
Convex functions

Definition
f : Rn → R is convex if dom f is a convex set and

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y)

for all x , y ∈ dom f , and θ ∈ [0, 1].



Convex functions

Definition
f : Rn → R is convex if dom f is a convex set and

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y)

for all x , y ∈ dom f , and θ ∈ [0, 1].

◮ f is concave if −f is convex

◮ f is strictly convex if dom f is convex and

f (θx + (1 − θ)y) < θf (x) + (1 − θ)f (y)

for all x , y ∈ dom f , x 6= y , θ ∈ (0, 1).



Convex function: examples on R

◮ affine: ax + b

◮ exponential: eαx , for any α ∈ R

◮ powers:
◮ xa on R++, for a ≥ 1 or a ≤ 0
◮ −xa on R++, for 0 ≤ a ≤ 1

◮ powers of absolute value: |x |p on R , for p ≥ 1

◮ negative logarithm: − log x on R++

◮ x log x on R++



Convex function: affine functions

Affine functions are both convex and concave

◮ affine function in Rn:
f (x) = aT x + b

◮ affine function in Rm×n:

f (X ) = tr(AT X ) + b = 〈A, X 〉 + b =

m
∑

i=1

n
∑

j=1

AijXij + b



Convex function: norms

All norms are convex

◮ norms in Rn:

‖x‖p =

(

n
∑

i=1

|xi |
p

)1/p

for all p ≥ 1

◮ norms in Rm×n:
◮ Frobenius norm: ‖X‖F = 〈X , X 〉1/2

◮ spectral norm: ‖X‖2 = σmax (X ) = (λmax(X
T X ))1/2



Operator norms
Let ‖ · ‖a and ‖ · ‖b be norms on Rm and Rn, respectively. The operator
norm of X ∈ Rm×n, induced by ‖ · ‖a and ‖ · ‖b, is defined to be

‖X‖a,b = sup {‖Xu‖a | ‖u‖b ≤ 1}

◮ Spectral norm (ℓ2-norm):

‖X‖2 = ‖X‖2,2 = σmax(X ) = (λmax(X
TX ))1/2

◮ Max-row-sum norm:

‖X‖∞ = ‖X‖∞,∞ = max
i=1,··· ,m

n
∑

j=1

|Xij |

◮ Max-column-sum norm:

‖X‖1 = ‖X‖1,1 = max
j=1,··· ,n

m
∑

i=1

|Xij |



Dual norm

Let ‖ · ‖ be a norm on Rn. The associated dual norm, denoted ‖ · ‖∗, is
defined as

‖z‖∗ = sup {zTx | ‖x‖ ≤ 1}.

◮ zT x ≤ ‖x‖ ‖z‖∗ for all x , z ∈ Rn

◮ The dual of the ℓp-norm is the ℓq-norm, where 1/p + 1/q = 1

◮ The dual of the ℓ2-norm on Rm×n is the nuclear norm,

‖Z‖2∗ = sup {tr(ZTX ) | ‖X‖2 ≤ 1}

= σ1(Z ) + · · · + σr (Z ) = tr(ZTZ )1/2,

where r = rank Z .



Restriction of a convex function to a line

f : Rn → R is convex iff g : R → R ,

g(t) = f (x + tv) dom g = {t | x + tv ∈ dom f }

is convex for any x ∈ dom f , v ∈ Rn

So we can check the convexity of a function with multiple variables by
checking the convexity of functions of one variable



Restriction of a convex function to a line: example

Show that f : Sn
++ → R with f (X ) = log detX is concave.

Proof.
Define g : R → R , g(t) = f (X + tV ) with dom g = {t | X + tV ≻ 0},
for any X ≻ 0 and V ∈ Sn.

g(t) = log det(X + tV )

= log det(X 1/2(I + tX−1/2VX−1/2)X 1/2)

=
n
∑

i=1

log(1 + tλi ) + log detX

where λ1, · · · , λn are the eigenvalues of X−1/2VX−1/2. Hence g is
concave for any X ≻ 0 and V ∈ Sn, so is f .



