It requires no operation if the transport protocols rely on

round trip time. Otherwise, if the transport protocols rely on

packet drop, a queue length should be set (e.g., 100 packets).

Generate Reference Tunnel Weight and In-Tunnel Schedul-
ing: To optimize the performance objective, there are two

algorithm options for a particular division: (i) generate ref-

erence tunnel weight W ′
t according to contained flows, and

relies on upper layer transport protocols to schedule flows

inside the tunnel; and (ii) integrated design of both reference

tunnel weight and in-tunnel scheduling. We present our PCC

algorithms in Section IV. Note that SCC is a general ar-

chitecture: researchers can developed algorithms for different

objectives, or algorithms also target LS/DS/CS flows but with

better performance.
IV. PCC TUNNEL ALGORITHMS

In this section, our designs of tunnel algorithms, for D-

S/CS/LS divisions are presented. To optimize the performance

objective, we adopt an integrated design method of both

reference tunnel weight and in-tunnel scheduling. Even if

upper layer transport protocols are preferred to schedule flows

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

inside the tunnel, the reference tunnel weight algorithms can

still be used.

A goal of algorithms is that, for a division, using a datacen-

ter network exclusively, the control mechanism should achieve

comparable performance with and without SCC. Assume four

DS flows with the flow priority f1 > f2 > f3 > f4; f1
and f2 share the same tunnel, and f3 and f4 share the same

tunnel. Prior to SCC, and without the concern of coexistence,

all DS flows may compete independently. With SCC , now

f1/f2 tunnel competes with another tunnel that contains f3/f4.

This metric reflects the overhead/gain of SCC algorithms.

We omit the detailed proofs for the optimality of the

algorithms due to space limitation. The symbols used are listed

in Table I.

Ms(t) remaining data size for session s at time t
δs(t) remaining time till deadline for session s at time t
xs(t) requested source rate for session s at time t
Qs(t) buffer status for session s at time t
λs average data arrival rate for session s
Q∗

s target average queue length
BWreq(t) request from the host on the bandwidth at time t
BWres(t) response from the coordinator on thebandwidth at time t

τ decision slot duration

TABLE I
NOTATION TABLE

A. Deadline-Sensitive Tunnel
Deadline-sensitive flows require to transfer a flow of certain

size within a deadline. It is well known that for a single

flow session s with remaining size Ms and deadline δs, a

guaranteed bandwidth xs no less than Ms/δs can meet its

deadline. Therefore, SCC dynamically updates the required

minimum bandwidth of each DS tunnel based on the sizes

and deadlines of all active flows in the tunnel (step 1 and 2,

Algo. 1). This requirement is updated periodically (≈ msec).

Algorithm 1: Rate Control for DS Tunnel

1 At the beginning of each decision slot, the tunnel
2 Step 1: Updates the flow information, {Ms(t), δs(t)}
3 Step 2: Estimates the rates x∗

s(t) =
Ms(t)
δs(t)

and

BWreq(t) =
∑

s x
∗
s(t).

4 Step 3: Let W ′
t = BWreq(t), gets Wt from W ′

t , and set
BWres(t) = Wt.

5 In-tunnel scheduling
6 if BWreq(t) < BWres(t) then
7 Send data at x∗

s(t) calculated in Step 2.

8 else
9 Satisfy the first N(t) sessions {r(1), r(2), . . . , r(N(t))}

with
∑N(t)

s=1

Mr(s)(t)

δr(s)(t)
≤ BWres(t) and

∑N(t)+1
s=1

Mr(s)(t)

δr(s)(t)
> BWres(t), where r(s) = 1, 2, 3, . . .

and
Mr(1)(t)

δr(1)(t)
≤ Mr(2)(t)

δr(2)(t)
≤ Mr(3)(t)

δr(3)(t)
≤ · · · .

The tunnel responds to the allowed bandwidth, which may

or may not be equal to the required bandwidth (step 3,

Algo. 1). PCC can choose to either use or not use in-tunnel

scheduling algorithm, irrespective of the upper layer transport

protocols, . We demonstrate later in evaluation, that in-tunnel

scheduling can provide significant performance improvement,

which accredits to the flexibility of the SCC framework.

