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Chapter 16

SINGLE NUCLEOTIDE POLYMORPHISMS AND
THEIR APPLICATIONS

Rudy Guerra and Zhaoxia Yu

Department of Statistics, Rice University, Houston, Texas, USA

1. Introduction

Biotechnology has had a tremendous impact on modern biology, espe-
cially molecular biology and genetics. Available now are genetic data of
various types and resolution, including DNA sequence, genotype, haplo-
type, allele-sharing, gene expression, and protein expression. In addition
to making these data available, biotechnology has also made possible high-
throughput assays that can generate a large amount of data. A prime exam-
ple is microarray technology that allows for RNA expression measurement
on thousands of genes simultaneously. An important use of measured ge-
netic data is in finding polymorphisms that underlie human disease, such
as asthma, diabetes, and Alzheimers, among others. To this end, one of the
most popular types of genetic data comes in the form of single nucleotide
polymorphisms (SNPs), which are estimated to occur every 600-1000bp in
the human genome. In this chapter we give general background on SNPs
and their application in genetic association studies and haplotype recon-
struction. References to SNP databases and application software are also
given. The main context is human genetics.

A few of the more important definitions and concepts necessary for the
discussion are given below for easy reference.

Allele Variant of a DNA sequence at a specific locus on a single chro-
mosome, usually in reference to a gene or genetic marker.

Genotype Paired alleles of a fixed locus on homologous chromosmes.

Haplotype Allelic combination of different loci (markers, genes) on the
same chromosome.
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Genetic Polymorphism DNA sequence variation, typically at loci such
as SNPs and sequence repeats across individuals.

Genetic Marker A segment of DNA with an identifiable physical lo-
cation on a chromosome and whose inheritance can be followed.
A marker can be a gene, or it can be some section of DNA with
no known function. [NHGRI]

Genetic Linkage The association of genes on the same chromosome.
Two genes on the same chromosome are said to be linked. A common
measure of association between two linked genes is the recombina-
tion fraction.

Understanding the genetic basis of phenotypes, including diseases,
requires an appreciation and understanding of genetic polymorphisms.
Indeed, polymorphisms known as mutations contribute to many diseases
and being able to detect sequence differences between normal and diseased
individuals is an important step in understanding the genetics of diseases.
The Human Genome Project has generated and catalogued various classes
of genetic polymorphism which can be used to investigate genomic varia-
tion across individuals or groups of individuals. The largest class is the sin-
gle nucleotide polymorphism, accounting for approximately 90% (Collins
et al. 1998) of naturally occurring human DNA variation. The following
definition of a SNP is due to Brookes (1999):

SNP: Single base pair positions in genomic DNA at which different
sequence alternatives (alleles) exist in normal individuals in some popula-
tion(s), wherein the least frequent allele has an abundance of 1% or greater.

The popular working defintion of a SNP is a diallelic marker, but
according to the above definition this is somewhat misleading (Brookes
1999). Nevertheless, there seems to be little harm in using the popular de-
finition, by which a SNP is defined by two alleles, say A and G, at a spe-
cific location. Individuals would therefore be one of three genotypes, AA,
AG, GG. It is important to remember that DNA is double-stranded and,
thus, the complementarity of DNA would seem to indicate that all four
nucleotides are present at the base-pair location since A and G individu-
als carry a T and G, respectively, on the complementary strand. However,
in defining a SNP only one of the two complementary strands (Watson or
Crick) is used.The typical frequency with which one observes single base
differences in genomic DNA from two equivalent chromosomes is on the
order of 1/1000bp (nucleotide diversity). The typical frequency of SNPs in
a whole population is about 1/300bp. By screening more individuals (more
chromosomes) more base differences can be found, but the nucleotide
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diversity index remains unchanged. SNPs are estimated to occur about
once every 1000bp although SNP density can vary by as much as 100-
fold across the human genome (Brooks 1999). SNPs are found throughout
the entire genome, including pormotors, exons and introns. However, since
less than 5% of a person’s DNA codes for proteins, most SNPs are found
in non-coding sequences. The most common (2/3) SNP type is defined by
alleles C and T.

Although there is much promise and hope in using SNPs for the identifi-
cation of genes that determine (complex) diseases, many questions remain
as to how to best use SNP data for this purpose. One common approach
is the case-control study design in which the respective SNP patterns are
compared (see below). This is reasonable for candidate genes or a rela-
tively small collection of SNPs, but the ideal situation would be to compare
large numbers of cases to controls with a dense set of SNPs over the en-
tire genome. To achieve this, however, will require ultra-high-throughput
assays (Isaksson et al. 2000) to discover, score, and genotype SNPs and
such technologies are now being introduced, including Dynamic Allelic-
Specific Hybridization (DASH) (Prince et al., 2001), reduced represen-
tation shotgun (RRS) sequencing (Altshuler et al., 2000), MALDI-TOF
mass-spectrometry (e.g., Bray, Boerwinkle, and Doris, 2001), and SNP
microarrays (e.g., Matsuzaki, 2004).

The identification and cataloguing of SNPs began in earnest with the
Human Genome Project (Collins et a., 1998) and continues today. Be-
ginning in the late 1990’s several private efforts, such as Genset, Incyte
and Celera, began to identify and build SNP databases. To ensure publicly
available data for the scientific community major efforts were initiated by
the National Institutes of Health (NHGRI), The SNP Consortium (TSC),
and the Human Genome Variation database (HGVbase) (Brookes et al.,
2000, Fredman et al., 2002). In 2001 The SNP Consortium (The Interna-
tional SNP Map Working Group, 2001) reported 1.4 million SNPs in the
human genome, with an average density of one SNP every 1.9kb. Along
with many other sources, these data were eventually deposited to a pub-
lic SNP database, dbSNP (Sherry et al. 2001), maintained by the National
Center for Biotechnology Information (www.ncbi.nlm.nih.gov/SNP/). As
of this writing dbSNP reports (Build 122) 8.3 million SNPs in the human
genome with a density of about 28 SNPs per 10kb. dbSNP also provides
databases for other organisms, including mouse, rat, chicken, zebrafish,
and the malaria parasite, among others. To facilitate research NCBI pro-
vides cross-annotation with resources such as PubMed, GenBank, and
LocusLink. dbSNP is also included in the Entrez retrieval system for in-
tergrated access to a number of other data databases and software tools.
Several SNP databases continue to be available (e.g, HGVbase), but it
appears that dbSNP will serve as the main public repository of SNPs.



et —

H/J-Séh/@y T

“Chl6” — 2005/9/4 — 12:16 — page 312 — #4

312 COMPUTATIONAL GENOMICS

The information provided by the SNP databases is a very important
and valuable resource for research. Nevertheless, their usefulness is de-
termined by quality and coverage. Since there are literally hundreds of
sources that deposit SNP information into the databases, issues of qual-
ity are particularly important. The heart of the matter is whether or not a
submitted SNP is real. Related issues concern SNP distribution relative to
genic and non-genic regions, the allele-frequency spectrum of the SNPs,
and frequency differences among racial groups. To address these and other
related issues the public databases make some provisions for quality con-
trol and validation. In an independent study of public databases, Jiang et al.
(2003) compared records in dbSNP and HGVbase to their own database of
SNPs in pharmaceutically relevant genes (promotors, exons, introns, exon-
intron boundary regions). Of the 126,300 SNPs in 6788 genes from their
database, Jiang at af. matched 22,257 SNPs to HGVbase and 27,775 SNPs
to dbSNP. The Jiang et al. SNPs were found by resequencing a standard
cohort of 70 unrelated individuals comprising four major ethnic groups.
Jiang et al. were able to verify that 60% of the public SNPs with minor al-
lele frequencies greater than 1% were real. The remainder are thought to be
of very low frequency, mismapped, or not polymorphic. No sampling bias
was found with respect to ethnicity at high frequency SNPs. Jiang et al. re-
port on seven other similar studies with confirmations ranging from 45% to
95%. Factors that differed among the studies include sample size (number
chromosomes), SNP detection methods, and genome coverage. Remark-
able are two studies (Mullikin et al. 2000, t al. 2000) that each re-
port 95% confirmation (Mullikin: 74/78 SNPs; Altshuler: 216/227 SNPs)
using the reduced representation shotgun sequencing technique (Altshuler
et al. 2000). The general advice is to carefully consider the sources of
any SNPs extracted from the public databases. With careful scrutiny these
public databases serve to provide a wealth of polymorphisms.