Extended-value extensions

Definition
If f : Rn → R is convex, we define its extended-value extension
f̃ : Rn → R ∪ {∞} by

f̃ (x) =

{

f (x) x ∈ dom f

∞ x /∈ dom f

By this notation, the condition

f̃ (θx + (1 − θ)y) ≤ θf̃ (x) + (1 − θ)f̃ (y) ∀θ ∈ [0, 1]

is equivalent to the two conditions:

◮ dom f is convex

◮ f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y) ∀θ ∈ [0, 1]



First-order conditions

Theorem (first-order condition)
If f : Rn → R is differentiable, then f is convex if and only if dom f is

convex and

f (y) ≥ f (x) + ∇f (x)T (y − x), ∀x , y ∈ dom f



First-order conditions

Theorem (first-order condition)
If f : Rn → R is differentiable, then f is convex if and only if dom f is

convex and

f (y) ≥ f (x) + ∇f (x)T (y − x), ∀x , y ∈ dom f

◮ local information (gradient) leads to global information (convexity)

◮ f is strictly convex if and only if dom f is convex and

f (y) > f (x) + ∇f (x)T (y − x), ∀x , y ∈ dom f , x 6= y



First-order condition: proof

Proof.

◮ Suppose f (x) is convex. Then

f (x + θ(y − x)) − f (x) ≤ θ(f (y) − f (x)), ∀θ ∈ [0, 1]

lim
θ→0

f (x + θ(y − x)) − f (x)

θ
≤ f (y) − f (x)

=⇒ ∇f (x)T (y − x) ≤ f (y) − f (x)

◮ Suppose the first-order condition holds. Let z = θx + (1 − θ)y . Then

f (x) ≥ f (z) + ∇f (z)T (x − z)

f (y) ≥ f (z) + ∇f (z)T (y − z)

=⇒ θf (x) + (1 − θ)f (y) ≥ f (z)

which is true for any θ ∈ [0, 1], so f is convex.



Second-order conditions

Theorem (second-order condition)
If f : Rn → R is twice differentiable, then f is convex if and only if

dom f is convex and its Hessian is positive semidefinite, i.e.,

∇f (x) � 0 ∀x ∈ dom f



Second-order conditions

Theorem (second-order condition)
If f : Rn → R is twice differentiable, then f is convex if and only if

dom f is convex and its Hessian is positive semidefinite, i.e.,

∇f (x) � 0 ∀x ∈ dom f

◮ if ∇f (x) ≻ 0 for all x ∈ dom f , then f is strictly convex



Second-order conditions: proof
Proof.

◮ Suppose f is convex. Because f is twice differentiable, we have

f (x + δx) = f (x) + ∇f (x)Tδx +
1

2
δxT∇2

f (x)δx + R(x ; δx)‖δx‖2

where R(x ; δx) → 0 as δx → 0. Because f is convex, by the first-order
condition, f (x + δx) ≥ f (x) + ∇f (x)T δx . Hence

δxT∇2
f (x)δx + R(x ; δx)‖δx‖2 ≥ 0

for any δx . Let δx = ǫd . Taking ǫ → 0 yields dT∇2f (x)d ≥ 0 for any d ,
thus ∇2f (x) � 0.

◮ Suppose ∇f (x) � 0 ∀x ∈ dom f . Then for any x , y ∈ dom f and some
z = θx + (1 − θ)y with θ ∈ [0, 1],

f (y) = f (x) + ∇f (x)T (y − x) +
1

2
(y − x)T∇2

f (z)(y − x)

≥ f (x) + ∇f (x)T (y − x)

By the first-order condition, f is convex.



Some special cases

◮ quadratic function: f (x) = 1
2xTPx + qT x + r , where P ∈ Sn

∇f (x) = Px + q ∇2f (x) = P

convex if P � 0

◮ least-squares: f (x) = ‖Ax − b‖2
2

∇f (x) = 2AT (Ax − b) ∇2f (x) = 2ATA

convex for any A

◮ quadratic-over-linear: f (x , y) = x2/y

∇2f (x) =
2

y3

[

y

−x

] [

y

−x

]T

� 0

convex for y > 0



Some special cases: log-sum-exp

log-sum-exp: f (x) = log
∑n

k=1 exp xk is convex

max{x1, · · · , xn} ≤ f (x) ≤ max{x1, · · · , xn} + log n, so f can be viewed as a
differentiable approximation of the max function.

Proof.

∇2
f (x) =

1

(1T z)2
((1T

z) diag(z) − zz
T ) (zk = exp xk )

=⇒ v
T∇2

f (x)v =
1

(1T z)2

 

n
X

i=1

zi

n
X

i=1

ziv
2
i − (

n
X

i=1

zivi )
2

!

=
1

(1T z)2
(‖a‖2

2‖b‖2
2 − 〈a, b〉2) ≥ 0

where a = (
√

z1, · · · ,
√

zn), b = (
√

z1v1, · · · ,
√

znvn), for any v .



Some special cases: geometric mean

geometric mean: f (x) = (
∏n

k=1 xk)
1/n on Rn

++ is concave

Proof.

