Convex functions

Definition
f: R" — R is convex if dom f is a convex set and

F(Ox + (1 = 0)y) < 0f(x) + (1 - 0)f(y)

for all x,y € dom f, and 0 € [0,1].



Convex functions

Definition
f: R" — R is convex if dom f is a convex set and

f(Ox + (1 —0)y) < 0f(x) + (1 — 0)f(y)
for all x,y € dom f, and 0 € [0,1].

» f is concave if —f is convex

> f is strictly convex if dom f is convex and
f(Ox+ (1 —0)y) <6f(x)+ (1 —0)f(y)

for all x,y € dom f, x £y, 6 € (0,1).



Convex function: examples on R

> affine: ax + b
> exponential: e, for any € R

> powers:

» x?on Ryy,fora>1lora<o
» —x?on Ryy, for0<a<1

» powers of absolute value: |x|P on R, for p >1
> negative logarithm: —logx on R,
> xlogx on Ryt



Convex function: affine functions

Affine functions are both convex and concave

» affine function in R":
f(x)=a"x+b
» affine function in R™*":

m n

f(X):tr(ATX)+b:<A’X>+b:ZZAinij+b

i=1 j=1



Convex function: norms

All norms are convex

» norms in R":
n 1/p
Il = (z |x,-|P)
i=1

forallp>1
» norms in RM*"™:

» Frobenius norm: || X||r = (X, X)'/?
» spectral norm: || X||l2 = omax(X) = (Amax (X X))V/2



Operator norms

Let || - || and || - ||» be norms on R™ and R", respectively. The operator
norm of X € R™*", induced by || - ||, and || - ||, is defined to be

[Xlla.p = sup {{[Xulla | [lulls <1}

» Spectral norm (¢2-norm):
IXll2 = 1X[|2.2 = Tmax(X) = (Amax(X " X))*/2

» Max-row-sum norm:

n
IXlloo = 1 X[loo,00 = _max_ > |Xj]
i=1,---,m 1

j=

» Max-column-sum norm:

m
X[ =Xl = max > |Xj]
j=1n



Dual norm

Let || - || be a norm on R". The associated dual norm, denoted || - ||, is
defined as
T
Izl =sup {z"x | [Ix]| < 1}.
» z7x < ||x|| ||z]|+ for all x,z € R"
» The dual of the ¢,-norm is the {q-norm, where 1/p+1/g=1
» The dual of the #>-norm on R™*" is the nuclear norm,

1Z]]2 = sup {tr(Z7X) | [IX]|2 < 1}
=01(2)+ -+ 0,(2) =t(Z27 2)*/2,

where r = rank Z.



Restriction of a convex function to a line

f:R"— Risconvexiff g: R — R,
g(t)=f(x+tv) domg={t]|x+tvedomf}
is convex for any x € domf, v € R"

So we can check the convexity of a function with multiple variables by
checking the convexity of functions of one variable



Restriction of a convex function to a line: example

Show that f : ST, — R with f(X) = logdet X is concave.

Proof.
Define g : R — R, g(t) = f(X + tV) with domg = {t | X + tV > 0},
for any X > 0and V € S".
g(t) = logdet(X + tV)
= log det(XY/2(I 4 tX~1/2yx~1/2)x1/2)

= Z log(1 + tA;) + log det X

i=1

where A1, - - -, \, are the eigenvalues of X~ 1/2VX~1/2 Hence g is
concave for any X = 0and V € §", sois f.



Extended-value extensions

Definition
If f : R"™ — R is convex, we define its extended-value extension
f:R"— RU{co} by

2 v | f(x) xedomf
f(X)_{oo x ¢ dom f
By this notation, the condition
F(Ox + (1 — 0)y) < 0f(x) + (1 — 0)F(y) V6 €[0,1]

is equivalent to the two conditions:
» dom f is convex
> f(Ox+(1—0)y) <of(x)+ (1 -6)f(y) V9e]0,1]



First-order conditions

Theorem (first-order condition)

If f - R™ — R is differentiable, then f is convex if and only if dom f is
convex and

fly) > f(x) +VF(x)"(y — x), Vx,y € domf



First-order conditions

Theorem (first-order condition)

If f - R™ — R is differentiable, then f is convex if and only if dom f is
convex and

fly) > f(x) +VF(x)"(y — x), Vx,y € domf

» local information (gradient) leads to global information (convexity)

> f is strictly convex if and only if dom f is convex and

f(y) > f(x) —l—Vf(x)T(y —x), Vx,y€domf,x#y



First-order condition: proof

Proof.

> Suppose f(x) is convex. Then

Fix+0(y = x)) = f(x) < 0(f(y) — f(x)), VvO€l0,1]

o!iino f(X + H(y_ox)) — f(X) < f(y) _ f(X)

= Vf(x)"(y —x) < f(y) — f(x)

> Suppose the first-order condition holds. Let z = 6x + (1 — 0)y. Then
f(x) > f(z) + VF(z) (x — z)

f(y) > f(2) + VF(2) (v - 2)
= 0f(x) + (1 - 6)f(y) > f(2)

which is true for any 6 € [0, 1], so f is convex.