SNPs can be used for a variety purposes in both basic and applied re-
search, ranging from theoretical population genetics to genetic counseling.
In this article we focus on their use in genetic association studies and hap-
lotype block reconstruction, both of which are used to help localize disease
susceptibility genes. Readers interested in recombination, linkage disequi-
librium, mutation, population admixture, estimation of population growth
rates, and other aspects of population genetics and evolutionary history are
referred to papers by Nielsen (2000), Pritchard and Przeworski (2001), Li
and Stephens (2003), and Zhao et al. (2003), among others.

2. SNPs and Genotype-Phenotype Association

In many situations geneticists understand enough about a biological pro-
cess that they can identify specific genes that may in part determine the



“Chl16” — 2005/9/4 — 12:16 — page 313 — #5

Single Nucleotide Polymorphisms and their Applications 313

trait. Total cholesterol, for example, is a genetic trait and much is known
about how cholesterol gets in and out of the bloodstream, its role in coro-
nary artery disease, and its relationship with environmental factors (e.g.,
diet and exercise). See, for example, Rader, Cohen and Hobbs (2003) for
a recent review of developments in the molecular pathogenesis and treat-
ment of monogenic forms of severe hypercholesterolemia. In cases such as
this biomedical researchers can statistically analyze SNPs within candidate
genes for their possible association (correlation) with the trait of interest.
The possible relationship between a fixed locus and a phenotype has
traditionally been studied with family data using genetic linkage analysis
(Ott, 1999). In this approach the idea is to estimate through genetic re-
combination the physical or genetic distance between a given locus and a
putative trait locus: genetic markers that co-segregate with disease status
provide evidence of a nearby trait locus. One limitation of genetic linkage
is that the resolution of physical distance is on the order of megabases,
whereas genetic association methods are believed to have detection lev-
els on the order of kilobases (Risch and Merikangas, 1996; Kruglyak,
1999). In contrast to genetic linkage analysis, association analysis can be
based on population data (unrelateds) or family data. In a population based
case-control design an association analysis evaluates the null hypothesis
of equal genotypic distributions between cases and controls. If the trait
is continuous a one-way analysis-of-variance can be used to evaluate a
null hypothesis of equal means across the three genotypes at a SNP locus.
Analogous tests can be conducted using alleles or haplotypes. If a signifi-
cant association is detected the conclusion is that the given marker locus is
in linkage disequilibrium (Section 4.1 below) with a susceptibility locus.

Genetic Case-Control Study Assumptions

a. There is a binary trait that defines cases and controls.

b. A random sample of n unrelated cases and a random sample of m
unrelated controls are collected. The cases are independent of the
controls.

c. A discrete risk factor that is obtained retrospectively is available for
each case and control. In genetic studies the risk factor is usually
defined by a set of alleles or genotypes of a genetic marker or
gene.

To formalize the genetic case-control study we make the following typi-
cal assumptions for a binary trait that defines cases and controls.
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Detailed discussion of case-control study design and analysis for genotype-
phenotype associations are given in Khourny et al., (1993).

In this setting the numbers of cases and controls are fixed and the allele
or genotype counts within cases and controls are random. The comparison
can be viewed as a test of homogeneity, whereby the distributions of case
and control counts are assumed equal under the null hypothesis. Table 16.1
shows a generic contingency table for genotype counts corresponding to a
SNP with alleles, A and B. This approach is not unique to SNPs since any
genetic marker defined by two alleles or two allelic classes can be similarly
analyzed. The first row shows case counts rg, 1, and r2 corresponding to
genotypes with 0, 1, or 2 B-alleles, respectively, and sample size n =
ro + ri + r2. Similarly, m = so + 51 + s2 for the control sample in the
second row. The total sample size is N = n + m.

The natural pairing of alleles as genotypes makes the above case-control
genotype table a basis for preliminary analysis. However, other table struc-
tures are possible. If one considers the fact that the alleles at a given locus
are inherited from two different parents the data may be viewed as 2N in-
dependent observations, instead of the usual sample size of N. In this case,
each individual contributes two alleles to the counts as in Table 16.2. Cases
have 2rg+r; A-alleles since each A A individual contributes two A-alleles
and each AB individual contributes one A-allele. The other counts are
similarly calculated. This distribution of counts also corresponds (Lewis

___.———2002) to a multiplicative model with a k-fold increased risk for AB and an
% 2 er increased risk for BB.

Table 16.1. Case-control genotype
counts.

AA AB BB Total

Case ro r r n
Control  sg 5] 52 m
Total ng nj ny N

Table 16.2. Case-control allele distribution,

A B Total
Case 2rg + 1) 2ry + 1 2n
Control  2sg + 51 253 + 51 2m
Total ny+2ng ny+2np 2N
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Table 16.3. Case-control dominance
distribution.

AA AB+ BB Total

Case ro ry+nr n
Contro} s 51+ 59 m
Total ng ny +ny N

A third tabulation of the counts is given in Table 16.3, where interest is
in having allele B or not. Therefore, AB and BB genotypes are indistin-
guishable as far as the analysis is concerned. This exactly corresponds to
an assumption of the B-allele being dominant to the A-allele, or equiva-
lently, the A-allele being recessive to the B-allele. It is also an appropriate
formulation when one is unable to distinguish the BB homozygote from
the AB heterozygote, as was common, for example, when HLA typing
was done by serology (Sasieni, 1997).

In all three approaches a standard chi-square test can be used to com-
pare the observed counts to expected counts under a null hypothesis of
equal distributions between cases and controls. A test of homogeneity to
compare the case genotype distribution to the control genotype distribution
in Table 16.1 is accomplished with the statistic,

6 2
(0; — E) 2
X% = E e~
= E; X

where the summation is over all six cells, O; are the observed counts, and
E; are the expected counts. If cell i is defined by row j and column &, then
E ji is calculated as R;jCy /(n+m), where R and Cy are row j and column
k counts, respectively. The X? statistic has an asymptotic chi-square dis-
tribution with two degrees of freedom. As an asymptotic distribution the
usual precautions regarding sample sizes should be kept in mind (Agresti,
1990). The genotype data in Table 16.1 can also be analyzed under an addi-
tive model assumption where an r-fold increase in risk is associated with
the AB genotype and a 2r increased risk with the BB genotype (Lewis
2002). This is also viewed as a “dosage-effect” analysis and the test can be
performed with Armitage’s trend test (Armitage 1955; Agresti 1990). The
other two scenarios can be similarly analyzed with Tables 16.2 and 16.3
having 1 df in the y? test.

Sasieni (1997) gives an excellent discussion of the interpretation and
comparison of these three approaches to analyzing genetic case-control
studies. Using the AA homozygote as the reference group, the genotype
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Table 16.4. Case-control odds ratios.

Table Odds ratio Estimator
16.1 Whet s

16.1 Yhom %%(21

16.2 Vallele %ﬂ—;}%—;@:ﬂ%
16.3 Wsero il

counts allow for two 2-by-2 table odds ratios, another is available from the
allele counts, and the “serological” table provides a fourth odds ratio as
shown in Table 16.4.