B. Completion-Sensitive Tunnel
The bandwidth sharing mechanism for CS tunnels is similar

to the DS tunnels, except that only flow sizes are used to

compute required bandwidth. To mimic the Shortest-Flow-

First (SFF) strategy, the inversion of flow size is used as each

flow’s weight (step 2, Algo. 2). Inside the CS tunnel, flows

are simply scheduled by SFF.

Algorithm 2: Rate Control for CS Tunnel

1 At the beginning of each decision slot, the tunnel
2 Step 1: Updates the flow information, {Ms(t)}
3 Step 2: Estimates the weight W ′

t =
∑

s 1/Ms(t).
4 Step 3: Gets Wt from W ′

t .
5 In-tunnel scheduling
6 Shortest-Flow-First

C. Latency-Sensitive Tunnel
For LS tunnels, the buffer length in the host/network queues

defines the flow latency. This algorithm considers queuing at

the end-hosts only, not from the switches in the network. We

rely on tunnel level UCC protocols to maintain switch queues

at a low-level, and an additional option is to put LS flows into

a higher physical queue.

PCC maintains small queues in the tunnel by using ECN

based notification. To compute bandwidth requirement, PCC

leverages insights from how existing transport protocols work.

For example, most of the existing datacenter transport proto-

cols start with initial congestion window of 10 packets (such

as DCTCP, L2DCT, etc.,), and to avoid timeouts, they need at

least one ACK per RTT. Therefore, we set average bandwidth

of a tunnel to be at least 10 × Nf , where Nf is the number

of LS flows in each tunnel. Additionally, we also consider the

queue size to determine the target rate for the LS flows as

listed in Algo. 3.

Algorithm 3: Rate Control for LS Tunnel

1 At the beginning of each decision slot, the tunnel
2 Step 1: Update the current queue status {Qs(t)}
3 Step 2: Estimates the rates

x∗
s(t) =

Qs(t)−εsQ
∗
s

τ
1 [Qs(t) > εsQ

∗
s] and

BWreq(t) =
∑

s x
∗
s(t).

4 Step 3: Let W ′
t = BWreq(t), gets Wt from W ′

t , and set
BWres(t) = Wt.

5 In-tunnel scheduling
6 if BWreq(t) < BWres(t) then
7 Send data at x∗

s(t) calculated in Step 2.

8 else
9 Satisfy the first N(t) sessions {r(1), r(2), . . . , r(N(t))}

with
∑N(t)

s=1

Qs(t)−εsQ
∗
s

τ
1 [Qs(t) > εsQ

∗
s] ≤ BWres(t) and

∑N(t)+1
s=1

Qs(t)−εsQ
∗
s

τ
1 [Qs(t) > εsQ

∗
s] > BWres(t),

where r(s) = 1, 2, 3, . . . and
Vr(1)(t) ≥ Vr(2)(t) ≥ Vr(3)(t) ≥ · · · with
Vs(t) = Qs(t) +Q∗

s − 2εsQ
∗
s .

V. TESTBED VERIFICATION

In this section, we first discuss SCC system implementation

and testbed evaluation. Then, we compare simulation results

to testbed results.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

 0

 10

 20

 30

 40

 50

CS-Only CS+DS CS+DS+LS

AF
C

T
(m

s)

SCC
L2DCT

(a) CS flows

 0
 5

 10
 15
 20
 25
 30

DS+CS DS+CS+LS

D
ea

dl
in

es
 M

is
se

d
(%

)

SCC
D2TCP

(b) DS flows

Fig. 3. Testbed Results w/ & w/o SCC.

System Implementation: We implement the SCC shim layer

as a Netfilter kernel module in Linux. Two hash based flow

tables, one for send and one for receive, are used for packet

classification and for tracking per-flow state. To enforce accu-

rate rates over short timescales, we use Linux high-resolution

kernel timer, HRTIMER, for our rate limiters.
At the sender, we use the LOCAL OUT hook to intercept