Second-order conditions

Theorem (second-order condition)

If f : R" — R is twice differentiable, then f is convex if and only if
dom £ is convex and its Hessian is positive semidefinite, i.e.,

Vf(x) =0 Vxé&domf



Second-order conditions

Theorem (second-order condition)

If f : R" — R is twice differentiable, then f is convex if and only if
dom £ is convex and its Hessian is positive semidefinite, i.e.,

Vf(x) =0 Vxé&domf

» if VF(x) > 0 for all x € dom f, then f is strictly convex



Second-order conditions: proof
Proof.

» Suppose f is convex. Because f is twice differentiable, we have
f(x 4 0x) = f(x) + VF(x) ox + %5XTV2f(X)5X + R(x; 6x)||6x|?

where R(x;dx) — 0 as 6x — 0. Because f is convex, by the first-order
condition, f(x + dx) > f(x) + Vf(x)"x. Hence

5xTV2F(x)0x + R(x; 6x)||6x])> > 0

for any dx. Let 6x = ed. Taking € — 0 yields d” V?f(x)d > 0 for any d,
thus V2£(x) = 0.

» Suppose Vf(x) = 0 Vx € dom f. Then for any x,y € dom f and some
z=0x+ (1—0)y with 6 € [0,1],

F(y) = F(x) + VF(x) (v = x) + %(y - x) "V (2)(y = x)
> f(x) + VF(x)"(y = x)

By the first-order condition, f is convex.



Some special cases

> quadratic function: f(x) = 3x"Px+ q"x + r, where P € 5"
Vf(x)=Px+q V?f(x)=P

convex if P> 0
> least-squares: f(x) = ||Ax — b||3

Vf(x) =2AT(Ax — b) V?f(x) =2ATA

convex for any A

» quadratic-over-linear: f(x,y) = x?/y

w322 =

convex for y >0



Some special cases: log-sum-exp

log-sum-exp: f(x) = log Y ,_; exp xi is convex

max{xt, -+ ,xn} < f(x) < max{x1, - ,xs} + logn, so f can be viewed as a
differentiable approximation of the max function.
Proof.
1
V2F(x) = (17_2)2 (17 z) diag(z) — zz") (zx = expxk)

— v V’f(x)v (17_—2 (ZZ,ZZ, (ZZ,‘V,’)Z)
(1T B s(lall2]1b]13 = (a, b)%) > 0
where a = (\/z1, -+ ,\/Zn), b= (/Z1v1,- - ,\/ZnVn), for any v.



Some special cases: geometric mean

geometric mean: f(x) = ([];_, xc)*/" on R", is concave

Proof.

n X'l/n
V) = - LS (ndiag?(q) - aa”) (a1 = 1/x)
1/n
= v Vf(x)v = L <Z Zv Zq,v, >
H, ) ll/n l "

= ni(l\ all2)1bll — (a, b)*) < 0

where a; = 1, b; = qv; for any v, so V?f(x) < 0.



Epigraph and sublevel set

a-sublevel set of f : R" — R:
Co={x€edom f|f(x)<a}
sublevel sets of convex functions are convex (converse is false)
epigraph of f : R" — R:
epi f = {(x,t) € R™ | x € dom f,f(x) <t}

f is convex if and only if epi f is a convex set



Jensen’s inequality and extensions

basic inequality: if f is convex, then for any 6 € [0, 1],
F(Ox + (1 = 0)y) < 0f(x) + (1 = O)f(y)
extension: if f is convex, then
f(E[z]) < E[f(2)]

for any random variable z.



Using Jensen’s inequality: deriving Holder's inequality

floga+ (1 —0)logb < log(ha+ (1 — 0)b)
— a7 <ha+(1-60)b Va,b>0,0¢€]0,1]

Applying this with

2= |Xi|p _ |)/i|p

= 3=
Zj |xj|P Zj lyjlP

0=1/p

yields

sl N e N il
1 ! S 1 + 1
Zj |x;1P Zj ly;|P P2j|xj|p qu 1718

and summing over i yields Holder's inequality.



Operations preserving convexity

vV vV.v v v Yy

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective



positive weighted sum & composition with affine function

> f is convex = af is convex for any a > 0

> fi,f, are convex = f; + f» is convex (extends to infinite sums,
integrals)

> fis convex = f(Ax + b) is convex

Examples:

» log barrier for linear inequalities
m
f(x)=— Z log(b; — a; x)
i=1

> £(x) = [|Ax + b



Pointwise maximum

If fi,---, fn are convex, then f(x) = max{fi(x), -, fm(x)} is convex

examples
» piecewise-linear function: f(x) = max;—1.....m(a] x + b;) is convex

» sum of r largest components of x € R™:
F(x) = X + X2+ + Xl

is convex (x(; is ith largest component of x)



Pointwise supremum

If f(x,y) is convex in x for each y € A, then

g(x) =sup f(x,y)
yEA

is convex

In terms of epigraph:

epi g = [ epi f(-,y)
yeA
Examples
> support function of a set: Sc(x) = sup,¢c yTx
> f(x) =sup,ccx—yl
> Amax(X) = sup;

ul=1 U’ Xu where X € S is convex



Minimization
If f(x,y) is convex in (x,y) and C is a convex nonempty set, then
= inf f(x,
g(x) = inf f(x.y)
is convex

examples
> f(x,y) = xT Ax + 2x" By + y T Cy with
{ A B

Because
g(x) =inf f(x,y) =x"(A—BC*BT)x
y

is convex, the Schur complement A— BC~1BT =0

» distance to a set: dist(x,S) = inf,cs || x — y|| is convex if S is convex



Minimization: proof

Proof.