The distinction between w,ie1. and ysero is particularly important. The
serological odds ratio, w;.,, compares the odds of disease in subjects with
either an AB or BB genotype, that is, exposure to at least one B allele, to
that in A A subjects. The comparison is ultimately at the genotype level and
there is no need to make a dominance assumption, equating risk of disease
between B B homozygotes and A B heterozygotes. The allelic odds ratio,
on the other hand, is a comparison at the allelic level. In the situation where
the allele of interest (B) is rare, w01, approxjmates the relative gene fre-
quency in cases and controls. Sasieni (1997 premarks about the difficulty of
interpreting wyise1. as it is hard to imagine the risk of an allele developing
the disease, and thus generally recommends against using the allelic odds
ratio. Under the null hypothesis of no association betweeen the disease
and the genetic locus, chi-square statistics associated with genotype and
serological data are both asymptotically 2 with 1 df, and they are locally
most powerful under certain assumptions. Factors that affect the chi-square
test include Hardy-Weinberg equilibrium and co-dominance of the allele
of interest. Additional discussion is given by Lewis (2002), including the
important topic of population stratification that can lead to false-positive
associations.

3. SNPs, Haplotypes and Genetic Association

Association studies attempt to take advantage of linkage disequilibrium,
which exists at small genetic distances. Thus, one has to be quite lucky
to come upon a single SNP that is in LD with a trait locus. Haplotypes
of SNPs, on the other hand, cover more genetic distance and may have
more statistical power to detect trait loci than a single SNP. Figure 16.1
shows an example of a two-SNP haplotype; each SNP has alleles 0 and 1.

(et
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Figure 16.1. Single-SNP vs haplotype-SNP association. Each SNP has two alleles represented

apblack (1) and white (0) in the vertical bars. Haplotypes in the bar-figure and tables are read

/g:r:ilarly: for example, 30% of the population has haplotype AD = 11. See text for additional
aS explanation.

The vertical bar for SNP A shows that 30% of the population has allele 1,
while 70% (30% + 40%) has allele 0. Considering SNP A with the disease
locus, D, 30% of the population has haplotype AD = 11, 30% has AD =
01, and 40% has AD = 00. This information is also shown in the AD
contingency table. The data for SNP B is read similarly. Using either the
(asymptotic) y 2-test or Fisher’s exact test a sample of 10 individuals does
not yield a significant association between AD or B D. However, when the
haplotype A B is considered we do obtain a significant result; D is positive
(D = 1) when either A or B is positive, and zero otherwise. Figure 16.2
shows another example with different allelic frquencies and sample size
(n = 50). Here A is statistically associated with D, while B is not. The
haplotype A B is strongly associated with disease. However, the results are
difficult to interpret as the homozygotes of AB (11, 00) are associated with
a positive disease status, while the heterozygotes are not. Of course, if one
is interested in looking at interactions between SNP loci, the combinations
can be evaluated regardless of linkage disequilibrium between the loci.
The lesson is that there must be some basis for constructing haplotypes
for association, or a more appropriate test than something like the generic
)(z—test should be considered; that is, the biology of the situation should
motivate the analysis.

Several authors have considered the relative performance of single-SNP
and haplotype-SNP association studies. In general, haplotypes are shown
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Figure 16.2. Single-SNP and haplotype-SNP association. See Fig. 16.1 for explanation.

to have better power, but see Yu and Guerra (2004) for a discussion on
interpretation. Simulation studie$py Service et al. (1999) and Zollner and
von Haeseler (2000) . Akey and Xiong (2001) provide theoretical power
calculations based on standard chi-square statistics. Morris and Kaplan
(2002) consider the relative power between single-SNP and haplotype-
SNP analyses in the situation where the disease locus has multiple sus-
ceptibility alleles. The answer depends on the degree of nonrandom
association among the component SNPs of the haplotype; the weaker the
linakge disequilibria among the SNPs, the better the haplotype analyses
performs. One important class of haplotypes are those located within func-
tional regions since they may be able to capture cis-acting susceptibil-
ity variants interacting within the same gene (Epstein and Satten 2003;
Neale and Sham 2004). Related discussions are given by Hirschhorn et
al. (2002)and Pritchard and Cox (2002). It is also worth mentioning that
several other efforts use multiple SNP data for association, b cessarily
through haplotype analysis, for example: logistic regression (Cruickshanks
et al., 1992); Bayesian genomic control (Devlin and Roeder 1999); logic
regression (Kooperberg et al. 2001); sums of single-SNP statistics (Hoh
and Ott 2003; Hao et al. 2004); Hotelling’s T? (Xiong et al. 2002; Fan and
Knapp 2003).

31 Haplotype Methods for Genetic Association

As with single SNPs, when working with binary traits, a sample of haplo-
types or estimated haplotype frequencies can be analyzed with a x2-test. If
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there are only a handful of common haplotypes this approach is potentially
useful; however, with more haplotype variation one encounters small cell
counts which can lead to wrong p-values.

Work on quantitative traits by Long and Langley (1999) compared phase-
known haplotype association to single-SNP association. Their simulations
showed that haplotype-SNP tests performed no better than single-SNP
tests. However, the nature of their single-SNP test (HMP: haploid marker
permutation test) is not exactly based on one-marker-at-a-time methodol-
ogy. The single-SNP approach is based on the SNP (among many) that
shows the highest ANOVA F-statistic and its significance is evaluated by a
permutation distribution obtained by permuting the (quantitative) pheno-
types over the observed marker data (e.g., Churchill and Doerge 1994;
Wan, Cohen, and Guerra 1997). The HMP test, therefore, is in fact a
multiple-marker test which by construction only allows evaluation of a sin-
gle SNP. If the collection of markers define a haplotype, then this approach
may be viewed as an approximate haplotype analysis since all SNPs are
being used through the identification of the strongest correlated SNP. A
bona fide single-SNP analysis allows for the possibility of multiple signif-
icant SNPs. Long and Langley (1999) also consider a haploid haplotype
one-way ANOVA test (HHA) whereby the means associated with haplo-
types from a sample of haploid individuals are compared,

Yij=hi+ej,i=1,...,H;j=1,...,n,

where H distinct phase-known haplotypes are observed, each with a pop-
ulation mean of h;. If the error terms (e;;) follow a standard Gaussian
distribution with equal variances, then an F-test is used, otherwise a per-
mutation test is suggested.

ANOVA models are at the basis of other proposals. For example,
Zaykin et al. (2002) propose haplotype methods for diploid individuals.
For N individuals one can view the 2N haplotypes as 2N observations and
analyze them according to the HHA model of Long and Langley (1999);
Zaykin et al. (2002) call this approach the “2N-based ANOVA model.” An
alternative approach, the haplotype trend regression (HTR) method, main-
tains the paired haplotypes within each individual. The regression model
is, Y; = D;B + €;, where D; is a design vector indicating the two hap-
lotypes of individual i; D;; is 1 for homozygous haplotype j, 1/2 if the
heterozygous individual posseses haplotype j, and O otherwise. The au-
thors suggest using permutation methods to test the null hypothesis of
no haplotypic effect, Hy : fi = f2 = --- = Bn, for H distinct hap-
lotypes. Individual haplotype effects can also be tested. Phase unknown
data (genotypes) are analyzed by using the Expectation-Maximization al-
gorithm (Dempster, Laird, and Rubin 1977) as described below. In the case
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of inferred haplotypes, the desigp matric i3 replaced by conditional prob-
abilities of haplotypes, given the observed genotype data. Zaykin et al.
(2002) conclude that haplotype analysis based on the HTR method can be
more powerful than both the 2N-based ANOVA method and single-SNP
studies.

A generalization of the above ANOVA models with ambiguous phase
SNP data is given by Schaid et al. (2002). They propose generalized linear
models to accommodate qualitative or quantitative phenotypes and non-
genetic covariates. Score tests are used to evaluate hypotheses of global
haplotype association or haplotype-specific association.

