Uses an idea of Baker to cover a planar graph with subgraphs of low treewidth. As a consequence, any fixed pattern can be found as a subgraph in linear time; the same methods can be used to solve other planar graph problems including vertex connectivity, diameter, girth, induced subgraph isomorphism, and shortest paths. A companion paper, "Diameter and treewidth in minor-closed graph families", presents a result announced in the conference version of this paper, that exactly characterizes the minor-closed graph families for which the same techniques apply.
(BibTeX -- Citations -- Citations from MIT hypertext bibliography -- CiteSeer (SODA) -- CiteSeer (JGAA))
We define a notion of geometric thickness, intermediate between the previously studied concepts of graph thickness and book thickness: a graph has geometric thickness T if its vertices can be embedded in the plane, and its edges partitioned into T subsets, so that each subset forms a planar straight line graph. We then give upper and lower bounds on the geometric thickness of complete graphs.
(Springer abstract -- BibTeX -- CiteSeer -- Citations -- ACM DL -- GDEA)
We use random sampling to quickly estimate, for each vertex in a graph, the average distance to all other vertices.
(BibTeX -- SODA paper -- Citations -- CiteSeer)
We show that any graph can be colored in time O(2.415n), by a dynamic programming procedure in which we extend partial colorings on subsets of the vertices by adding one more color for a maximal independent set. The time bound follows from limiting our attention to maximal independent subsets that are small relative to the previously colored subset, and from bounding the number of small maximal independent subsets that can occur in any graph.
(BibTeX -- Citations -- CiteSeer -- WADS talk slides -- ACM DL)
We describe a new method of drawing graphs, based on allowing the edges to be merged together and drawn as "tracks" (similar to train tracks). We present heuristics for finding such drawings based on my previous algorithms for finding maximal bipartite subgraphs, prove that several important families of graphs have confluent drawings, and provide examples of other graphs that can not be drawn in this way.
We find improved exponential-time algorithms for exact solution of the traveling salesman problem on graphs of maximum degree three and four. We also consider related problems including counting the number of Hamiltonian cycles in such graphs.
(BibTeX -- WADS talk slides -- Citations)
We consider graph drawing algorithms for learning spaces, a type of st-oriented partial cube derived from antimatroids and used to model states of knowledge of students. We show how to draw any st-planar learning space so all internal faces are convex quadrilaterals with the bottom side horizontal and the left side vertical, with one minimal and one maximal vertex. Conversely, every such drawing represents an $st$-planar learning space. We also describe connections between these graphs and arrangements of translates of a quadrant.
We show how to test whether a graph is a partial cube, and if so embed it isometrically into a hypercube, in time O(n2), improving previous O(nm)-time solutions; here n is the number of vertices and m is the number of edges. The ideas are to use bit-parallelism to speed up previous approaches to the embedding step, and to verify that the resulting embedding is isometric using an all-pairs shortest path algorithm from "algorithms for media".
(slides)
Defines a class of orthogonal graph drawings formed by a point set in three dimensions for which axis-parallel line contains zero or two vertices, with edges connecting pairs of points on each nonempty axis-parallel line. Shows that the existence of such a drawing can be defined topologically, in terms of certain two-dimensional surface embeddings of the same graph. Based on this equivalence, describes algorithms, graph-theoretic properties, and hardness results for graphs of this type.
(Slides from talk at U. Arizona, February 2008 -- Slides from GD08) )
Proves that it's NP-complete to compute the Hadwiger number of a graph.
We define the h-index of a graph to be the maximum h such that the graph has h vertices each of which has degree at least h. We show that the h-index, and a partition of the graph into high and low degree vertices, may be maintained in constant time per update. Based on this technique, we show how to maintain the number of triangles in a dynamic graph in time O(h) per update; this problem is motivated by Markov Chain Monte Caro simulation of the Exponential Random Graph Model used for simulation of social networks. We also prove bounds on the h-index for scale-free graphs and investigate the behavior of the h-index on a corpus of real social networks.
We consider drawings of planar partial cubes in which all interior faces are centrally symmetric convex polygons, as in my previous paper Algorithms for Drawing Media. Among all drawings of this type, we show how to find the one with optimal angular resolution. The solution involves a transformation from the problem into the parametric negative cycle detection problem: given a graph in which the edge weights are linear functions of a parameter λ, find the minimum value of λ for which the graph contains no negative cycles.
We show that the maximum flow problem can be solved in near-linear time for K5-minor-free and K3,3-minor-free graphs. The same result also holds for H-minor-free graphs when H can be embedded in the plane with one crossing and a structural decomposition of the input flow graph is given.
Tutte's method of spring embeddings allows any triangulated planar graph to be drawn so that the outer face has any pre-specified convex shape, but it may place vertices exponentially close to each other. Alternative graph drawing methods provide polynomial-area straight line drawings but do not allow the outer face shape to be specified. We describe a drawing method that combines both properties: it has polynomial area, and can match any pre-specified shape of the outer face, even a shape in which some of the vertices have 180 degree angles. We apply our results to drawing polygonal schemas for graphs embedded on surfaces of positive genus.
In honor of artist Mark Lombardi, we define a Lombardi drawing to be a drawing of a graph in which the edges are drawn as circular arcs and at each vertex they are equally spaced around the vertex so as to achieve the best possible angular resolution. We describe algorithms for constructing Lombardi drawings of regular graphs, 2-degenerate graphs, graphs with rotational symmetry, and several types of planar graphs. A program for the rotationally symmetric case, the Lombardi Spirograph, is available online.
We show how to draw any graph of maximum degree three in three dimensions with 120 degree angles at each vertex or bend, and any graph of maximum degree four in three dimensions with the angles of the diamond lattice at each vertex or bend. In each case there are no crossings and the number of bends per edge is a small constant.
This is the journal version of "Hardness of approximate compaction for nonplanar orthogonal graph drawings". It has stronger inapproximability bounds, and more variations of the compaction problem that are hard to approximate. In addition it includes a retraction of a buggy approximation algorithm from the conference version.
Journals -- Publications -- David Eppstein -- Theory Group -- Inf. & Comp. Sci. -- UC Irvine
Semi-automatically filtered from a common source file.