∇2
f (x) = −

Qn

i=1 x
1/n

i

n2
(n diag2(q) − qq

T ) (qi = 1/xi )

=⇒ v
T∇2

f (x)v = −
Qn

i=1 x
1/n

i

n2

 

n
X

i=1

1
n
X

i=1

v
2
i q

2
i − (

n
X

i=1

qivi )
2

!

= −
Qn

i=1 x
1/n

i

n2
(‖a‖2

2‖b‖2
2 − 〈a,b〉2) ≤ 0

where ai = 1, bi = qivi for any v , so ∇2f (x) � 0.



Epigraph and sublevel set

α-sublevel set of f : Rn → R :

Cα = {x ∈ dom f | f (x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R :

epi f = {(x , t) ∈ Rn+1 | x ∈ dom f , f (x) ≤ t}

f is convex if and only if epi f is a convex set



Jensen’s inequality and extensions

basic inequality: if f is convex, then for any θ ∈ [0, 1],

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y)

extension: if f is convex, then

f (E[z]) ≤ E[f (z)]

for any random variable z.



Using Jensen’s inequality: deriving Holder’s inequality

θ log a + (1 − θ) log b ≤ log(θa + (1 − θ)b)

=⇒ aθb1−θ ≤ θa + (1 − θ)b ∀a, b ≥ 0, θ ∈ [0, 1]

Applying this with

a =
|xi |

p

∑

j |xj |p
a =

|yi |
p

∑

j |yj |p
θ = 1/p

yields

(

|xi |
p

∑

j |xj |p

)1/p (

|yi |
p

∑

j |yj |p

)1/q

≤
|xi |

p

p
∑

j |xj |p
+

|yi |
p

q
∑

j |yj |p

and summing over i yields Holder’s inequality.



Operations preserving convexity

◮ nonnegative weighted sum

◮ composition with affine function

◮ pointwise maximum and supremum

◮ composition

◮ minimization

◮ perspective



positive weighted sum & composition with affine function

◮ f is convex =⇒ αf is convex for any α ≥ 0

◮ f1, f2 are convex =⇒ f1 + f2 is convex (extends to infinite sums,
integrals)

◮ f is convex =⇒ f (Ax + b) is convex

Examples:

◮ log barrier for linear inequalities

f (x) = −
m
∑

i=1

log(bi − aT
i x)

◮ f (x) = ‖Ax + b‖



Pointwise maximum

If f1, · · · , fm are convex, then f (x) = max{f1(x), · · · , fm(x)} is convex

examples

◮ piecewise-linear function: f (x) = maxi=1,··· ,m(aT
i x + bi) is convex

◮ sum of r largest components of x ∈ Rn:

f (x) = x[1] + x[2] + · · · + x[n]

is convex (x[i ] is ith largest component of x)



Pointwise supremum

If f (x , y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f (x , y)

is convex

In terms of epigraph:

epi g =
⋂

y∈A

epi f (·, y)

Examples

◮ support function of a set: SC (x) = supy∈C yT x

◮ f (x) = supy∈C ‖x − y‖

◮ λmax(X ) = sup‖u‖2=1 uT Xu where X ∈ Sn is convex



Minimization

If f (x , y) is convex in (x , y) and C is a convex nonempty set, then

g(x) = inf
y∈C

f (x , y)

is convex

examples

◮ f (x , y) = xTAx + 2xTBy + yT Cy with

[

A B

BT C

]

� 0 C ≻ 0

Because
g(x) = inf

y
f (x , y) = xT (A − BC−1BT )x

is convex, the Schur complement A − BC−1BT � 0

◮ distance to a set: dist(x , S) = infy∈S ‖x − y‖ is convex if S is convex



Minimization: proof

Proof.
Suppose x1, x2 ∈ dom g . Given ǫ > 0, ∃ y1, y2 ∈ C such that
f (xi , yi ) ≤ g(xi) + ǫ. Hence for any θ ∈ [0, 1],

g(θx1 + (1 − θ)x2) = inf
y∈C

f (θx1 + (1 − θ)x2, y)

≤ f (θx1 + (1 − θ)x2, θy1 + (1 − θ)y2)

≤ θf (x1, y1) + (1 − θ)f (x2, y2)

≤ θg(x1) + (1 − θ)g(x2) + ǫ

which holds for any ǫ > 0. Thus

g(θx1 + (1 − θ)x2) ≤ θg(x1) + (1 − θ)g(x2)



Composition with scalar functions

Composition of g : Rn → R and h : R → R :

f (x) = h(g(x))