3.2 Estimating Haplotypes with SNPs

Haplotypes ultimately determine the genetic variation in a population and
thus are of interest beyond genetic association studies. One limitation of
haplotype-based studies, however, is the fact that haplotypes are difficult
to collect, much more so than genotypes. Although laboratory methods are
available for obtaining haplotypes from multi-site genotype data (Saiki et
al. 1985; Scharf et al. 1986; Newton et al 1989; Wu et al. 1989; Ruano et
al. 1990) or by genotyping family members (Perlin et al. 1994, Sobel and
Lange 1996) the process is still time and labor consuming. As such, in-
ferential methods for reconstructing haplotypes from more easily acquired
genotype data are desired. The nature of the combinatorial problem is eas-
ily appreciated by simply considering the fact that an individual heterozy-
gous at n phase-unknown loci has one of the possible 2" ! haplotypes.
One of the major uses of SNPs is to infer haplotypes from unphased geno-
type data.

The first major statistical method for inferring haplotypes was intro-
duced by Clark (1990). In this approach, genotypes of individuals with
unambiguous phases are first haplotyped. The unambiguous phases are
defined by sites where no more than one of the sites is heterozygous.
A sequential iterative method is then used to haplotype the remaining in-
dividuals based on the haplotypes that have already been identified. The
basic idea is to determine if an ambiguous haplotype could have arisen
from one of the known haplotypes. Following Clark (1990), suppose one
of the known haplotypes is ATGGT AC and that we have a 7-site se-
quence AT{G, C}G{C, T}AC with ambiguous third and fifth positions.
This gives four possible haplotype assignments, one of which matches
the known sequence ATGGT AC. Therefore, another count is added to
ATGGTAC, and the homologous haplotype ATCGCAC is also added
to the evolving haplotype list since we must account for the observed
genotype. This process continues until all data are exhausted. Matching
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ambiguous haplotypes to the “known” group minimizes the total number
of inferred haplotypes and thus is a type of parsimony method in the spirit
of Ockam’s razor. Two limitations of Clark’s method are the possible lack
of unambiguous haplotypes to start the process and that the results can
be sensitive to the order in which individuals are added to the “known”
haplotype group.

Excoffier and Slatkin (1995) proposed a maximum likelihood approach
to estimate haplotype frequencies. See also Hawley and Kidd (1995) and
Long et al. (1995). Following the notation of Stephens et al. (2001a), let
G = (Gy, Gy, ..., G,) denote the observed genotypes of n sampled in-
dividuals; H = (H,, Hy, ..., H,) their (unknown) haplotype pairs, H; =
(hi1, hiz); M the number of possible haplotypes in the population; F =
(F1, F», ..., Fy) the set of unknown population haplotype frequencies;
f = (f1, f2, ..., fm) the unknown sample haplotype frequencies. In this
application the likelihood is a function of F, given the observed genotype
data (G),

L(F)=PrGIF)=[]PrGiF) =] 2. FnFn

i=1 i=1 (hy,hy)€H;

where H; is the set of all ordered haplotype pairs consistent with the multi-
site genotype data G;. The likelihood calculations are based on the EM al-
gorithm under an assumption of Hardy-Weinberg equlibrium (HWE). Let
pi denote the population frequency of haplotype A;. In the E-step the cur-
rent haplotype frequencies are used to calculate phased genotype probabil-
ities. In the M-step the haplotype frequencies that maximize the likelihood
are calculated based on the updated phased genotype probabilities from the
previous E-step. The haplotype frequencies are easily found by counting
if the gametic phases of the observed genotype data are known, which is
precisely the essence of the “missing data” in the E-step. It is important to
emphasize that the EM method as described above is for estimating hap-
lotype frequencies per se; estimation of the haplotypes themselves is not
obvious (Stephens et al., 2001a).

The performance of the EM algorithm is excellent for large samples
regardless of the recombination rates among the loci. Simulation studies
by Fallin and Shork (2000) considered the accuracy of the EM algorithm as
a function of sample size, number of loci, allele frequencies, and Hardy-
Weinberg proportions. They found that the performance under diallelic
diploid genotype samples was generally quite good over a wide range of
parameter configurations. The largest source of error in estimating haplo-
type frequencies appears to be sampling error, and those thought to have
a big effect - such as departures from Hardy-Weinberg proportions - were
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relatively minimal. To avoid convergence to local maxima, Treqouet et al.
(2004) introduced a stochastic version of the EM algorithm.

The number of loci that can be efficiently haplotyped by the EM algo-
rithm approaches is limited. As the number of loci increases the computer
space needed to store the haplotypes grows exponentially. More recent es-
timation methods gain on computational efficiency by using population
genetic theory. For example, the coalescent (Kingman 1982)is used to bet-
ter predict haplotype patterns in natural populations. By exploiting such
a priori expectations about haplotype patterns Stephens, Smith, and Don-
nelly (2001a) proposed a novel class of Bayesian models for haplotype
inference. In addition to significantly reducing error rates, the proposed
method has the added bonus of providing a meausre of uncertainty in the
phase calls. Like the EM algorithm their approach views the inference as a
“missing” data problem whereby the haplotypes are treated as unobserved
variables whose conditional distribution is estimated given the unphased
genotype data. The method is based on a Gibbs sampler whereby an esti-
mated stationary distribution, Pr(H|G), of a Markov chain is sampled to
obtain the reconstructed haplotypes.

Two other notable Bayesian contributions have been made following
the ideas of Stephens et al. (2001a). Niu et al. (2002) introduced prior
annealing and partition ligation to enhance the speed of haplotype recon-
struction. Prior annealing protects the algorithm from converging to a lo-
cal maximum, while partition ligation addresses the difficult problem of
estimating haplotype frequencies over a large number of contiguous sites.
To this end, the whole region is partitioned into several mutually exclu-
sive shorter segments each of which can be be efficiently analyzed. Esti-
mation of haplotype frequencies within each segment, as well as the re-
assemblage of the entire segment are accomplished by Gibbs sampling.
Lin et al. (2002) proposed a version of the Stephens-Smith-Donnelley
algorithm by suggesting two modifications. First, they account for miss-
ing data. Second, they avoid the problem of guessing haplotypes at ran-
dom in the situation where an individual does not match to any known
(or already inferred) haplotypes in thesmiapleDrecall Clark’s methods.
To maintain the basic idea that future-sgﬁg?aplotypes should resem-
ble what’s already been observed, Lin et al. (2001) suggest looking for
matches only at sites where the individual is heterozygous; clearly, ho-
mozygous sites already help to fx the haplotype reconstruction. Both sim-
ulated (Stephens et al. 2001a}£1xreal data (Stephens et al. 2001b) demon-
strateﬁﬁlat the Stephens-Smith-Donnelly algorithmyperformanedbetter
than existing methods of the time. More recently, Srtrg)%"cms'and Donnelly
(2003) compared the Stephens-Smith-Donnelly algorithm to those of Niu
et al. (2002) and Lin et al. (2002). In addition, they introduced a new
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algorithm that incorporates the modeling and computational strategies from
all three Bayesian approaches. The new algorithm (PHASE 2.0)\o/utper- —_—— _‘\t{;
forms the individual algorithms when analyzing phase unknown popu-
lation data. It is worth noting that the maximum likelihood estimates of
haplotype frequencies coincide with the mode of a posterior distribution
using a Dirichlet prior. Thus, the EM algorithm approach (which is one
of many ways to find MLEs%estimating haplotype frequencies is anin- ____ ﬁ,
stance of a Bayesian method, albeit with an unrealistic prior as discussed
above (Stephens et al. 2001b).
The above methods (Clark, EM, Stephens-Smith-Donnelley) seem to
form the basis of many algorithms for haplotype reconstruction. Several
other approaches, however, are available. The following are not exhaus-
tive but give a flavor of the different types of approaches. The partition
ligation approach has been also been applied (Qin et al. 2002) with the
EM algorithm. To accomodate a large number of loci, Clayton’s SNPHAP
program implements a sequential method that starts with two loci and then
adds one locus one at a time until completion. Researchers from computer
science and engineering have also considered haplotype reconstruction.
Gusfield (2002) and Eskin et al. (ZOOS%pose phylogenetic approaches —____ ’_tl:
and Eronen et al. (2004) introduce a Markov chain approach aimed at long
marker maps with variable linkage disequilibrium. Unlike other methods,
the Markov approach does not treat the entire haplotype as a unit; instead,
it specifically accommodates recombination and works with “local” haplo-
type fragments that may be conserved over many generations. A selection
of software packages for haplotype reconstruction are listed in Section 5
of this paper.

