
SOFTWARE PROCESSES ARE SOFTWARE TOO 

Leon Osterweil 

University of Colorado Boulder, Colorado USA 

1. The Nature of Process. 

The major theme of this meeting is the exploration of the 
importance of .ul process as a vehicle for improving both the 
quality of software products and the the way in which we 
develop and evolve them. In beginning this exploration it 
seems important to spend at least a short time examining the 
nature of process and convincing ourselves that this is indeed 
a promising vehicle. 

We shall take as our elementary notion of a process that it is 
a systematic approach to the creation of a product or the 
accomplishment of some task. We observe that this charac- 
terization describes the notion of process commonly used in 
operating systems-- namely that a process is a computational 
task executing on a single computing device. Our characteri- 
zation is much broader, however, describing any mechanism 
used to carry out work or achieve a goal in an orderly way. 
Our processes need not even be executable on a computer. 

It is important for us to recognize that the notion of process is 
a pervasive one in the realm of human activities and that 
humans seem particularly adept at creating and carrying out 
processes. Knuth [Knuth 69] has observed that following 
recipes for food preparation is an example of carrying out 
what we now characterize as a process. Similarly it is not 
difficult to see that following assembly instructions in build- 
ing toys or modular furniture is carrying out a process. Fol- 
lowing office procedures or pursuing the steps of a manufac- 
turing activity are more widely understood to be the pursuit 
of orderly process. 

The latter examples serve to illustrate an important point-- 
namely that there is a key difference between a process and a 
process description. While a process is a vehicle for doing a 
job, a process description is a specification of how the job is 
to be done. Thus cookbook recipes are process descriptions 
while the carrying out of the recipes are processes. Office 
procedure manuals are process descriptions, while getting a 

specific office task done is a process. Similarly instructions 
for how to drive from one location to another are process 
descriptions, while doing the actual navigation and piloting is 
a process. From the point of view of a computer scientist the 
difference can be seen to be the difference between a type or 
class and an instance of that type or class. The process 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

description defines a class or set of objects related to each 
other by virtue of the fact that they are all activities which 
follow the dictated behavior. We shall have reason to return 
to this point later in this presentation. 
For now we should return to our consideration of the intui- 
tive notion of process and study the important ramifications 
of the observations that 1) this notion is widespread and 2) 
exploitation of it is done very effectively by humans. 
Processes are used to effect generalized, indirect problem 
solving. The essence of the process exploitation paradigm 
seems to be that humans solve problems by creating process 
descriptions and then instantiating processes to solve indivi- 
dual problems. Rather than repetitively and directly solving 
individual instances of problems, humans prefer to create 
generalized solution specifications and make them available 
for instantiation (often by others) to solve individual prob- 
lems directly. 

One significant danger in this approach is that the process 
itself is a dynamic entity and the process description is a 
static entity. Further, the static process description is often 
constructed so as to specify a very wide and diverse collec- 
tion of dynamic processes. This leaves open the distinct pos- 
sibility that the process description may allow for process 
instances which do not perform "correctly." Dijkstra makes 
this observation in his famous letter on the GOTO statement, 
[Dijkstra 69] observing that computer programs are static 
entities and are thus easier for human minds to comprehend, 
while program executions are dynamic and far harder to 
comprehend and reason about effectively. Dijkstra's point 
was important then and no less significant now. Processes 
are hard to comprehend and reason about, while process 
descriptions, as static objects, are far easier to comprehend. 
Finally it is important to also endorse Dijkstra's conclusion 
that our reasoning about process descriptions is increasingly 
useful in understanding processes as the descriptions are 
increasingly transparent descriptions of all processes which 
might be instantiated. 

In view of all of these dangers and difficulties it is surprising 
that humans embark upon the indirect process 
description/instantiation/execution approach to problem solv- 
ing so frequently. It is even more startling to observe that 
this approach is successful and effective so often. This sug- 
gests that humans have an innate facility for indirect problem 
solving through process specification. It is precisely this 
innate ability which should be able to propel us to become 
far more systematic and effective in the development and 
evolution of computer software. What currently stands most 
directly in our way is our failure--to date--to understand our 
most central and difficult problems in terms of the process 
description/instantiation/execution paradigm. 

2 
© 1987 ACM 0270-5257/87/0300/0002500.75 



2. Computer Software Processes. 

It has become increasingly popular to characterize software 
development as a manufacturing activity in which the final 
delivered software should be considered to be a manufac- 
tured product. Efforts to consider software development 
analogous to other manufacturing activities such as auto 
assembly or parts fabrication have considerable intui- 
tive appeal, although they have not been entirely satis- 
factory. From our perspective it seems clear that the set of 
activities carded out in order to effect the development or 
evolution of a software product should be considered to be a 
process. There seems to be a clear analogy between this sort 
of process and the process by which airplane wings are built, 
gourmet meals are prepared and autos are assembled. 

The analogy seems to be relatively weaker in that 1) the pro- 
duct produced by a software process is intangible and invisi- 
ble and 2) there seems to be no tangible process description 
from which our software processes are instantiated. 

The former difficulty has been observed and discussed 
before. It is certainly true that we are hindered in our work 
by the fact that we cannot see our product and by the fact that 
we are neither guided nor constrained by the laws of physics, 
biology or chemistry in creating it and reasoning about it. 
Our product is a pure information product, being a structure 
of information and relations upon that information. Curi- 
ously enough, people in other disciplines emulate our situa- 
tion, fashioning abstract models of their more concrete prob- 
lems and systems in order to render them more analyzable 
and manipulable. The difference here is that their informa- 
tion structures are created to represent key aspects of their 
more concrete realities, while our information structures are 
our final products and our realities. They can use the five 
human senses to grasp and reason about their product--we 
cannot use these same senses to help us with our product. 
Accordingly we have difficulty reasoning about software pro- 
ducts, and difficulty in thinking of them as real and tangible. 