all outgoing packets to enforce virtual tunnel abstraction. To

support ECN, the ECN-capable (ECT) codepoint is marked in

every packet’s IP header. The packet is then forwarded to a

rate limited per-tunnel queue.
At the receiver end, we use the LOCAL IN hook to

intercept all incoming packets. Each packet is matched against

the receive table, and its ECN bit is checked. The receiver

shim layer calculates the fraction of ECN marking packets

and delivers this information back to the sender that uses

it to perform tunnel-level congestion control. We have not

implemented in-tunnel algorithms for the testbed.
Testbed Experiments: For Testbed experiments, we use a

single rack with 16 DELL servers (with 1G NICs) and PICA-

8 Gigabit switch with ECN support enabled. For evalua-

tion, we consider three kind of traffic, latency-sensitive (D-

CTCP), deadline-sensitive (D2TCP) and completion-sensitive

(L2DCT). We use same settings as Base-DS, Base-LS and

Base-CS for each traffic.
First, we consider CS application in isolation, with and

without SCC support. Flows are generated such that it incurs

an average load of 400 Mbps (low load). Figure 3(a) (i.e.
only scenario) shows that performance of CS flows remain the

same with or without SCC support in this scenario. The reason

is that, in a network with low load, flows do not experience

interference and finish quickly.
Next, we consider coexistence of CS/DS (medium load) and

CS/DS/LS (high load) flows in the network. With SCC support

enabled (Figure 3(a)), the AFCT of L2DCT flows is improved

by 17%, 53% for CS/DS and CS/DS/LS coexistence scenarios,

respectively. With SCC, deadline missing of DS flows is

reduced by 2×, 1× for CS/DS and CS/DS/LS coexistence

scenario, respectively.
Verification using Simulations: In this section, we verify

NS2 simulations via testbed results, when the CS and DS

flows coexist in the network, under the motivation example

scenario. We use same settings as Base-DS, and Base-CS for

each application and vary network load. In this scenario, as

shown earlier, DS flows and CS flows experience degraded

performance (Fig. 1(c) and (d)). Figure 4 shows that with SCC

support, fewer flows miss their deadlines, more specifically,

 20

 40

 60

 80

 100

Low Medium High

D
ea

dl
in

es
 M

is
se

d
(%

)

Network Load

SCC
D2TCP

(a) DS

 10
 20
 30
 40
 50
 60
 70

Low Medium High

AF
C

T
(m

se
c)

Network Load

SCC
L2DCT

(b) CS

Fig. 4. Performance under CS/DS coexistence scenario

at higher loads, we observe 4× performance improvement

compared to when D2TCP is used. Similarly, completion time

of flows is improved by 5x at higher loads. This is due

to the in-queueing at the end-hosts and the adaptive ECN

marking at shim layer. We observe similar performance trends

as testbed at low and medium loads, while simulations show

better improvement at higher loads.

VI. LARGE-SCALE NS-2 SIMULATIONS

Our evaluation addresses the following questions:

• Can SCC improve the performance of different flows
when they coexist? We evaluate the scenarios where flows

with different performance objectives coexist in the data

center network. SCC is able to meet the requirements

of objectives like CS, DS or LS simultaneously across a

wide range of workloads such as Web-search [12], Data-

mining [39] and MapReduce [40]. SCC improves perfor-

mance by up to 3.2× for DS flows and 40% for CS flows

as compared to state-of-art protocols like pFabric [6].

• Can SCC achieve the same or even better performance
when only flows of the same objective exist in the
network? In our evaluation, we show that SCC can achieve

similar or better performance for protocols when they exist

in the network alone. At high loads, SCC can reduce the

deadline miss rate by up to 2× and achieve similar AFCTs.

• Does SCC consistently perform well? We test SCC

performance in oversubscribed settings and with different

transport protocols. The results demonstrate that with SCC

enabled, most protocols deliver better performance.

Evaluation Setup: We use a Clos topology for NS2 simula-

tions, unless specified otherwise. The capacity of edge links is

1 Gbps and core links is 10 Gbps. We assume ECN capable

switches with 250 KB buffering and maximum end-to-end

RTT of 300 usec [8].

We model two traffic classes. Class-I traffic belongs to

deadline-sensitive small message application and requires

deadline guarantees. Class II traffic is similar to Class-I, but

has different objective than deadline, such as minimizing flow

completion times or latency-guarantees. We replicate Web-

search [12], Data-mining [39] and MapReduce [40] workloads

for Class-I and Class-II traffic. This setting coarsely models

the workload for OLDI applications and distributed storage.