4. SNPs and Haplotype Blocks

One problem in genomewide mapping studies is multiple testing of many
markers, which can lead to a large number of false-positive genotype-
phenotype correlations. Adjustments for mutliple testing can in turn be
affected by correlated test statistics associated with neighboring markers.
In this section we consider the problem of finding regions of low disequi-
libria over chromosomal segments, the so-called haplotype block recon-
struction problem. Haplotype block structures can minimize correlation
among tests and reduce the problem of multiple testing by treating each
block as a single multilocus marker.

Daly et al. (2001), Patil et al. (2001), and Gabriel et al. (2002) were
among the first to formalize the idea that haplotype blocks prevail over
the human genome and that this structure could be found, with historical
recombination a natural source of boundaries between blocks. Although



“Ch16” — 2005/9/4 — 12:16 — page 324 — #16 ?

324 COMPUTATIONAL GENOMICS

debate still exists regarding the biological plausibility of haplotype blocks,
more evidence in the direction of their existence is available than not. Wall
and Pritchard (2003b) provide an excellent review of these and several
other issues.

4.1 Linkage Disequilibrium

To estimate the haplotype block structure on a chromosomal segment a
measure of correlation between alleles on the same chromosome is needed
and the one most commonly used is linkage disequilibrium (Lewontin and
Kojima, 1960; Weir, 1990), also called gametic phase disequilibrium or
allelic association. Consider two diallelic loci A and B with alleles A; (i =
1,2) and B; (j = 1,2), respectively. Denoting the haplotype with alleles
A; and B; as A;Bj, linkage disequilibrium is defined as the difference
between the observed frequency (p;;) of the haplotype and its expected
value under the assumption of complete linkage equilibrium: D = p;; —
pa;pe;- It is well known that the range and magnitude of D is highly
sensitive to the underlying allele frequencies. It is therefore more common
to work with a normalized version, D’, which is bounded by -1 and 1
(Lewontin, 1964), but see Lewontin (1988) for further discussion:

D/min{p*1(1 = pB1), pPr(1 - pA)} D >0 The supescripts
a0 Y shadd be

D/min{p* p®1, (1 — p)(1 - pB)} D <0.
S_LQSOHYV%{-

Over many generations LD between two loci diminishes due to recombina-
tion. However, the rate of erosion depends on the genetic distance between
the two loci, with closer loci maintaining their LD longer than loci farther
apart. Letting D, denote LD at generation ¢, the relationship between LD
and recombination is D, = (1 — 8)' Dy, where 8 is the recombination rate
per site per generation, and Dy is the initial LD (Ott, 1992). In practice
the sign of D’ is of little interest and thus |D’| is often reported. When
|D'| is 0, the two loci are said to be in linkage equilibrium or completely
independent; when |D’| is at its maximum value of 1, the two loci are said
to be completely linked. Values of |D’| between 0 and 1 are not so easily
interpreted. The natural estimator of D (]D’|) is obtained by substituting
observed haplotype and allele frequencies from the sample. Although D

(D’) has an appealing definition and/zimple estimator, several shortcom- A S a
ings are recognized. The distribution &f |D’| can only be roughly approx-
imated, and estimates of |D’| show high variation even between pairs of
sites that are far from each other (Hudson 1985). Devlin and Risch (1995)
give an overview LD and many alternative measures.
—P
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Figure 16.3 shows a heatmap of pairwise LD using@epresented — { D ‘

are 37 ordered SNPs along a chromosomal segment. LD between a pair

of SNPs is represented by a colored pixel. The SNPs are from dataset, ( w= ugd)
] Oa °'F i _10aA>of Daly et al. (2001). Genotype data were collectegaon unrelated
Eucopean ~ individuals and LD calculations were retricted to SNPs with a minor allle
i frequency (MAF) of at least 10%. The axes show the relative locations
pe f‘” e of the SNPs and do not account for the physical distance between SNPs.
Visual inspection of the plot shows a high degree of LD in four “blocks”
as indicated by four dark squares, the first covering SNPs 1-12. The block
structure in heatmaps is not always so well defined and formal statistical

methods are needed to objectively select the block boundaries.

Two packages that can calculate pairwise LD are GOLD (Abecasis
and Cogkson 2000; http://www.sph.umich.edu/csg/abecasis/GOLD/) and
EML%). Huang (https://fepi.mdanderson.org/ ghuang/Software/pub.htm).

(G- Huang, httpsif) - -~ fpud. htw ).
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4.2 Haplotype Blocks

As indicated by Fig. 16.3 there appear to be physical contiguous stretches
of DNA where recombination events are relatively rare and result in blocks
of high linkage disequilibria. Initial studies of this phenomenon (Daly et
al., 2001; Jeffery et al., 2001; Johnson et al., 2001; Patil et al., 2001) further
characterized these regions by their haplotype variation. For example, in
a discussion of the block structure along a 500kb region at 5q31, Daly et
al. (2001) estimate that only two haplotypes are responsible for 96% of
sampled chromosomes along an 84kb stretch covered by 8 SNPs. There
were ten other blocks found in the 500kb region and each one accounted
for > 90% of sampled chromosomes with only 2-4 haplotypes. Moreover,
within each block, none of the common haplotypes showed evidence of
being derived from the others by recombination, which strongly indicates
existence of a few ancestral haplotypes that tended to be inherited without
recombination.

One advantage of having a block structure would be in their applica-
tion to genetic association studies, which have traditionally been plagued
with low polymorphism (per SNP) and multiple testing. Haplotype blocks
could be treated as individual markers with a higher degree of polymor-
phism, while reducing the problem of muitiple comparisons by minimiz-
ing redundant testing arising from markers in linkage disequilibrium.

The evidence for haplotype blocks provided by these earlier authors is
quite compelling. Later research tempered the idea of general block-like
structures over the entire human genome. In particular, Wall and Pritchard
(2003a) and Stumpf and Goldstein (2003) discussed the role of recom-
bination rate heterogeneity in determining block structures. The general
conclusion being that block structures are likely present over parts of the
genome, but not all, and that recombination occuring in narrow hotspots
is likely responsible for the block structures. Given that a block-structure
exists in a given chromosomal region, it nevertheless can be difficult recon-
structing (estimating) the block structure. This is especially true of studies
that depend on unphased genotype data on unrelated individuals. As dis-
cussed above, the haplotypes themselves have to be estimated from the
genotype data, which in turn adds another level of uncertainty to the block
reconstruction problem. The problem thus seems circular in that knowing
the block structure would inform us on where to estimate haplotypes, but
estimating the block structure requires us to have haplotype information.
One way around the problem is to work with pairwise LD information over
a set of SNPs in the region of interest. Ideally, a good definition of a hap-
lotype block would depend on a measure of “regional” linkage disequilib-
rium (Wall and Pritchard 2003b), but in practice blocks are contructed by
pairwise LD. The SNP data from Daly et al. (2001) were bzied on family

y,m%:/ (vl
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Figure 16.4. Haplotype block model. The simplest model assumes that a chromosome is natu-
rally divided by historical recombination hot spots. The regions between hot spots are haplotype
blocks, each of which exhibits limited haplotype variation.

trios, which therefore had parental transmission information not common
in population based studies. Figure 16.4 shows a generic haplotype block
structure. The simplest model can be developed by assuming that recom-
bination hot spots determine the boundaries of the blocks. The success
of this approach depends on the ability to directly measure or accurately
estimate recombination, which can be difficult in humans.