The latter difficulty is the main subject of this presentation-- 
namely the paradoxical lack of process descriptions which 
are appropriate for the specification of the processes which 
we use in developing and evolving software. The paradox 
here is that elaborate and careful descriptions of our 
processes would seem to be most appropriate in view of the 
fact that our products are so difficult to grasp and so large 
and complex. Contemporary software products would have 
to be considered very large and complex by any objective 
measure. Our large systems may contain millions of fines of 
source code, but also contain volumes of documentation, 
enormous quantities of  design information, specifications, 
testcases and testing results, as well as user manuals, mainte- 
nance manuals, and so forth. Further each of these software 
objects must have been integrated and correlated within 
themselves and with each other in surprisingly intricate 
ways. Our early attempts to define and characterize even 
relatively simple software products have lead to the conclu- 
sion that, while we were expecting these products to be large 
and complex, they are far larger and more complex than we 
had expected. 

In view of the fact that our products are so large and com- 
plex, and in view of the compounding effect of the intangi- 
bility and invisibility o f  these products it is all the more 
surprising that we generally go about the job of developing 
and evolving them by employing processes which are rarely 
if ever guided by appropriately sharp, detailed and under- 
stood process descriptions. It is even more astounding that 
we are generally rather successful with these processes. This 
suggests that our innate process description/instantiation/ 
execution capabilities are powerful indeed. They seem to be 
sufficiently powerful that we are able to improvise effective 
process descriptions on the fly, maintain them in our heads, 
modify them as necessary and guide others in their effective 
execution. Just think how much we might be able to achieve 
were we able to externalize these process descriptions, 
express them rigorously, promulgate them publicly, store 
them archivally, and exploit computing power to help us in 
guiding and measuring their execution. 

This talk suggests a specific approach to doing this. We sug- 
gest that it is important to create software process descrip- 
tions to guide our key software processes, that these descrip- 
tions be made as rigorous as possible and that the processes 
then become guides for effective application of computing 
power in support of the execution of processes instantiated 
from these descriptions. 

Our specific approach is to suggest that contemporary "pro- 
gramming" techniques and formalisms be used to express 
software process descriptions. 

3. Software Process Programming. 

By now many will doubtlessly be observing that the idea of 
describing software processes is not new and has been done 
before. Certainly software "program plans," "development 
plans," even "configuration control plans," are examples of 
externalized software process descriptions. Further, indus- 
trial processes are routinely expressed by means of such for- 
malisms as Pert charts and flow diagrams. Office procedures 
are often described in written procedures manuals. In view 
of this it is reasonable to question what new is being pro- 
posed here and to ask why we believe that we should expect 
dramatic improvement in the way in which we develop and 
evolve software in view of the fact that we are emulating 
techniques which have not been completely successful in 
other disciplines. 

Our optimism springs from the fact that we have evolved 
powerful and disciplined approaches to handling intangibles 
as products, where other disciplines have not. We have dealt 
with the fact that our products are procedures for creating' 
and managing invisible information structures. While our 
solutions are far from perfect, they are, at least, direct 
attempts to manage the invisible and intangible. By contrast 
the efforts of other disciplines seem less direct, less powerful 
and less effective. As computer scientists we have long ago 
embraced the use of rigorously defined languages as vehicles 
for describing complex and intricate information creation and 
management processes. We have evolved systems and pro- 
cedures for studying these process descriptions, for analyzing 
them, and for applying them to the solution of specific prob- 
lems. This whole realm of activities is what we have come 
to loosely describe as "programming." As computer scien- 



tists we have developed programming languages, have had 
some success in formally describing them and their effects, 
have encoded enormously complex descriptions of informa- 
tion manipulation processes, and have had success in instan- 
tiating such processes to carry out such impressive jobs as 
guiding the landing of people on the moon, switching 
myriads of telephone calls in a second and navigating air- 
planes and rockets at high speeds. In doing all this, we as a 
community have developed considerable instincts, talents 
and tools for treating processes as tangibles. It seems most 
natural and most promising to harness these instincts, talents 
and tools to the job of describing software development and 
evolution processes just as we approach classical "program- 
ming." 

Our suggestion is that we describe software processes by 
"programming" them much as we "program" computer appli- 
cations. We refer to the activity of expressing software pro- 
cess descriptions with the aid of programming techniques as 
process programming, and suggest that this activity ought to 
be at the center of what software engineering is all about. In 
succeeding remarks we shall attempt to briefly outline why 
we have this opinion. 

cess programs should be considered to be executable. For 
now, however, we can think of them as being expressed in a 
comfortable high level language. 

In the following example, the process programming language 
is taken to be Pascal-like. The reader should not be misled 
into thinking that such a language is the preferred medium in 
which to express pre, c.ess programs. Research into appropri- 
ate process programming language paradigms is needed. We 
are convinced, for example, that rule-based languages will be 
effective vehicles for expressing certain software process 
descriptions, while algorithmic languages may be preferable 
in other areas. Thus, the following example is offered only 
in the spirit of lending definition and specificity to this dis- 
cussion. 

4.1. The Example. 

Here is an example of a process program which describes a 
very straightforward type of process for testing application 
software. As such it is offered as an example of how to 
describe one small but important part of a larger software 
development process. 

4. A Rudimentary, but Instructive, Example. 

In this section we will present a very small example of a pro- 
cess program and use it to illustrate some of the benefits of 
the process programming approach. Before giving the exam- 
ple it seems worthwhile to make some basic observations 
about the strong analogy between a classical application pro- 
gram and a process program. 