Use:
∇2f (x) = h′(g(x))∇2g(x) + h′′(g(x))∇g(x)∇g(x)T

f is convex if

◮ g convex, h convex, h̃ nondecreasing
◮ example: exp g(x) is convex if g is convex

◮ g concave, h convex, h̃ nonincreasing
◮ example: 1/g(x) is concave if g is concave and positive



Composition with vector functions

Composition of g : Rn → Rk and h : Rk → R :

f (x) = h(g(x) = h(g1(x), · · · , gk(x))

when n = 1:

f ′′(x) = g ′(x)T∇2h(g(x))g ′(x) + ∇h(g(x))T g ′′(x)

f is convex if

◮ gi convex, h convex, h̃ nondecreasing in each argument
◮ example:

Pm

i=1 exp gi (x) is convex if gi is convex

◮ gi concave, h convex, h̃ nonincreasing in each argument
◮ example:

Pm

i=1 log gi (x) is concave if gi is concave and positive



Perspective

The perspective of a function f : Rn → R is the function g : Rn+1 → R ,

g(x , t) = tf (
x

t
) dom g = {(x , t) | x/t ∈ dom f , t > 0}

f is convex =⇒ g is convex.

For t > 0,

(x , t, s) ∈ epi g ⇐⇒ f (x/t) ≤ s/t ⇐⇒ (x/t, s/t) ∈ epi f

Hence epi g is the inverse image of epi f under the perspective mapping

examples:

◮ f (x) = xT x =⇒ g(x , t) = xT x/t is convex for t > 0

◮ f (x) = − log x =⇒ g(x , t) = t log t − t log x is convex on R2
++



The conjugate function
the conjugate of a function f is

f ∗(y) = sup
x∈dom f

yT x − f (x)

Figure: Conjugate function



The conjugate function: examples

◮ negative logarithm f (x) = − log x

f ∗(y) = sup
x>0

xy + log x =

{

−1 − log(−y) y < 0
∞ otherwise

◮ strictly convex quadratic f (x) = 1/2xTQx with Q ∈ Sn
++

f ∗(y) = sup
x

yT x − 1/2xTQx

=
1

2
yTQ−1y



The conjugate function: properties

Properties:

◮ f ∗ is convex

◮ f is convex and closed (i.e., epi f is closed) =⇒ f ∗∗ = f .

◮ Frechel’s inequality: f (x) + f ∗(y) ≥ xT y

◮ Example: with f (x) = (1/2)xT Qx with Q ∈ Sn
++, we have

x
T
y ≤ (1/2)xT

Qx + (1/2)yT
Q

−1
y



Convexity with respect to generalized inequalities

f : Rn → Rm is K -convex if dom f is convex and

f (θx + (1 − θ)y) �K θf (x) + (1 − θ)f (y) ∀x , y ∈ dom f , θ ∈ [0, 1]



Convexity with respect to generalized inequalities

f : Rn → Rm is K -convex if dom f is convex and

f (θx + (1 − θ)y) �K θf (x) + (1 − θ)f (y) ∀x , y ∈ dom f , θ ∈ [0, 1]

example: f : Sm → Sm with f (X ) = X 2 is Sm
+ -convex

Proof.
for fixed z ∈ Rm, zT X 2z = ‖Xz‖2

2 is convex in X , i.e.,

zT (θX + (1 − θ)Y )2z ≤ θzTX 2z + (1 − θ)zT Y 2z ∀X , Y ∈ Sm

=⇒ (θX + (1 − θ)Y )2 � θX 2 + (1 − θ)Y 2



Quasiconvex functions

Definition
A function f (x) is quasiconvex if ∀x , y ∈ dom f ,

f (θx + (1 − θ)y) ≤ max{f (x), f (y)} ∀θ ∈ [0, 1]

Theorem
f (x) is quasiconvex if and only if every level set of f is convex.



Quasiconvex functions: level sets

Theorem
f (x) is quasiconvex if and only if every level set of f is convex.

Proof.
1. Suppose f is quasiconvex. Suppose x , y ∈ dom f belongs to level set
Sa = {x | f (x) ≤ a}. Then

f (θx + (1 − θ)y) ≤ max{f (x), f (y)} ≤ a

Thus θx + (1 − θ)y ∈ Sa for all θ ∈ [0, 1], so Sa is convex.

2. Suppose every level set of f is convex. For any x , y ∈ dom f , let
a = max{f (x), f (y)}. Clearly x , y ∈ Sa. Because Sa is convex,
θx + (1 − θ)y ∈ Sa for any θ ∈ [0, 1]. Thus f is quasiconvex.