Accurate reconstruction of haplotype blocks depends on a number of
factors which should be accounted for in either the estimation method or
the interpretation of results. One factor already noted is estimation of hap-
lotype frequencies from unphased genotype data. Perhaps the most impor-
tant factor is population admixture, which is known (Ewens and Spielman,
1995) to lead to false-positive results in association studies of even single
markers. Gabriel et al. (2002) and Yu and Guerra (2004) show that older
populations (e.g. African-Americans) tend to have more blocks of shorter
length than relatively younger (Caucasian-Americans) populations. Esti-
mated block topologies will therefore depend on the underlying population
heterogeneity represented in the sample (Pritchard and Przeworski 2001;
Wall and Pritchard 2003b). Additional factors include (Yu and Guerra,
2004) sample size (number of chromosomes), SNP density, minor-allele-
frequency thresholds, measures of LD, and any assumptions of statistical
procedures or models used to estimate the block structure. The treatment
of “rare” SNPs is also important. For example, if certain SNPs are ex-
cluded from analysis due to a MAF threshold, then the inferred haplotype
variation within blocks is underestimated since the rare SNPs are not rep-
resented in the estimation of haplotypes.

Several block definitions and corresponding search algorithms have been
proposed. Recent reviews are given by Wall and Pritchard (2003), Yu and
Guerra (2004), and Ding et al. (2005). One major feature that is common
among the various block definitions is that blocks should contain limited
genetic variation in that only a few haplotypes should account for most of
the sampled chromosomes. Ding et al. (2005) evaluate the impact of three
major operational definitions for haplotype blocks shown in the box below.
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Operational Haplotype Block Definitions

Diversity Block structure defined to have low sequence “diversity”
within blocks (Patil et al., 2001).

LD Requires high (low) pairwise LD within (between) blocks
(Gabriel et al., 2002).

Recombination Define blocks as recombination free regions (Wang
et al., 2002).

To complete the operational definitions algorithms must be defined to
implement the methods. Thus, for the diversity-based method low sequence
diversity may be taken to mean that a minimum fraction of all observed
haplotypes are represented beyond a certain threshold in the sample; for
example, Ding at al. (2005) require that within blocks 80% of the observed
haplotypes occur in at least 5% of the sample. The dynamic-programming
algorithm of Zhang et al. (2002) can be used to implement the method.
For the LD-based approach one can define a block as a region where a
minimum percentage (e.g., 90%) of all pairwise SNPs are in strong LD,
which in turn must be defined using some measure of LD (e.g., D'). The
recombination-based method has been implemented with the four-gamete
test of Hudson and Kaplan (1985).

The first approaches to haplotype block reconstruction were proposed
by Daly et al. (2001), Patil et al. (2001), Gabriel et al. (2002), and Zhang
et al. (2002). Daly et al. (2001), Patil et al. (2001), and Zhang et al. (2002)
propose methods based on haplotype diversity with multiple (> 2) SNPs
jointly analyzed. Daly et al. (2001) define haplotype blocks as regions
which have only a few (2-4) haplotypes that account for > 90% of the
sampled chromosomes. Patil et al. 2001 and Zhang et al. 2002 propose
methods similar to Daly et al. (2001), as well as use the idea of tagging
SNPs to uniquely identify haplotypes within blocks(see below) with a min-
imal set of SNPs.

Gabriel et al. (2002) propose a pairwise LD approach. The pairwise LD
approaches are highly intuitive and relatively easy to implement and thus
seem to be the most popular of the approaches. The method is sequential
by starting at one end of the chromosome (or chromosomal segment) and
building the haplotype blocks one SNP at a time. If the first two (ordered)
SNPs are found to be strongly correlated, the algorithm then considers
addition of the third SNP, and so on. With the pairwise approach there
is much flexibility in how one decides whether to add the third and later
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SNPs. Gabriel et al. (2002) use pairwise linkage disequilibrium as mea-
sured by D’ to assess the correlation between two SNPs. To assess the
degree of LD for a give pair of SNPs they calculate 5% and 95% confi-
dence bounds for |D’| and classify the pair as: (a) strong LD if the lower
bound is greater than 0.7 and higher bound is greater than 0.98, (b) weak
LD if the higher bound is less than 0.9, or (c) ambiguous, otherwise. A
haplotype block is defined to be a set of contiguous loci such that the ra-
tio of the number of strongly linked pairs to weakly linked pairs is no
less than 19-fold, ignoring the ambiguous pairs. Due to the relatively high
level of variation in estimates of |D’| many pairs are found to have am-
biguous linkage resulting in a potential loss of information. It appears (Yu
and Guerra, 2004) that many of the ambiguous cases are characterized by
large differences in minor allele frequencies at the two SNPs. One possible
consequence (Yu and Guerra 2004) of having too many ambiguous cases
is failing to include SNPs in blocks when they should be included. In turn,
this may result in more and/or shorter blocks than necessary.

No single numerical measure seems to capture the different aspects of
linkage disequilibrium. Therefore haplotype block reconstruction based on
the pairwise LD approach may yield different results depending on the LD
measure used. Recognizing such limitations Yu and Guerra (2004) pro-
posed a new composite summary of LD for L.D-based haplotype block
reconstruction. The first part of the composite LD measure is a\m=arg_gi!,y2 —~ma J'o r.‘l\/
counting summarization of LD. Consider two diallelic loci A and B with
two alleles Ay, Ay and Bj, By. Without loss of generality, assume that A
and B are the minor frequency alleles. We thus have two classes of hap-
lotypes: coupling (A| By, A2B3) and repulsion (A By, A2 By). Strong ev-
idence of LD is indicated if either of the two classes is observed in high
proportion. A measure of LD is thus defined and called “proportion dise-
quilibrium” (PLD):

PLD = max(pA181 + PA3By;» PA B, + pAzBl)9

with the constraint pa,, + pa,B, + PA,B, + Pa,B, = 1. The idea un-

derlying PLD is the same as that in finding haplotype blocks, whereby

definition of low disequilibria across a block we expect a “few” haplo-

types within a block to account for the vast majority of chromosomes.

PLD can be used as a measure of LD and, in fact, has characteristics sim-

ilar to the LD measure r (Hill and Wier, 1994; Devlon and Risch, 1995@?&#‘
PLD has much smaller variation than D’. On the other hand, like », PLD

cannot attain the value 1 (complete linkage disequilibrium) unless there

are only two haplotypes; D’ can attain the value of 1 when only one of the

haplotype frequencies is zero.
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To complete the composite summary of l@(u and Guerra (2004) sum- — /N Commo
marize the 2 x 2 table of haplotype counts™y combining PLD with an-
other term defined as o = min{pAlBl, PA1Bys PAsBy» pAng}- When « is
very small, there are practically three haplotypes and, thus, no strong ev-
idence of recombination between the two loci. Note that PLD on its own
may only be, say, 60% indicating low LD. However, if one of the miner— =" —
ity haplotypes is very small, we then have additional evidence in favor of

//:gong LD. The composite LD summary is thus defined: a pair of loci are
in (a) strong LD, if either PLD > 0.95 or & < 0.015; (b) weak LD, if
PLD < 09 ora > 0.03; (c) ambiguous, otherwise. Let S = number
of pairs in strong LD and W = number of pairs in weak LD. A haplotype
block is defined as a region where S/(S+W) > 0.98. This algorithm starts
with the first SNP and finds the longest block that satisfies the criterion;
the longest block may be of length one, a single SNP. The process starts
again with the first SNP following the first estimated block, and continues
until the entire chromosomal segment has been analyzed.