Perhaps the most basic observation is that both programs 
should be viewed as descriptions of processes whose goal is 
the creation or modification of a complex information aggre- 
gate. Each is used by instantiating the description into a 
specific product template, binding specific data values to it, 
and then allowing the process to transform those values into 
software objects and aggregate those objects into a final 
software product. In the case of an application program we 
generally think of the size of the input data objects as being 
relatively small--perhaps single numbers or short character 
strings--although we are all familiar with application pro- 
grams in which the input data values are large and complex 
data aggregates. The inputs to software process programs 
will generally be of this latter kind, typically being source 
code statements or procedures, design information, test cases, 
or blocks of documentation. In both cases, however, the 
input data is examined, stored, and transformed into output 
software objects and products. 

Further, in both cases the problem at hand, be it the solution 
of an application data processing problem or the conduct of a 
software process, is effected by instantiation of the process 
description, binding of values to the instance and evolution 
of problem specific solution elements. In the case of the 
application program, the embodiment of the problem solution 
description is executable code. In the process programming 
case, the problem solution is the process program itself. 
Later we shall discuss the sense in which we believe that pro- 

Function All_Fn_Perf_OK(exeeutable, tests); 
declare executable executable_code, 

tests testset, 
case, numcases integer, 
result derived_result; 

--Note that executable_code, testset, and derived_result 
--are all types which must be defined, but are not defined 
--here. 

All_Fn_Perf OK := True; 
For case := 1 to numcases 

--This is the heart of the testing process, specifying 
--the iterative execution of the testcases in a 
--testset array and the comparison of the results with 
--expected behavior. 

derive (executable, 
tests[case] .input_data, 
result) 

i f ' resul tOK (result, 
testcase[case].req_output) 

then All_Fn_Perf_OK := False; 
exit; 

--Note that the process specified here mandates that 
--testing is aborted as soon as any test execution does 
--not meet expectations. This is an arbitrary choice 
--which has been made by the process programmer who 
--designed this testing procedure. 

end loop; 
end All_Fn_Perf_OK; 

While this process program is quite short it exemplifies some 
important aspects of process programs. First it should be 
noted that it highlights the key aspects of the testing process, 
while hiding lower level details. As such it is a reasonable 
example of the use of modularity, and of its application to the 
hard and important task of conveying software process infor- 
mation clearly. In this case we see that the testing process is 



an iterative loop which ends when a testcase fails. Further 
we see that the essence of testing is the evolution of test 
results and the evaluation of them. Details of how the results 
are evolved and how they are evaluated are left for elabora- 
tion in lower level process program procedures. It turns out 
that these details depend upon the fine-structure of objects of 
types testset and derived_result. It is important in itself that 
such entities as testsets, testcases, and derived results are 
treated as typed objects, requiring rigorous specification, and 
dealt with as operands to key operators in the process. 

We may be interested in evaluating test results either for 
functional correctness or for adequate performance, or both. 
We may wish to determine acceptable functionality by com- 
paring two simple numbers, by comparing two information 
aggregates, or by applying some complex function to the 
derived result and the expected result. The process program 
we have just shown is equally descriptive of all of these types 
of processes. It can be specialized to meet any specific test- 
ing need by the proper elaboration of the types and pro- 
cedures which it uses. 

For example, the following procedure specifies that a testing 
result is to be considered acceptable if and only if 1) the the 
functional result computed and the functional result needed 
cause the function "fcnOK" to evaluate to True, and 2) the 
observed execution time for the testcase is less than or equal 
to the execution time needed. 

In order to understand this procedure and the way in which it 
elaborates upon AII_Fn Perf_OK, it is important to have the 
following type descriptions. It should be assumed that these 
definitions have been made in some outer scope of the pro- 
cess program in such a way that they are visible and accessi- 
ble to the procedures we are specifying here. 

declare testset array of 
testcase[1..numcases]; 

declare testcase record of 
(input_data real, 
req_output record of 

(fcn_tol predicate, 
time_tol predicate, 
fcn real, 
time real)); 

declare derived_result record of 
(fen_output real, 
observ_timing real); 

We can now specify key lower level process program pro- 
cedures. 

Function resultOK (result, needed); 
declare result derived_result, 

needed req output; 
if fcnOK (result.fen _output, 

needed); 
--Did the test compute an acceptable functional result 

OR 
(result,observ timing > 
needed.time) 

--Did the test run fast enough 
then resultOK := False; 
else resultOK := True; 

endif; 
end resultOK; 

Function derive (pgrn, test, result); 
Declare pgm executable_code, 

test testcase, 
result derived_result; 

--start by resetting the testing timer to zero 
reset_clock 

--derive the functional output result and set it in the 
--right field of the derived_result object 
result.fen_output := execute (pgm, test.input_data); 

--stop the testing timer and store the execution time 
--of the testcase in the fight field of the 
--defived_result object 
result.observ_timing := read_clock; 
end derive; 

Function fcnOK (result, needed); 
Declare result derived_result, 

needed req_output; 
--NB It is assumed here that the process programming 
--language allows for the inclusion of a function which 
--has been specified as the value of a typed object 
--and for the application of that function as part 
--of the execution of a process program procedure. 

fcnOK := needed.fcn_tol (needed.fen, result.fen_output); 
end fcnOK; 

In the interest of saving space, this example is left incom- 
plete. Some lower level procedures and some types have not 
been completely specified. We believe that this lack of com- 
pleteness should not interfere with a basic understanding of 
process programming. We hope that the reader sees that 
these algorithmic expressions can be used to effectively cap- 
ture and convey details of a software development procedure 
clearly, but in a phased, gradual way which is familiar to 
software engineers. It is not important that the particular 
details of this example either agree or disagree with the 
reader's experiences or opinions on how testing should be 
carded out, but rather that the reader understand that the pro- 
cess programming vehicle has been used to unequivocally 
describe a specific procedure in terms that software practi- 

5 



tioners should have little trouble understanding and reason- 
ing about. Similarly it is believed that this mechanism could 
be used to clearly and unequivocally express whatever other 
testing procedure a software practitioner might wish to 
specify. In particular, if a given process program is not 
deemed suitable, then it becomes an appropriate centerpiece 
for sharp, focused discussions of how it should be modified 
to make it more suitable. 

