It is NP-complete, given a simple polygon in 3-space, to find a triangulated simply-connected surface (without extra vertices) spanning that polygon. If extra vertices are allowed, or the surface may be curved, such a surface exists if and only if the polygon is unknotted; the complexity of testing knottedness remains open. Snoeyink has shown that exponentially many extra vertices may be required for a triangulated spanning disk.
(BibTeX -- SCG paper -- Full paper -- Citations -- CiteSeer -- ACM DL)
Publications -- David Eppstein -- Theory Group -- Inf. & Comp. Sci. -- UC Irvine
Semi-automatically filtered from a common source file.