In our experiments, deadline-sensitive traffic uses

D2TCP [17], latency-sensitive uses DCTCP [12], and

completion-sensitive traffic uses L2DCT [20] transport

protocol at the endhosts. We use default parameters, from

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

 5
 10
 15
 20
 25
 30
 35

Low Medium High

D
ea

dl
in

es
 M

is
se

d
(%

)

Network Load

SCC w in-Tunnel
SCC w/o in-Tunnel

(a) DS flows

 5

 10

 15

 20

Low Medium High

AF
C

T
(m

se
c)

Network Load

SCC w in-Tunnel
SCC w/o in-Tunnel

(b) CS flows

Fig. 5. Benefits of In-tunnel algorithm

 0

 50

 100

 150

 200

CS Flows DS Flows
 0

 5

 10

 15

 20

 25

AF
C

T
(m

se
c)

D
ea

dl
in

e
M

is
se

d
(%

)SCC
L2DCT
D2TCP

(a) CS and DS

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

lo
w

s
(c

df
)

Time (msec)

SCC
L2DCT

(b) CDF of CS flows

Fig. 6. Coexistence of CS/DS/LS flows with datamining workload

respective papers, for each of the protocol. The applications

generate traffic according to a poisson process, such that the

average bandwidth requirement of each class is 300 Mbps to

meet its requirements. For deadline flows, the deadlines are

exponentially distributed using guidelines from [20].
A. Comparison in Coexistence Scenario

In this section, we evaluate the impact of interference, on ap-

plication performance, when flows with different performance

objectives coexist in the network.

Coexistence Performance w/o In-Tunnel Algorithms: In this

section, we show the benefits of using in-tunnel scheduling

algorithms on top of objective-tunnel scheduling mechanism.

To illustrate the benefits, we reuse the simulation setup of

motivation example and show the performance when DS

and CS flows coexist in Fig. 5. As shown in Figure 5(a),

the deadline miss ratio of DS flows reduces by up to 8%

when in-tunnel scheduling is used. Similarly, as shown in

Figure 5(b), the AFCT performance of CS flows reduces by

up to 6% when in-tunnel scheduling is used. This shows that

simple in-queue scheduling can further provide benefits on

top of the tunnel level abstraction. We observe similar gains

in other scenarios. In all other experiments, we use in-tunnel

scheduling algorithms.

Coexist-LS/DS/CS Performance: In the first setup, we

consider data-mining workload and assume that the flows of

the three objectives (i.e., latency-sensitive, deadline-sensitive

and completion-sensitive) coexist in the network. The aggre-

gate workload generated by traffic from three objectives is

900 Mbps, generating 90% network load. Figure 6 shows

that when the three objectives coexist without SCC support,

they affect each other’s performance. Data-mining workload

is more skewed and more than 80% of the flows are less than

2 KB, SCC completes 3.2× more flows than without SCC, in

Figure 6(a). SCC mitigates network interference and improves

the AFCT by 40% compared to network without SCC support,

in Figure 6(b). SCC, improves latency of latency-sensitive

flows’ by up to 40%. We omit results due to space limitation.

 0
 5

 10
 15
 20
 25
 30
 35

DS/LS DS/CS DS/DS

D
ea

dl
in

e
M

is
se

d
(%

)

SCC
D2TCP

(a) DS

 0

 50

 100

 150

 200

 250

CS/LS CS/DS CS/CS

AF
C

T
(m

s)

SCC
L2DCT

(b) CS

Fig. 7. Coexistence with Data-mining workload

Coexistence performance of different objectives also hurts

in the presence of interference traffic without SCC. To evaluate

the impact of interference, we consider same settings as above

and use Data-mining workload. When coexisting, DS flows

miss lots of deadlines because of interference in Figure 7(a).

While coexistence with CS and LS flows, SCC reduces the

deadline miss ratio by up to 3×. When coexisting, CS perfor-

mance affects more in the presence of DS flows in the network,

in Figure 7(b). However, when coexisting with only LS flows,

the AFCT is not degraded. The reason is that there is sufficient

capacity available in the network and flows do not experience

queuing delays.