Further, this example is intended to suggest that the specified 
testing process might well be imbedded in a higher level pro- 
cess which describes the broader development contexts 
within which testing is to be carried out. In general we see 
no limits on the level at which software processes might be 
described by process programs. Process programs have been 
used to express entire software lifecycle models and have 
been elaborated down to very low level details. When pro- 
cess programs are written at a high level, but are not ela- 
borated to low levels of detail, they become general prescrip- 
tions for how software work is to be done. When process 
programs describe lower levels of detail they become tools 
for substantive discussions of exact procedure. Each type of 
activity in its own way seems useful in assuring effective 
software development. 

We believe it is significant that the example is longer and 
more complex than might be expected. What is described 
above is a rather straightforward testing loop, yet there are 
surprisingly many details to be specified. There is an unex- 
pectedly large hierarchy of types needed to clearly and accu- 
rately express exactly what this testing process entails. This 
suggests to us that the processes which we intuitively carry 
out are more complex than might be expected and explains 
why it is often so difficult to explain them to others, so easy 
to overlook unexpected consequences, and so hard to esti- 
mate the effort needed to carry them out. These observations 
lead us to some important conclusions about the potential 
benefits of process programming. 

5. Advantages of Process Programming. 

In general we believe that the greatest advantage offered by 
process programming is that it provides a vehicle for the 
materialization of the processes by which we develop and 
evolve software. As noted above, it is startling to realize that 
we develop and evolve so large, complex, and intangible an 
object as a large software system without the aid of suitably 
visible, detailed and formal descriptions of how to proceed. 
In that process programs are such descriptions they offer an 
enormous advantage. Through a process program the 
manager of a project can communicate to workers, customers 
and other managers just what steps are to be taken in order to 
achieve product development or evolution goals. Workers, 
in particular, can benefit from process programs in that read- 
ing them should indicate the way in which work is to be 
coordinated and the way in which each individual's contribu- 
tion is to fit with others' contributions. 

Finally, in materializing software process descriptions it 
becomes possible to reuse them. At present key software 

process information is locked in the heads of software 
managers. It can be reused only when these individuals 
instantiate it and apply it to the execution of a specific 
software process. When these individuals are promoted, 
resign or die their software process knowledge disappears. 
Others who have studied their work may have anecdotal 
views of the underlying process descriptions, but these 
descriptions themselves vanish with the individual who con- 
ceived them. Obviously such process knowledge is a valu- 
able commodity and ought to be preserved and passed on. 
Materializing it is a critical necessity. 

The preceding discussion simply emphasizes that any vehicle 
for capturing software process knowledge is far better than 
no vehicle at all. As observed earlier, however, Pert charts 
and procedures manuals are such vehicles. We believe that 
process programming is superior to these other approaches, 
however, in that it enables far more complete and rigorous 
description of software processes. By defining a process pro- 
gramming language in which data objects, data aggregates 
and procedural details can be captured and expressed to arbi- 
trary levels of detail we make it possible to express software 
processes with greater clarity and precision than has previ- 
ously been possible. Further, as the process descriptions are 
to be expressed in a programming language, both the act of 
creating the descriptions and the act of reading and interpret- 
ing them should be comfortable for software professionals. 

Thus process programs written in a suitable process program- 
ming language should be expected to be particularly effec- 
tive media for communicating arbitrarily large and complex 
software processes between software professionals. This 
should not be surprising, as all languages are supposed to be 
media for communication. Going further, the fact that 
software process programs are to be expressed in a computer 
programming language suggests that this language should 
also be an effective medium for communicating these pro- 
cess descriptions to computers as well. Specifically, we pro- 
posed that another important reason for writing software 
process programs is so that they can be automatically 
analyzed, compiled and interpreted by computers. 

Some readers must certainly have observed that our previous 
example, replete as it was with type definitions, declarations 
and non-trivial algorithmic procedures, was likely to contain 
errors. As it was written in a language with definable syntax 
and semantics, however, the possibility of parsing it, semant- 
ically analyzing it and conveying diagnostic information 
back to the writer and readers is quite a real one. Clearly as 
process descriptions grow to contain more detail, and the 
programming language in which they are written matures to 
have more semantic content, the process programmer can 
expect to receive more diagnostic feedback. 

We see no reason why process programs written in such a 
rigorously defined language might not be compiled and exe- 
cuted. There would seem to be no reason why the testing 
process program presented in the previous section could not 
be executed on a computer once the lowest level procedures 
are defined. We have written a number of process programs 
which have been elaborated sufficiently far to suggest that 



they could be directly executed on a computer. Other pro- 
cess programs, which have not been elaborated down to suit- 
able levels of detail, can still be reasonably thought of as 
being interpretable, but only if the lowest level procedures 
are to be "executed" either by software tools or by humans. 