Suppose x1,x; € dom g. Given € > 0, 3 y1,y» € C such that
f(xi,yi) < g(x;) + €. Hence for any 6 € [0, 1],

g(0x1 + (1 —0)x) = |212 f(0x1+ (1 —0)x,y)
y

< f(0x+ (1= 0)xe, 0y + (1 —0)y2)
< Of(x1, 1) + (1 = 0)f (x2, ¥2)
<0g(x)+(1-0)glxe)+e

which holds for any € > 0. Thus

g(0x + (1 - 0)x) < 0g(x1) + (1 - 0)g(x2)



Composition with scalar functions

Composition of g: R" - Rand h: R — R:

Use:
V2 (x) = H'(g(x)) Vg (x) + h"(g(x)) Ve (x)Vg(x)"
f is convex if
> g convex, h convex, h nondecreasing
> example: exp g(x) is convex if g is convex
> g concave, h convex, h nonincreasing
» example: 1/g(x) is concave if g is concave and positive



Composition with vector functions

Composition of g : R"” — R and h: R — R:

f(x) = h(g(x) = h(gr(x), - -, 8k(x))

when n = 1:
f(x) = g'(x)"V2h(g(x))g'(x) + Vh(g(x)) g" (x)

f is convex if
> g; convex, h convex, h nondecreasing in each argument
> example: Y- exp gi(x) is convex if g; is convex
> g; concave, h convex, h nonincreasing in each argument
> example: Y7 loggi(x) is concave if gj is concave and positive



Perspective

The perspective of a function f : R" — R is the function g : R""! — R,
glx,t) = tf(%) dom g = {(x,t) | x/t € dom f,t >0}

f is convex = g is convex.

For t > 0,
(x,t,5) €epi g <= f(x/t) <s/t < (x/t,s/t) Eepi f

Hence epi g is the inverse image of epi f under the perspective mapping

examples:
» f(x)=x"x = g(x,t) =xTx/t is convex for t >0
» f(x)=—logx = g(x,t) =tlogt— tlogx is convex on R?,



The conjugate function

the conjugate of a function f is

F(y)= sup y'x—f(x)

x€dom f

N0, =F*(w)

Figure: Conjugate function

/-y
/



The conjugate function: examples

> negative logarithm f(x) = —log x
—1—log(-y) y<O0
* — —
Fly) = ii% Xy +logx = { 00 otherwise

» strictly convex quadratic f(x) = 1/2x" Qx with Q € S7_.

f*(y) =sup y'x—1/2x" Qx
1

T -1
—2yQ y



The conjugate function: properties

Properties:
> f*is convex
» f is convex and closed (i.e., epi f is closed) = ** =f.
» Frechel's inequality: f(x) + f*(y) > x"y
» Example: with f(x) = (1/2)x” Qx with Q € ST, we have

xTy < (1/2)XTQX + (1/2)yTQ_1y



Convexity with respect to generalized inequalities

f:R" — R™is K-convex if dom f is convex and

f(Ox+ (1 —0)y) 2k 0f(x)+ (1 —0)f(y) Vx,y €domf,0€[0,1]



Convexity with respect to generalized inequalities

f:R" — R™is K-convex if dom f is convex and

f(Ox+ (1 —0)y) 2k 0f(x)+ (1 —0)f(y) Vx,y €domf,0€[0,1]

example: f: S™ — S™ with £(X) = X? is S-convex

Proof.

for fixed z € R™, zT X2z = || Xz||3 is convex in X, i.e.,

ZTOX +(1-0)Y)2z<0z" X2+ (1-0)z"Y?z ¥X,Y €S™
= (X +(1-0)Y)2=0X?+(1-0)Y?



Quasiconvex functions

Definition
A function f(x) is quasiconvex if Vx,y € dom f,

f(Ox + (1 —0)y) < max{f(x),f(y)} VO e]0,1]

Theorem
f(x) is quasiconvex if and only if every level set of f is convex.



Quasiconvex functions: level sets

Theorem
f(x) is quasiconvex if and only if every level set of f is convex.

Proof.
1. Suppose f is quasiconvex. Suppose x,y € dom f belongs to level set
S, ={x|f(x) < a}. Then

F(Ox + (1 - 0)y) < max{f(x),f(y)} < a
Thus x4+ (1 —0)y € S, for all § € [0,1], so S, is convex.

2. Suppose every level set of f is convex. For any x,y € domf, let
a =max{f(x),f(y)}. Clearly x,y € S,. Because S, is convex,
Ox + (1 —0)y € S, for any 6 € [0,1]. Thus f is quasiconvex.



