By removing edges not involved in some solution, and contracting edges involved in all solutions, we reduce the problem to one in a graph with O(k) edges and vertices. This simplification step transforms any time bound involving m or n to one involving min(m, k) or min(n, k) respectively. This paper also introduces the geometric version of the k smallest spanning trees problem (the graph version was long known) which it solves using order (k+1) Voronoi diagrams.
(BibTeX -- Citations -- ACM DL (SWAT) -- ACM DL (BIT))
Given a graph with edge weights that are linear functions of a parameter, finds the sequence of minimum spanning trees produced as the parameter varies, in total time O(mn log n), by combining ideas from "Sparsification" and "Geometric lower bounds". Also solves various problems of optimizing the parameter value, including one closely related to that in "Choosing subsets with maximum weighted average".
(BibTeX -- Citations -- MIT hypertext bibliography -- ACM DL (SWAT) -- ACM DL (NJC))
We give a linear time algorithm for pruning a node-weighted tree to maximize the average node weight of the pruned subtree; this problem was previously studied under the less obvious name "The Fractional Prize-Collecting Steiner Tree Problem on Trees".
(BibTeX)
Conferences -- Publications -- David Eppstein -- Theory Group -- Inf. & Comp. Sci. -- UC Irvine
Semi-automatically filtered from a common source file.