This observation suggests that process programs can be 
thought of as vehicles for indicating how the actions of 
software tools might be integrated with human activities to 
support software processes. Thus the process programming 
viewpoint leads to a novel approach to designing software 
environments. In this approach, software objects are thought 
of as variables--or instances of types. Software tools are 
thought of as operators which transform software objects. 
Humans are accorded certain well defined roles in creating 
and transforming objects too. The specification of what they 
do, when they do it, and how they coordinate with each other 
and with their tools is embodied in the process program, and 
is thus orchestrated by the process programmer. It is impor- 
tant to stress that the process programmer, by leaving certain 
high level tasks unelaborated, thereby cedes to the human 
software practitioner correspondingly wide latitude in carry- 
ing out those tasks. Thus interpretable process programs do 
not necessarily unduly constrain or regiment humans. The 
level of control and direction provided to humans is under 
the control of the process programmer, who exercises this 
control by providing or withholding details of the tasks 
assigned. 

Further, this seems a suitable time to repeat our earlier obser- 
vation that we cannot currently be sure of the linguistic para- 
digm in which software process programs ought to be 
expressed. This question must be considered to be a research 
topic. Our example process program was algorithmic. Thus, 
humans interpreting parts of it would be guided by pro- 
cedural instructions. Process programs written in a rule- 
based language would be guided by prescriptive rules and 
would presumably feel more free and unconstrained. 

6. Processes as Software. 

The foregoing discussion indicates why we believe that  
software process descriptions should be considered to be 
software. They are created in order to describe the way in 
which specific information products are to be systematically 
developed or modified. In this respect they are no different 
than a payroll program or a matrix inversion program. 
Further, our early work indicates that process programs can 
be written in compilable, interpretable programming 
languages which might bear a striking similarity to the 
languages in which conventional applications programs are 
written. 

We believe that the primary difference between the process 
programs which we are suggesting and conventional pro- 
grams is that process programs represent programming in a 
non-traditional application domain. This domain is dis- 
tinguished first by the fact that its objects are perhaps larger, 
less well defined and more poorly understood than those in 
traditional application areas. Second, and more impo~ant, 

the product in this application area is not simply passive 
data, but includes yet another process definition (ie. an exe- 
cutable program for a traditional application area). Thus pro- 
cess programming is a more indirect activity. Its goal is the 
creation of a process description which guides the 
specification and development of an object which in turn 
guides the specification and development of another object 
which solves problems for end users. This doubly indirect 
process must be considered to be particularly tricky and error 
prone. It seems, however, to be the essence of software 
engineering, It is remarkable that we do it as well as we do. 
It seems self-evident that we could do it far better if process 
program software was materialized and made as tangible as 
the application software whose creation it guides. 

The doubly indirect nature of software process programming 
is illustrated in the accompanying set of figures. Figure 1 
shows an end-user's view of how an application program is 
used to solve a problem by creating information as a product. 
Here we see that the user's problem is solved through the 
instantiation of a process description (an executable applica- 
tion program), the binding of that instance to specific data 
which the user supplies, and the execution of a process which 
is defined by the process description (the application pro- 
gram). The effect of this process is to create information 
products, some of which are temporary and internal to the 
process and some of which are externalized and aggregated 
into the user's final product. Control of how this is done 
resides with the process which has been instantiated. It is 
worthwhile to observe that the process description which has 
been instantiated for this user is presumably available for 
instantiation for the benefit of other users. In such a case, 
these other instances are bound to different input information 
and carry out somewhat different processes to create dif- 
ferent products. The end-user may be only dimly aware of 
the way in which the process description came into existence 
or the way in which it works. 

Figure 2 shows a larger context in which the situation dep- 
icted in Figure 1 operates. In Figure 2 we see that the pro- 
cess description which has been instantiated for the benefit of 
the end-user is actually a part of a larger information aggre- 
gate, and that this information aggregate is the domain of an 
individual whom we refer to as a software practitioner. We 
refer to this larger information aggregate as a Software Pro- 
duct and see that it is the product which the software practi- 
tioner is responsible for creating. The software product con- 
tains such information objects as specifications, designs, 
documentation, testcases, test results, source code, object 
code, and executable code (the end-user's process descrip- 
tion). Some of these objects are received as input directly 
from the software practitioner (just as some of the end-user's 
information product is received directly from the end-user). 
Additionally, however, much of the rest of the Software Pro- 
duct is derived by the action of a process (just as the end- 
user's process derives some information). 

In both of these cases humans effect the creation of a product 
which is an information aggregate. The end user's product is 
derived through a process which is instantiated from a 
description created by someone else. Figure 2 does not make 
it clear how the software practitioner's product is derived. 



APPLICATZON 

CODE DATA 

~ i ~ 

USER O U T p ~  

OTHER 
0TS 
INSTANCES 

E O 
x 8 
E J 
C E 

~ u c 
' -  T T 

A 
S 
t. 

E 

Figure 1 

SOFTWARE 
PRODUCT (SP! 

APPLICATION ~ E XIEc. 
| ] INSTANC~ ." OSJ. F ~// 

~ 1 _  coDE 0ArA / < ~ - - - - - ,  

i 
_ =..~.~1~.~1£~, PRACTITIONER 

USER O U ~  06 J~'~" 

Figure 2 



pRocESS 

SOFTWARE 
ENGINEER 

PROCESS 
PROGRAM 

I N S T A N C E ~  OTHER INSTANCES 

,SP 

I 
~~ sw 

PRACTITION E~ 

- , - ~ U ' T  
U S E R  0 6 ,~ . .~  ' 

Figure 3 

PROCESS 
PROGRAM 

PROCESS 
ROTS 

STATIC 
t I 

SPS ) 
,N~T'~N~ES .... 