Comparison with State-of-the-Art: We also compare the

SCC performance with state-of-the-art protocols such as pFab-

ric [6] that consider the coexistence of different objectives like

CS/DS. We consider coexistence of CS and DS flows using

data-mining workload and each application generates 40%

load in the network. For pFabric, we assign high priority to DS

flows as compared to the CS flows. Figure 8(a) shows that SCC

improves the performance of the CS flows by 30%, compared

to pFabric. However, SCC misses 2% more deadlines for DS

flows. This is expected as, in this scenario, SCC does not

enforce any specific prioritization policy in the network.

B. Comparison in Policy Enforcement

In this section, we consider the coexistence performance of

same tenants or objectives but with constraints on the available

network bandwidth and weight. We consider two tenants

(A and B) with DS objective and both the tenants require

600 Mbps bandwidth to meet the deadline requirements of

their applications. We assume that tenant A has more priority

in the network, thus operator assigns more bandwidth to A

and assigns rest of the available bandwidth to the tenant B.

Figure 8(b) shows that SCC meets almost all the deadlines of

Tenant A, however, the performance degrades for Tenant B.

SCC meets more deadlines for both the Tenants combined.

 0

 50

 100

 150

 200

CS Flows DS Flows
 0

 5

 10

 15

 20

AF
C

T
(m

se
c)

D
ea

dl
in

e
M

is
se

d
(%

)SCC
pFabric

(a) pFabric

 0

 10

 20

 30

 40

 50

Tenant A Tenant B

D
ea

dl
in

es
 M

is
se

d
(%

)

SCC
D2TCP

(b) Admin policy

Fig. 8. Comparison under Data-mining workload

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

C. Comparison in Isolation Scenario
In this setup, we evaluate performance of SCC for deadline-

sensitive and completion-sensitive objectives when they have

exclusive access to the network and compare it to the per-

formance of D2TCP and L2DCT protocols respectively. The

goal is to evaluate if, in the absence of coexistence, SCC can

achieve similar performance as the transport protocols across

a range of network loads. We use data-mining workload and

use same network setup as in section VI.

For deadline-sensitive applications, SCC meets more dead-

lines across all the network loads and reduces the deadline

missing by up to 2.5× (Figure 9(a)). This shows that SCC

not only eliminates interference among flows of different

objectives, but also improves performance via the abstraction

of objective-tenant congestion-free tunnel.

For completion-sensitive applications, SCC minimizes the

AFCT and achieves performance similar to L2DCT, as shown

in Figure 9(b). SCC achieves similar performance as L2DCT at

low loads and improves AFCT at higher loads by eliminating

the inter-flow interference via its priority sub-queues.

D. SCC Dynamics
In this section, we evaluate SCC performance under differ-

ent workloads, network oversubscription, different transport

protocols, and strict priority.

Coexist-LS/DS/CS Performance under different workload-
s: Next, we evaluate CS/DS/LS co-existence performance

under different workloads in the network. The aggregate work-

load generated by traffic from three objectives is 900 Mbps,

generating 90% network load.

Figure 10 shows that when the three objectives coexist

without SCC support, they affect each other performance.

SCC, reducers AFCT of CS flows’ by up to 40%, 24%, 32%
for Data-mining, Web-search, and MapReduce Figure 10(a).

SCC reduces deadline missing ratio by 3.2×/1.8×/0.8× for

the Data-mining, Web-search, and MapReduce workloads re-

 0
 5

 10
 15
 20
 25
 30

 10 20 30 40 50 60 70 80

D
ea

dl
in

e
M

is
se

d
(%

)

Load (%)

SCC
D2TCP

(a) DS flows’ missed deadline

 0
 20
 40
 60
 80

 100

 10 20 30 40 50 60 70 80

AF
C

T
(m

s)

Load (%)

SCC
L2DCT

(b) CS flows’ AFCT

Fig. 9. Isolation scenario.

 0

 300

 600

 900

 1200

 1500

DataMin. W.Search MapRed.

AF
C

T
(m

s)

SCC
L2DCT

(a) AFCT of CS flows

 0
 10
 20
 30
 40
 50
 60
 70

DataMin. W.Search MapRed.