Several other methods have been proposed for haplotype block recon-
struction (Nothnagel et al. 2002; Zhu et al. 2003; Kimmel and Shamir
2004; Koivisto et al. 2004; Greenspan and Geiger, 2004). However, given
the relatively short time since the first proposals appeared in 2001, it ap-
pears that the methods by Daly et al. (2001), Patil et al. (2001), and Gabriel
et al. (2002) continue to be the most popular. Therefore, it is of interest to
know the relative advantages and disadvantages of any new proposal with
at least one of these approaches. Assessing the performance of different
block definitions and search algorithms, however, is challenging due to
the variety of data sets reported by different authors. When sampled popu-
lations, marker densities, sample sizes, minor allele frequency thresholds,
and other factors differ from paper to paper it is indeed quite difficult to g/
compare methodsg)ne difficulty in assessing the relative performance of A
methods is defining‘appropriate criteria for comparison. For example, sev-
eral methods are algorithmic and do not provide measures of statistical
accuracy. Indeed, each reconstructed block topology is an estimate; some
blocks will be statistically significant and others will not. From a statisti-
cal viewpoint measures of accuracy are needed not just to evaluate method
performance, but also for practice. Simulations are also useful for compari-
son, but in this case much care is required to estimate realistic evolutionary
forces that determine haplotype variation. One very useful model is the co-
alescent (Hudson, 2002), which has been used in haplotype block model
simulations (e.g., Wall and Pritchard 2003). Fallin and Schork (2000) used
Dirichlet distributions to simulate haplotype frequencies. Issues in com-
paring alternative block estimation methods have been discussed by Wall
and Pritchard (2003), Schwartz et al. (2003), Yu and Guerra (2004), and
Ding et al. (2005).
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Wall and Pritchard (2003a) proposed three criteria as a test of fitness for
a block model; they can also be used to assess the performance of block .
identification algorithms. The criteria are: (1) Coverage, the percentage of / Falie s
physical distance covered by blocks. A regiorruﬁaE%' a true block struc-
ture should largely be covered by blocks. (2) I;IQES. Ifloci A, B and C are el ic s
physically ordered as A— B —C, then a hole occurs if A and C are in strong
LD but either A and B or B and C are in weak LD. A true block structure )
should show few holes. (3) Overlapping blocks. Two blocks are said to be /'7"& / s
overlapping if at least one site can be identified with both blocks. There
should be no overlapping blocks in a true block structure. Schwartz et al.

( 2003)c0nsider the problem of comparing two competing block partitions
from two different methods. They use the number of shared boundaries
between the two partitions as a statistic for comparison. To this end, they
provide a P-value formula for the null hypothesis that two block partitions
were determined randomly and independently from one another. They also
suggest using this statistic in testing the robustness of a particular block
partition method since most methods can give several equally good solu-
tions. The proposed statistic is intriguing and as far as we know is the first
approach suggested for formally comparing competing block partitions.
This is a very important problem, especially as interest grows in using
haplotype blocks for association studies. One point that warrants further
investigation is the definition of “shared boundaries,” which in Schwartz
et al. (2003) appears to be absolute concordance at the SNP-location reso-
lution. Yu and Guerra (2004) propose a more traditional Type I and Type
II error rate approach to compare methods in the context of simulation
studies; see below. For the region of interest, each SNP is either correctly
captured by a block or not and these binary results can be used to calculate
the error rates, as well as the Wall and Pritchard (2003) criteria.

Sun, Stephens, and Zhao (2003) report results on the jghapct of sam- ———— /'m /M et
ple size and marker density on block partitions. Using real datasets (Daly
et al., 2001) from African-American (group B), Janpanese,-and Chinese
(group C) populations, these authors show that both~sample size and
marker density have a substantial impact on block partitioning and tag-
ging SNPs. Both the number of blocks and the number of tagging snps
increase with sample size and/or maker density, at least with respect to the
size and density in the samples, bat this behavior is also reported by Yu new/
and Guerra 2004). Ths sentenc e

- j_d‘\,')éh/ﬁjﬁ

4.3 Simulations

Below we briefly summarize some results from simulation studies con-
ducted by Yu and Guerra (2004) to compare th€heir new approach based — j/
on the composite summary of LD with Gabriel’s LD method for block
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reconstruction. In both cases blocks are constructed via pairwise LD and
the difference lies in how one decides on the strength of disequilibrium.
Readers are referred to the original papey{or simulation details and more
extensive results. The coalescent (Hudson, 2002) was used to simulate
haplotype data, which in turn were randomly paired to ultimately analyze
unphased genotype population data. We simulated haplotype data in part
based on the characteristics of real data from Gabriel et al. (2002). We
assumed a constant population size N = 10, 000 and a mutation para-
meter 6(= 4N u) set to 7.836 x 107> per bp (Wall and Prtichard, 2003).
In the first simulation we modeled block length as an exponential distri-
bution with mean 30kb with blocks separated by recombination hot spots
of 1kb in length. In other simulations we changed the parameters to gen-
erate two hot spots each 10kb in length and one hotspot of 1kb. In each
simulation we ran 50 data sets with 200 chromosomes. This resulted in
100 unphased individuals whose genotypes were subjected to haplotype
block inference, using the EM algorithm (Excoffier and Slatkin 1995) for
haplotype frequency estimation. Results from two simulation experiments
are summarized in Tables 16.5; Figs 16.5 and 16.6 correspond to their re-
spective true block models and instances of simulated data with estimated
block structure.

The striking difference between the two methods is the increase in cov-
erage and decrease in Type II error rates by the Yu and Guerra approach.
The statistical power (1— Type II) of the Yu and Guerra approach is espe-
cially encourgaing with a view toward association studies. Still problem-
atic for both methods are the hole and overlap frequencies, which in the

Table 16.5. Simulation results for block reconstruction. The true model
included 50 SNPs over a 100kb region with four haplotype blocks sepa-
rated by three recombination hot spots. Cell values are mean percentages
over 50 simulated data sets, each with 200 chromosomes. Only SNPs
with observed MAF>0.1 were used. (A) Hot spot lengths (1kb. Lkb,
1kb); see Fig. 16.5. (B) Hot spot lengths (10kb, 1kb, 10kb); see Fig. 16.6.

Simulation Coverage Holes Overlap Typel Typell
A

Gabriel et al. 33.3% 23.5 17.3 0.47 21.77
Yu and Guerra  50.0 16.4 16.3 1.83 6.78
B

Gabriel et al. 24.6% 259 15.31 0.57 22.03
Yu and Guerra  41.8 226 19.1 6.37 7.86

G Yu and Gutrn

(o)
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figure in color.)
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case of a true block-structure may not be expected to be at these levels. The
results, however, are consistent with those of Wall and Pritchard (2003a).

4.4 Applications

We also applied the block methods of Gabriel et al. (2003) and Yu and
Guerra (2004) to the four populations from Daly et al. (2001). We only
used unrelated individuals and markers with MAF > 0.1. The coverages
for the Utah CEPH, African Americans, East Asians, and Nigerian sam-
ples using the Gabriel et al. method were 46%, 24%, 41% and 25%, re-
spectively, which increased to 58%, 41%, 54% and 45% using the Yu
and Guerra method. Hole and overlap frequencies were about the same.
The apparent low coverage values may indicate a weak to moderate block-
like pattern in these data and/or chromosomal region (Wall and Pritchard
2003a).