CONSISTENCY I ANALYSIS 
(DYNAMIC) 

METR,CS l 

Figure 4 



Figure 3 suggests how we believe this should be done. In 
Figure 3 we indicate that the Software Product should be 
viewed as an instance of a Software Product Structure (which 
we can think of as a very large template) and that the evalua- 
tion of the instance should be thought of as having been 
guided by the execution of a process program. We suggest 
that, just as the end-user may have only a dim understanding 
of the process which guides the creation of the end-user 
information product or where it came from, the software 
practitioner may also have only a dim understanding of the 
process program or where it came from. In each case the 
user is to be prompted from needed information, while the 
process accepts that information, uses it to derive more infor- 
mation, assembles that information, find produces the user's 
final information product. Certainly, at least for now, we 
expect that the level of involvement of the software practi- 
tioner in the process of creating the Software Product will be 
much higher than the usual level at which end-users are 
involved in the creation of their information products. This 
need for more involvement will result from the inability or 
reticence of the software process programmer to fully ela- 
borate software process programs down to the level of 
directly executable code. 

In that Figure 3 strongly suggests the underlying similarity of 
applications programs and process programs, it thereby 
strongly invites the question of whether process programs 
might themselves be considered to be instances of some 
higher level process description. In Figure 4 we indicate our 
belief that this is the case. Because software process pro- 
grams are programs in what we now see to be the classical 
sense of this term, we should expect that they are best 
thought of as being only a part of a larger information aggre- 
gate. This information aggregate contains such other 
software objects as requirements specifications (for the pro- 
cess description itself), design information (which is used to 
guide the creation of the process description), and test cases 
(projects which were guided by processes instantiated by the 
process description). 

There are a number of satisfying implications of the perspec- 
tive that process program descriptions are themselves 
developed software. One such implication is that it is rea- 
sonable for there to be many different process descriptions 
that might be used to Create similar software products. As 
process descriptions are developed to meet process require- 
ments which may be expected to vary, clearly the design and 
implementation of these process descriptions should also be 
expected to vary. Thus it should be clear that there is no 
"ideal software process description." Software process 
descriptions should be created by software development 
processes which should take due regard of specialized 
requirements and constraints. In this sense software process 
programming is a true programming discipline. We believe 
that expert software managers have intuitively understood 
this for quite some time and have become adept at tailoring 
their processes to their needs. They do not seem to have 
appreciated their activities as programming activities, but it 
seems likely that the realization will be something of a relief. 

Another satisfying implication of the view that software pro- 
cess descriptions emerge as part of a development lifecycle is 

that software process descriptions should undergo testing and 
evaluation. In fact this evaluation is carried out as the pro- 
cess description guides the evolution of individual software 
products. Successful process descriptions tend to get used 
again. Unsuccessful ones tend to be changed or discarded. 
The weakness of testing as the sole mechanism for software 
evaluation has been remarked upon before [Osterweil 81]. 
An integrated approach to evaluation incorporating static 
analysis and verification is clearly indicated. Once software 
process descriptions have been materialized as code it 
becomes quite reasonable to consider such other forms of 
evaluation. The result should be software processes which 
should be far more trustworthy. 

The previous paragraph sketches some of the characteristics 
of what we might describe as a "process development pro- 
cess." We have begun to examine what a description of 
such a process might be like. It is also reasonable to consider 
"process evolution processes" as well. We have begun to 
consider what the nature of a software process evolution pro- 
cess description might be as well. These considerations have 
shed light upon the nature of what has been dubbed "mainte- 
nance." 

There has been some fear that these considerations might 
lead to an ever-rising hierarchy of processes which produce 
processes, which produce processes which eventually actu- 
ally produce end-user software. This fear seems groundless, 
as process programs and end-user programs do not seem to 
be essentially different. T h i s  leads to optimism that 
processes which we employ to develop and evolve end-user 
software products should also be applicable to the develop- 
ment and evolution of process program descriptions. This 
premise is a very important one and is being explored. 

We have concluded that the notion of software process pro- 
gramming is a generalization, or extension to a new domain, 
of classical applications programming. The disciplines, tech- 
niques and tools of classical applications programmingapply 
to process programming and can rapidly lead to the effective 
materialization of the descriptions of the processes which we 
use and their rapid improvement, maturation and archival 
storage for reuse. 

7. Future Directions. 

It should be clear that we believe that important contributions 
to software engineering can be made by pursuing the 
notion of process programming in any of a number of direc- 
tions. In this section we indicate some of these directions, 
summarizing early work which has been done and continua- 
tions which seem indicated. 

7.1. Software Process Studies. 

We believe that great strides can be made in understanding 
software processes once they have been materialized. 
Materializing them in the form of process programs offers 
great hope because such programs are rigorous and 

10 



comfortable for both readers and writers. Discussion and 
evaluation of such software processes as testing [Howden 81] 
and design [JeffTPA 81] have been going on for quite some 
time. In addition debates about software development lifecy- 
cle models have been proceeding for well over a decade. We 
believe that these discussions have not been nearly as sub- 
stantive and effective as they could and should be, largely 
because they have not been carried out in a rigorous and 
agreed-to form of discourse. Adoption of the idiom of pro- 
cess programming has the potential to precipitate rapid and 
significant advances in understanding the software lifecycle 
and the various of the subprocesses which comprise it, as 
process programming supplies a natural idiom in which to 
carry out these discussions. 

At the University of Colorado we have begun to develop a 
variety of process programs and have found that these activi- 
ties have almost invariably led to interesting insights into the 
processes under study. Much of this work has been done by 
graduate students who have had only a brief exposure to the 
idea of process programming. Their success in producing 
cogent and compelling process programs leads one to believe 
that this technique is rather easily motivated and rather easy 
to embark upon. These early experiences suggest that our 
instincts and experiences as programmers tend to lead us to 
worthwhile questions when they are applied to programming 
software processes. 

