Defines a class of orthogonal graph drawings formed by a point set in three dimensions for which axis-parallel line contains zero or two vertices, with edges connecting pairs of points on each nonempty axis-parallel line. Shows that the existence of such a drawing can be defined topologically, in terms of certain two-dimensional surface embeddings of the same graph. Based on this equivalence, describes algorithms, graph-theoretic properties, and hardness results for graphs of this type.
(Slides from talk at U. Arizona, February 2008 -- Slides from GD08) )
We show that the maximum flow problem can be solved in near-linear time for K5-minor-free and K3,3-minor-free graphs. The same result also holds for H-minor-free graphs when H can be embedded in the plane with one crossing and a structural decomposition of the input flow graph is given.
We consider balloon drawings of trees, in which each subtree of the root is drawn recursively within a disk, and these disks are arranged radially around the root, with the edges at each node spaced equally around the node so as to achieve the best possible angular resolution. If we are allowed to permute the children of each node, then we show that a drawing of this type can be made in which all edges are straight line segments and the area of the drawing is a polynomial multiple of the shortest edge length. However, if the child ordering is prescribed, exponential area might be necessary. We show that, if we relax the requirement of straight line edges and draw the edges as circular arcs (a style we call Lombardi drawing) then even with a prescribed child ordering we can achieve polynomial area.
We show how to draw any graph of maximum degree three in three dimensions with 120 degree angles at each vertex or bend, and any graph of maximum degree four in three dimensions with the angles of the diamond lattice at each vertex or bend. In each case there are no crossings and the number of bends per edge is a small constant.
We study the combinatorial complexity of generalized Voronoi diagrams that determine the closest two point sites to a query point, where the distance from the query point to a pair of sites is a combination of the individual distances to the sites and the distance from one site in the pair to the other.
We study the problem of matching geographic regions to points in a regular grid, minimizing the distance between each region's centroid and the corresponding grid point, and preserving as much as possible the relative orientations between pairs of regions.
We show that every planar graph of maximum degree three has a planar Lombardi drawing and that some but not all 4-regular planar graphs have planar Lombardi drawings.
We extend force-directed methods of graph drawing by adding a force that pulls vertices towards the center of the drawing, with a strength proportional to the centrality of the vertex. Gradually scaling up this force helps avoid the tangling that would otherwise result from its use.
A graph is 1-planar if it can be drawn in the plane with at most one crossing per edge, and maximal 1-planar if it is 1-planar but adding any edge would force more than one crossing on some edge or edges. Although maximal 1-planar graphs on n vertices may have as many as 4n − 8 edges, we show that there exist maximal 1-planar graphs with as few as 45n/17 + O(1) edges.
We study relational event data in which a collection of actors in a social network have a sequence of pairwise interactions. Contiguous subsequences of these interactions form graphs, and we develop efficient data structures for querying the parameters of these graphs.
We characterize the graphs of two-dimensional soap bubble clusters as being exactly the bridgeless 3-regular planar graphs.
We generalize the 1/3-2/3 conjecture, according to which every partial order should have a pair of items that are nearly equally likely to appear in either order in a random linear extension, to antimatroids, and we prove it for several specific types of antimatroid.
We give tight bounds on the size of the largest remaining grid minor in a grid graph from which a given number of vertices have been deleted, and study several related problems.
We study the problem of distinguishing workers (people who complete their assigned tasks) from slackers (people who do not contribute towards the completion of their tasks) by grouping people in pairs and assigning a task to each group.
We show that testing whether a graph is 1-planar (drawable with at most one crossing per edge) may be performed in polynomial and fixed-parameter tractable time for graphs of bounded circuit rank, vertex cover number, or tree-depth. However, it is NP-complete for graphs of bounded treewidth, pathwidth, or bandwidth.
This edited volume collects experiences with automated learning systems based on the theory of knowledge spaces, and mathematical explorations of the theory of knowledge spaces and their efficient implementation.
We show how to represent a learning space by a small family of learning sequences, orderings of the items in a learning sequence that are consistent with their prerequisite relations. This representation allows for the rapid generation of the family of all consistent knowledge states and the efficient assessment of the state of knowledge of a human learner.
In another chapter of the same book we used learning sequences to represent learning spaces and perform efficient knowledge assessment of a human learning. In this chapter we show how to use the same data structure to build learning spaces on a sample of the items of a larger learning space (an important subroutine in knowledge assessment) and to modify a learning space to more accurately model students.
We show how to use invertible Bloom filters as part of range searching data structures that determine the differences between the members of two sets that lie in a given query range.
For every positive integer n, there exists a set of n points on a parabola, with the property that every n-vertex planar graph can be drawn without crossings with its vertices at these points and with its edges drawn as circular arcs.
Years -- Publications -- David Eppstein -- Theory Group -- Inf. & Comp. Sci. -- UC Irvine
Semi-automatically filtered from a common source file.