There is now much interest in haplotype-based association studies using
SNPs, especially in the context of complex traits including quatitaive Jraits.
As discussed in Section 3.1 there is some debate concerfiing the relative
merits of single-SNP and haplotype-SNP approaches for genetic associ-
ation. Intuitively, one might expect haplotypes to provide higher power.
The issue is not so simple, however, especially in the case of unphased
SNP genotypes where one must first estimate haplotype frequencies and/or
haplotype blocks. Yu and Guerra (2004) considered the question in the
context of real genes where all ¢ Ps have been identified. The real
data are part of a larger study, the Dallas Heart Study (Victor et al., 2004),
to investigate cardiovascular disease. We selected one of the genes be-
ing studied and simulated a continuous phenotype. We assume there is
a single trait locus in complete LD with one of the SNPs (dotted line in
Fig. 16.7) and model the continuous trait as a mixture of three normal dis-
tributions with means 50, 55 and 60 corresponding to genotypes CC, CA
and AA, and homogeneous standard deviation of 20. Haplotype blocks
were estimated using the approach of Yu and Guerra (2004). To test the
single SNPs we used an additive (allelic) model defined by a predictor
that counts the number of A alleles. The block haplotypes were also tested
with an additive model using Haplo.Stat (Schaid et al., 2002). Fig. 16.7
shows the results. There were nine blocks found, including a very thin one
at 30k comprised of two SNPs and a very short one at 38kb with three
SNPs. There was significant single-SNP association at the assumed disease
locus, as well as at neigboring SNP loci. There is a general decreasing
trend in significance as the SNPs are farther away from the trait SNP.
A significant global-block p-value was also found at the block covering
the disease locus, although the block p-value is less than the single-SNP
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Figure 16.7. Single-SNP vs. haplotype-SNP association. The y-axis is -log(p) with y = 3
corresponding to a significance level of 0.05 shown as the solid horizontal line. The x-axis
is physical position; SNPs are shown as hashmarks. Individual dots correspond to single-SNP
tests. The haded rectangles are estimated haplotype blocks and their heights correspond
to a global p-value. (Please turn to the color section in this book to view this figure in color.)

p-value. In this application there is concordance (vis-a-vis significance)
between single-SNP and haplotype-SNP analysis at the trait locus, as well
as at the third, sixth, and seventh blocks. The other blocks, for example,
block 2, show conflicting results with the single-SNPs that are within the
blocks. Block 4 is highly significant with two SNPs, one significant and
one not. The causes of such discrepancies are still being investiagted by
various authors. See Yu and Guerra (2004) for further discussion, includ-
ing results on specific haplotypes which can help explain some of the dis-
crepancies.

4.5 Tagging SNPs

The idea of tagging SNPs (Johnson et al. 2001) is to identify a few SNPs
that capture most of the variation at a haplotype locus. In a haplotype block
model there would be a set of haplotype tagging SNPs (htSNPs/)(or each
block. One advantage of htSNPs is that future sampled chromosomes need
only be typed at the tagging SNPs, saving time and resources. In Fig.16.8
there are four SNPs giving four haplotypes with frequency 0.3, 0.3, 0.2
and 0.2 respectively. SNP1 and SNP2 are redundant and SNP 3 has 80%
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Haplotype SNP1 SNP2 SNP3 SNP4  Frequency

hapl A—TF—6—F€ 0.3
hap2 Ar F & T 0.3
hap3 € A S € 0.2
hap4 €—A—6€—F 0.2

Figure 16.8. Anillustration of tagging SNPs.

of the population with allele G. We can thus select as tagging SNPs (1,4)
or (2,4) without loss of information.

A standard measure of haplotype variation is haplotype diversity,(D),
which is defined as the total number of base differences across all possi-
ble pairwise comparisons of the observed haplotypes. If z = (z1, ..., z5)
represents a haplotype of S linked SNPs, each represented by alleles 0 and
l@the haplotype diversity based on a sample of n haplotypes is

D= ZZ(Zi —z)) (@i - z)).

i=1 j=1

Chapman et al. (2003) proposed using D to find htSNPs. Any subset of
k SNPs partitions the observed haplotypes into no more than 2k groups.
By computing D within each group, we can define the residual diversity
(R) of the subset as the sum of within-group diversities. The proportion
of diversity explained (PDE) by the selected set of SNPs is thus defined as
PDE =1 — R/D and can be used to measure the informativeness of the
selected SNPs. SNP sets with a high PDE assure that not much information
will be lost. Other authors propose methods that simultaneously estimate
haplotype blocks and tagging SNPs. In a greedy block partition algorithm
used by Patil et al. 2001, the partition that has the minimal number of SNPs
that can distinguish the common haplotypes is selected. Zhang et al. (2002)
note that the greedy algorithm by Patil et al. (2001) does not guarantee an
optimal solution and thus propose an extended dynamic programming so-
lution. The tagging methods discussed above all require phase information
or estimated phase information, which is computationally expensive when
there are a large number of SNPs. Meng et al. (2003) introduced a method
based on the spectral decomposition of the LD matrix for dimension re-
duction. The benefit is that phase information is not needed, which makes
the algorithm more efficient and eliminates the extra degree of uncertainty
due to estimation of haplotype frequencies from unphased data. Section 6
gives a list of software programs that offer tagging SNP calculations.
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S. Conclusions
SNPs are highly abundant in the human genome, explaining most of
nMA Ke¢ — sequence variation. This them a valuable resource for population
genetics, evolution, and gene mapping. In this article we have given — an

overview of the major issues arising in their application to haplotype and
haplotype block estimation and genetic association. The discussion should
make clear that many statistical methods have been developed for these
problems, but there is still much more to understand about the relative
merits of the competing methods. Perhaps more important is further un-
derstanding of the practical utility of the methods.

6. Resources

A generally useful website for literature and software on statistical ge-
netics, including SNPs and haplotypes, is http:/linkage.rockefeller.edu/.
Haplotype data from unrelated individuals can be simulated based on co-
alescent theory (Kingman, 1982). The MS package (Hudson 2002;
http://home.uchicago.edu/ rhudson 1/source/mksamples.html) can simulate
sequences based on evolutionary forces such as mutation, recombination,
and migration. In order to generate sequences with high recombination, Li
and Stephens (2003) introduced a distance shrinking method to produce
the effect of recombination hotspots. The package hdhot with block struc-
ture is available at http://www.biostat.umn.edu/ nali/SoftwareListing.html.
The HapMap Project (The International HapMap Consortium, Nature 426:
789-796, www.hapmap.org) is a public database of haplotype resources.
The goal of this project is to compare the genetic sequences of several
hundred individuals to identify common variation; DNA samples come
from populations representing African, Asian, and European ancestry.

S € /lec te
6.1 A Haplotype Reconstruction Software

AN If available, published papers introducing the software are given below. In
all cases an internet URL is provided. /} MO Lomnpre hen sive /is f;l\j N
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EH+
Zhao, Curtis, and Sham (2000)
www.iop.kcl.ac.uk/IoP/Departments/PsychMed/GEpiBSt/software.shtml

EM-decoder of Haplotyper

Niu et al. (2002)

EM-decoder: www.people.fas.harvard.edu/~junliv/em/em.htm
Haplotyper: www.people.fas.harvard.edu/~junliu/Haplo/docMain.htm

PHASE
Stephens, Smith, and Donnelly (2001a); Stephens and Donnelly (2003)
www.stat.washington.edu/stephens/software.html

PLEM
Qin, Niu, and Liu (2002)
www.people.fas.harvard.edu/~junliu/plem

SNPHAP
Clayton, D.
www-gene.cimr.cam.ac.uk/clayton/software/snphap. txt

HAP
Eskin, Halperin, and Karp (2003)
www.cs.columbia.edu/compbio/hap/

Haplo.STAT
Schaid, et al. (2002)
www.mayo.edu/hsr/people/schaid.html

HaploBlock
Greenspan and Geiger (2003) bioinfo.cs.technion.ac.il/haploblock/

6.2 Tagging SNP Software

htSNP
Chapman, et al. (2003)
www-gene.cimr.cam.ac.uk/clayton/software/stata

HaploBlockFinder
Zhang and Jin (2003)
cgi.uc.edu/cgi-bin/kzhang/haploBlockFinder.cgi
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SNPTagger
Ke and Cardon (2003)
www.well.ox.ac.uk/~xiayi/haplotype

TagSNPs
Stram et al. (2003)
www-rcf.usc.edu/~stram/tagSNPs.htm

Hapblock
Zhang et al. (2002)
www.cmb.usc.edu/msms/HapBlock

ldSelect
Carlson et al. (2004)
droog.gs.washington.edu/ldSelect.html
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