We have written and compared process program definitions 
describing testing and evaluation. We believe that such pro- 
cess program definitions are best viewed as rigorized test 
plans. As such they elucidate both the test planning and the 
testing processes which we carry out. We have also written 
software requirements as elaborate data specifications. This 
exercise suggests some interesting ways in which require- 
ments might be captured more rigorously. Again, our 
instincts and experiences seem to tend to guide us to interest- 
ing and worthwhile questions, suggesting new formalisms 
which seem to have much promise. We have also tried to 
capture some software lifecycle models as process program 
definitions. Glaring weaknesses in such well-known models 
as the "Waterfall" manifest themselves in the form of trivial 
and incomplete code. 

Experimental process program description writing should 
continue. It seems certain to shed important light on the 
nature of our software processes. It also holds promise of 
providing a vehicle for sharply accelerated progress towards 
consensus on some processes, providing this formalism is 
adopted widely as a medium of discourse. 

7.2. Process Programming Language Studies. 

It is clear that the rapid progress which we have just 
described cannot be achieved until and unless there is some 
consensus about a language in which software processes and 
software products can be ,defined. In our earliest work we 
attempted to use simple language constructs in familiar 
linguistic paradigms. While quickly indicating the power of 
the process programming approach, these efforts also quickly 
served to show that powerful linguistic primitives are essen- 

tial if process programs are to be sufficiently precise and 
powerful. 

Software products can only be described as very complex 
data aggregates. Thus powerful type definition and data 
aggregation mechanisms must be included in any process 
programming language. A full range of control flow 
mechanisms also seems needed if the language is to be capa- 
ble of conventional algorithmic expressions. Alternation and 
looping are clearly crucial parts of familiar software 
processes. We were surprised to observe, moreover, that 
these processes could not be expressed effectively without 
the use of concurrency specifications. On reflection this 
should be no surprise. Human processes are clearly highly 
concurrent, thus they can best be expressed using con- 
currency primitives. In addition, it seems that the scoping 
and accessing rules for a process programming language 
must be sophisticated. Our early work has shown that classi- 
cal hierarchical scoping rules are not adequate to describe the 
complex ways in which software subprocesses must com- 
municate with each other.  Rigid message-passing mechan- 
isms have also been shown to be unequal to the stringent 
information sharing requirements of actual software 
processes. 

All of these early results indicate that significant research is 
needed to produce the definition of a suitable language. As 
observed earlier, this research cannot be restricted to an 
examination only of algorithmic languages. We have pro- 
duced some very provocative process programs using infor- 
mal languages which borrowed freely from the rule-based, 
object-oriented and applicative linguistic paradigms. It 
seems likely that only a mixed paradigm or Wide spectrum 
language will prove adequate for comfortably expressing 
software process programs. 

7.3. Software Environment Architecture Research. 

As noted earlier, one of the more exciting consequences of 
this work is that it has suggested a novel architecture for a 
software environment. We now believe that a software 
environment is best viewed as a vehicle for the specification 
of process programs, and for their compilation and interpre- 
tation. In such an environment tools would be treated as 
operators, or lowest level software processes, whose jobs 
were defined in terms of the need to create and transform 
software objects which would be treated as instances of 
types. These types would correspond to different types of 
intermediate and final software products. Humans would 
participate in executing such software processes by serving 
as the execution devices for subprocesses which were not 
elaborated to sufficient levels of detail to enable interpreta- 
tion by either tools or the host computing system execution 
environment. 

One of the more powerful suggestions of this work is that 
software processes can themselves be treated as software 
objects by an environment. We believe that development 
and evolution processes can be produced in such a way that 
they specify how both application programs and process pro- 

I1 



grams are created and maintained. As software processes are 
software objects, and our environment architecture treats all 
software objects as instances of types, this suggests that 
software processes might well be organized by some sort of 
type hierarchy. We have begun pursuing the notion that vari- 
ous software processes can be organized into such a hierar- 
chy and can, perhaps, be characterized by the operational 
characteristics that they inherit and/or mix in. We propose to 
explore these hypotheses by experimentally building and 
using a process programming environment. Arcadia is a pro- 
ject to create just such an environment [Arcadia 86]. The 
first prototype environment, to be called Arcadia-l,  will pro- 
vide a testbed for the evaluation of many of our environment 
architectural ideas, as well as a vehicle for experimenting 
with process programming. 

7.4. Software Metrics. 

One of the most gratifying aspects of our exploration of the 
notion of process programming is that it has led to insights 
and research directions which were not expected outgrowths 
of the work. Once such outgrowth has been some promising 
ideas about software metrics. It seems clear that in material- 
izing software process descriptions we are creating a natural 
subject for measurement. If a software process such as test- 
ing or development is to be thought of as the execution of a 
process program, it seems reasonable to measure the size of 
the product in terms of the size of the objects declared within 
the process program, and to measure the degree of comple- 
tion of the process in terms of the position of the execution 
pointer in the process program code. Static analysis of pro- 
cess programs could likewise lead to promising measures of 
the complexity of the corresponding software processes. 

We make no claims that such software metrics are neces- 
sarily superior to existing metrics, but we do suggest that 
comparison of such new metrics to more classical ones war- 
rants research attention. 

7.5. Implications for Software Reuse. 

Another unexpected outcome of this line of inquiry has been 
a somewhat different understanding of the nature of software 
reuse and the problems in effectively achieving this impor- 
tant goal. We believe that the goal of software reuse is the 
successful integration into an evolving software product of 
software object(s) which were developed as part of a dif- 
ferent development process. That being the case, reuse 
entails the careful assimilation of the reused objects into the 
new product. Given that software products are notorious for 
their intricate interconnectivity, it seems evident that only a 
complex process will suffice for assuring that the reused 
objects are properly interwoven into their new context, and 
properly evaluated in that new context. Thus effective reuse 
can only be achieved through the execution of a suitable pro- 
cess which should be defined by means of a suitable reuse 
process program. It is interesting to note that managers often 
observe that reuse "must be planned for." From our perspec- 
tive that means that reuse processes must have been previ- 
ously programmed. Further, these programs must be exe- 
cuted only at the proper points in the larger process of 

developing the reusing software. We conjecture that 
software reuse can only be expected to be a realistic prospect 
when the structure of the reused software closely matches the 
structure of the reusing software, and when the process by 
which the reused software was developed closely matches 
the process by which the reusing software is being 
developed. 

