**Application Challenges to Computational Geometry**.

The Computational Geometry Impact Task Force Report.

Tech. Rep. TR-521-96, Princeton University, April 1996.

Advances in Discrete and Computational Geometry – Proc. 1996 AMS-IMS-SIAM Joint Summer Research Conf. Discrete and Computational Geometry: Ten Years Later, Contemporary Mathematics 223, Amer. Math. Soc., 1999, pp. 407–423.**Ununfoldable polyhedra**.

M. Bern, E. Demaine, D. Eppstein, E. Kuo, A. Mantler, and J. Snoeyink.

arXiv:cs.CG/9908003.

Tech. rep. CS-99-04, Univ. of Waterloo, Dept. of Computer Science, Aug. 1999.

*11th Canad. Conf. Comp. Geom.,*1999.

4th CGC Worksh. Computational Geometry, Johns Hopkins Univ., 1999.

*Comp. Geom. Theory & Applications*(special issue for 4th CGC Worksh.) 24 (2): 51–62, 2003.We prove the existence of polyhedra in which all faces are convex, but which can not be cut along edges and folded flat.

Note variations in different versions: the CCCG one was only Bern, Demain, Eppstein, and Kuo, and the WCG one had the title "Ununfoldable polyhedra with triangular faces". The journal version uses the title "Ununfoldable polyhedra with convex faces" and the combined results from both conference versions.

(BibTeX – Erik's publication page – CiteSeer – ACM DL)

**Emerging challenges in computational topology**.

M. Bern, D. Eppstein, et al.

arXiv:cs.CG/9909001.

This is the report from the ACM Workshop on Computational Topology run by Marshall and myself in Miami Beach, June 1999. It details goals, current research, and recommendations in this emerging area of collaboration between computer science and mathematics.

(BibTeX – Citations – CiteSeer)

Co-authors – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine

Semi-automatically filtered from a common source file.