D
ea

dl
in

e
M

is
se

d
(%

) SCC
D2TCP

(b) missed deadline of DS flows

Fig. 10. Coexistence with and without SCC support for different workloads

 0

 20

 40

 60

 80

 100

CS Flows DS Flows
 0

 5

 10

 15

 20

AF
C

T
(m

se
c)

D
ea

dl
in

e
M

is
se

d
(%

)SCC
L2DCT
D2TCP

(a) Over-subscribed

 0

 100

 200

 300

 400

 500

CS Flows DS Flows
 0

 10

 20

 30

 40

 50

AF
C

T
(m

se
c)

D
ea

dl
in

e
M

is
se

d
(%

)SCC
L2DCT
D2TCP
DCTCP

(b) Different transport

Fig. 11. SCC Dynamics.

 0

 20

 40

 60

 80

 100

CS Flows DS Flows
 0

 5

 10

 15

 20

AF
C

T
(m

se
c)

D
ea

dl
in

e
M

is
se

d
(%

)SCC w/o prio que.
SCC w/ prio que.

(a) CS/DS

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2

In
st

an
ta

ne
ou

s
R

TT
 (m

s)

Time (sec)

LS w/o prio que
LS w/ prio que

(b) LS latency

Fig. 12. Objective isolation using priority queues

spectively, Figure 10(b). We observe similar trends for Web-

search and MapReduce workloads.

Over-subscribed Network Scenario: We evaluate SCC on a

3:1 oversubscribed network. In this topology, we have 4 ToR

switches, each connecters to 30 hosts with 1 Gbps links and

connects to core switches using 10 Gbps links. We generate

east-to-west traffic: all traffic is inter-rack. Note that load is

calculated based on network core load compared to previous

scenarios, where the load was generated based on the edge

links. We consider three applications, CS, DS and LS in the

network. All the flows follow the Web-search workload and

have average network load of 300 Mbps each. Figure 11(a)

shows that SCC reduces AFCT of CS flows by 20% and

reduces deadline missing ratio of DS traffic only marginally.

Different Transport Protocol: Figure 11(b) shows that even

with DCTCP as transport protocol, SCC improves the appli-

cation performance compared to the original protocols. The

AFCT of CS flows improves by 3× as these flows get equal

share of the network bandwidth as DS flows. DCTCP is more

aggressive in increasing rate than the L2DCT, for large flows

DCTCP increases congestion window by 1 pkt/RTT whereas

L2DCT increases by the factor k, where k ∈ 0.5, 1, which

depends on the flow size. The performance of DS flows

is also better than D2TCP protocol, however, the deadline

performance degrades compared to the scenario where SCC

uses D2TCP as the transport protocol. The reason is that now

both CS and DS flows share network fairly and benefits of

D2TCP at the transport layer are lost.

Isolating Tenants using Priority Queues: In this section, we

compare and contrast the tradeoffs of using priority queues

inside the switches, to isolate LS flows from other objectives

to meet its requirements. To illustrate the benefits, we consider

a network with two priority queues and coexistence of LS,

DS and CS flows. Here, LS flows are mapped to the higher

priority queue and CS/DS flows share the lower priority queue.

Figure 12(a) shows that the performance of DS and CS flows is

hurt a little when LS flows are prioritized over them. However,

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

latency requirements of LS flows are better met when strict

priority is enforced in switch queues, in Figure 12(b).

VII. CONCLUSIONS

There exist two kinds of stakeholders in a datacenter net-

works: the tenants and the administrators. An individual ten-

ant’s congestion control tries to achieve its own performance

objective. With a global view of the network, the adminis-

trators need to maximize its utility function. In this paper,

we provide a framework to decouple the congestion control

among different performance objectives, from the congestion

control among flows with the same objective. This work

demonstrate that simple solutions can be adopted to eliminate

the interference among different performance objectives and

different tenants. This work is inspired by the Application-

Driven Network (ADN) [41].

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for

their valuable comments. This work is partially supported by

the National Natural Science Foundation of China under Grant

Numbers 61602194, 61402198, 61472184 and 61321491, the

National Science Foundation under Grant Numbers CNS-

1318563, CNS-1524698, CNS-1421407, and IIP-1632051, the

Collaborative Innovation Center of Novel Software Technol-

ogy and Industrialization, and the Jiangsu Innovation and

Entrepreneurship (Shuangchuang) Program.