Finally, it seems important to repeat our observation that 
perhaps the most important benefit of process programming 
is that it offers the hope that software processes themselves 
can be reused. We believe that effective software process 
descriptions are one of the most valuable resources which we 
as a society have. The realization that these resources are 
never effectively preserved beyond the working lifetime of 
the people who execute them is a sobering realization. We 
look forward to the prospect that process programs which 
have been shown to be effective can one day be captured 
rigorously and completely and made part of libraries of reus- 
able software process programs. Such reusable process pro- 
grams would then become the modular parts out of which 
new process definitions could be fashioned or adapted. We 
expect that early process programs will be produced from 
scratch by software engineering researchers, but that in the 
future process programs will be customized by working 
engineers out of standard process programs. 

8. Conclusion. 

In this paper we have suggested that the notion of a "process 
program "--namely an object which has been created by a 
development process, and which is itself a software process 
description--should become a key focus of software 
engineering research and practice. We believe that the 
essence of software engineering is the study of effective 
ways of developing process programs and of maintaining 
their effectiveness in the face of the need to make changes. 

The main suggestions presented here revolve around the 
notion that process programs must be defined in a precise, 
powerful and rigorous formalism, and that once this has been 
done, the key activities of development and evolution of both 
process programs themselves and applications programs can 
and should be carded out in a more or less uniform way. 

This strongly suggests the importance of devising a process 
programming language and a software environment capable 
of compiling and interpreting process programs written in 
that language. Such an environment would become a vehicle 
for the organization of tools for facilitating development and 
maintenance of both the specified process, and the process 
program itself. It would also provide a much needed mechan- 
ism for providing substantive support for software measure- 
ment and management. 

We are convinced that vigorous research directed towards 1) 
the creation of a process programming language, 2) the con- 
struction of a compilation and interpretation system for pro- 
grams written in it and 3) the use of these tools in the careful 
description of key software processes will surely be of enor- 
mous value in hastening the maturation of software engineer- 

12 



ing as a discipline. 

9. Acknowledgments. 

The author gratefully acknowledges that this work was made 
possible by the generous support of the National Science 
Foundation, through Grant #DCR 1537610, the US Depart- 
ment of Energy through Grant #1537612, and The American 
Telephone and Telegraph Company. In addition the author 
wishes to thank Professor John Buxton of King's College, 
University of London, Professor Manny Lehman of Imperial 
College, University of London, and Dr. Brian Ford of Nag, 
Ltd., Oxford, England, for their help, encouragement and 
numerous challenging conversations during Academic Year 
1985-86, while the author formulated these ideas while on 
leave of absence in England. In addition numerous stimulat- 
ing conversations and interchanges with Stu Feldrnan, Dick 
Taylor, Bob Balzer, Geoff Clemm, Lori Clarke, Dennis 
Heimbigner, Stan Sutton, Shehab Gamelel-Din, Brigham 
Bell, Steve Krane, Steve Squires, Bill Scherlis, Frank Belz 
and Barry Boehm also helped to shape these ideas 
significantly. Finally the author thanks the students in Com- 
puter Science 582, Fall 1986, for their patience in trying to 
understand process programming and their energy and 
enthusiasm in producing an impressive base of process pro- 
grams. 

[Knuth 68] 

[Osterweil 81] 

[SPW1 841 

[SPW2 851 

Knuth, Donald E., The Art of Computer 
Programming, V.1--Fundamental Algo- 
rithms Addison Wesley, Reading, MA 
1968. 

L. J. Osterweil, "Using Data Flow Tools in 
Software Engineering," in Program Flow 
Analysis: Theory and Application, 
(Muchnick and Jones, eds.) Prentice-Hall 
Englewood Cliffs, N.J., 1981. 

Proceedings of Software Process 
Workshop, Runnymede, England, Febru- 
ary 1984. 

Proceedings of Second Software Process 
Workshop, Coto de Caza, CA, March 
1985. 

[Arcadia 86] 

[BoehmMU 75] 

[Dijkstra 68] 

[Howden 85] 

[JeffTPA 81] 

REFERENCES 

R.N. Taylor, L.A. Clarke, L.J. Osterweil, 
R.W. Selby, J.C. Wileden, A. Wolf and M. 
Young, Arcadia: A Software Development 
Environment Research Project, 
ACM/IEEE Symposium on Ada Tools and 
Environments, Miami, Florida, April 
1986. 

B. Boehm, R. McClean, D. Urfrig, "Some 
Experiments with Automated Aids to the 
Design of Large Scale Reliable Software," 
IEEE Trans. on Software Eng., SE-1, pp. 
125-133 (1975). 

Dijkstra, Edsger W., "Go To Statement 
Considered Harmful," CACM 11 pp. 147- 
148 (March 1968). 

Howden, W.E., "The Theory and Practice 
of Functional Testing," IEEE Software, 2 
pp. 6-17 (Sept. 1985). 

R.Jeffries, A.Turner, P.Polson, M.Atwood, 
"The Processes Involved in Designing 
Software," in Cognitive Skills and Their 
Acquisition (Anderson, ed.) Lawrence Erl- 
baum, Hillsdale, NJ, 1981. 

13 