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, 2013.

[2] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and
C. Yan, “Speeding up distributed request-response workflows,” in ACM
SIGCOMM 2013.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in in ACM SIGOPS 2007.

[4] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
in Proc. of the VLDB 2010.

[5] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: fast data analysis using coarse-grained distributed
memory,” in ACM SIGMOD 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,” in
ACM SIGCOMM 2013.

[7] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in Proc. ACM SIGCOMM 2012.

[8] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar,
“Friends, not foes: synthesizing existing transport strategies for data
center networks,” in ACM SIGCOMM 2014.

[9] N. Farrington and A. Andreyev, “Facebook data center network archi-
tecture,” in IEEE Optical Interconnects Conf. Citeseer, 2013.

[10] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” in Proc. ACM SIGDC 2015.

[11] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in NSDI, 2011.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in in
Proc. ACM SIGCOMM 2011.

[13] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in NSDI. USENIX, 2012, pp. 19–19.

[14] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message latency in the cloud,” in in Proc. ACM SIGDC, 2015.

[15] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,
S. Hand, and J. Crowcroft, “Queues don’t matter when you can jump
them!” in NSDI. USENIX, 2015.

[16] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIGCOM-
M, 2011, pp. 50–61.

[17] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in ACM SIGCOMM, 2012, pp. 115–126.

[18] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang, “Guaranteeing deadlines for inter-datacenter transfers,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 20.

[19] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail:
reducing the flow completion time tail in datacenter networks,” in ACM
SIGCOMM, vol. 42, no. 4, 2012, pp. 139–150.

[20] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, “Minimizing flow completion times in data centers,” in in
Proc. IEEE INFOCOM, 2013.

[21] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized zero-queue datacenter network,” in ACM SIGCOMM.

[22] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
agnostic flow scheduling for commodity data centers,” in NSDI.
USENIX, 2015.

[23] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat,
Y. Wang, D. Wetherall, D. Zats et al., “Timely: Rtt-based congestion
control for the datacenter,” in Proc. ACM SIGDC 2015.

[24] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “phost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proceedings of the CoNEXT, 2015.

[25] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan, “No
silver bullet: extending sdn to the data plane,” in in ACM HotNets 2013.

[26] G. Judd, “Attaining the promise and avoiding the pitfalls of tcp in the
datacenter,” in USENIX NSDI 2015.

[27] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “scheduling mix-flows in
commodity datacenters with karuna,” in ACM SIGCOMM, 2016.

[28] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in ACM CoNext 2010.

[29] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks,” in WIOV, 2011.

[30] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim, and
A. Greenberg, “Eyeq: practical network performance isolation at the
edge,” in NSDI. USENIX, 2013.

[31] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: practical work-conserving bandwidth guarantees
for cloud computing,” in ACM SIGCOMM 2013.

[32] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in datacenters,”
in ACM SIGCOMM. ACM, 2014, pp. 467–478.

[33] S. Hu, W. Bai, K. Chen, C. Tian, Y. Zhang, and H. Wu, “Providing band-
width guarantees, work conservation and low latency simultaneously in
the cloud,” in Proceedings of infocom, 2016.

[34] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentralized
task-aware scheduling for data center networks,” in ACM SIGCOMM.

[35] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: sharing the network in cloud computing,” in
ACM SIGCOMM 2012.

[36] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, 2015.

[37] A. Munir, I. A. Qazi, and S. Bin Qaisar, “On achieving low latency in
data centers,” in ICC. IEEE, 2013, pp. 3721–3725.

[38] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and S. Kat-
ti, “Numfabric: Fast and flexible bandwidth allocation in datacenters,”
in ACM SIGCOMM 2016.

[39] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible
data center network,” in ACM SIGCOMM 2009.

[40] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evaluating
mapreduce performance using workload suites,” in IEEE MASCOTS’11.

[41] Y. Wang, D. Lin, C. Li, J. Zhang, P. Liu, C. Hu, and G. Zhang, “Appli-
cation driven network: providing on-demand services for applications,”
in ACM SIGCOMM 2016 Poster.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

