This survey on parallel algorithms emphasized the use of basic subroutines such as prefix sums, Euler tours, ear decomposition, and matrix multiplication for solving more complicated graph problems.
(BibTeX -- Citations -- CiteSeer -- ACM DL (ARCS) -- ACM DL (ICALP))
Describes efficient sequential and parallel algorithms for orienting the edges of an undirected planar graph so that each vertex has few outgoing edges. From such an orientation one can test in constant time whether a given edge exists. One consequence is a parallel algorithm to list all subgraphs isomorphic to K3 or K4. More recently this paper has been cited for its applications to scheduling update operations in parallel finite element methods.
(BibTeX -- Citations -- CiteSeer -- ACM DL)
Considers partitions of the vertices of a graph into equal subsets, with few pairs of subsets connected by edges. (Equivalently we view the graph as a subgraph of a product in which one factor is sparse.) A random graph construction shows that such a factorization does not always exist.
(BibTeX -- Full paper -- CiteSeer -- ACM DL)
We later discovered that the same results were published in a SPAA paper by Greg Shannon.
(BibTeX)
The complement of a minimum spanning tree is a maximum spanning tree in the dual graph. By applying this fact we can use a modified form of Sleator and Tarjan's dynamic tree data structure to update the MST in logarithmic time per update.
(BibTeX -- Citations -- CiteSeer -- ACM DL)
Characterizes two-terminal series graphs in terms of a tree-like structure in their ear decompositions. Uses this characterization to construct parallel algorithms that recognize these graphs and construct their series-parallel decompositions.
(BibTeX -- Citations -- MIT hypertext bibliography -- CiteSeer -- ACM DL)
By removing edges not involved in some solution, and contracting edges involved in all solutions, we reduce the problem to one in a graph with O(k) edges and vertices. This simplification step transforms any time bound involving m or n to one involving min(m, k) or min(n, k) respectively. This paper also introduces the geometric version of the k smallest spanning trees problem (the graph version was long known) which it solves using order (k+1) Voronoi diagrams.
(BibTeX -- Citations -- ACM DL (SWAT) -- ACM DL (BIT))
It was known that planar graphs have O(n) subgraphs isomorphic to K3 or K4. That is, K3 and K4 have linear subgraph multiplicity. This paper shows that the graphs with linear subgraph multiplicity in the planar graphs are exactly the 3-connected planar graphs. Also, the graphs with linear subgraph multiplicity in the outerplanar graphs are exactly the 2-connected outerplanar graphs.
More generally, let F be a minor-closed family, and let x be the smallest number such that some complete bipartite graph Kx,y is a forbidden minor for F. Then the x-connected graphs have linear subgraph multiplicity for F, and there exists an (x − 1)-connected graph (namely Kx − 1,x − 1) that does not have linear subgraph multiplicity. When x ≤ 3 or when x = 4 and the minimal forbidden minors for F are triangle-free, then the graphs with linear subgraph multiplicity for F are exactly the x-connected graphs.
Please refer only to the journal version, and not the earlier technical report: the technical report had a bug that was repaired in the journal version.
Described slightly superlinear algorithms for partitioning a tree into a given number of subtrees, making them all as short as possible. Frederickson at the same conference further improved the sequential time to linear. There may still be something worth publishing in the parallel algorithms.
For any sparse family of graphs, one can list in linear time all complete bipartite subgraphs of a graph in the family. There are O(n) complete bipartite subgraphs of a graph in the family, and the sum of the numbers of vertices in these subgraphs is also O(n).
Nowadays these results can also be interpreted as a form of formal concept analysis. If a set of objects and attributes is sparse (e.g., if it is generated by adding objects and attributes one at a time, where each newly-added object is given O(1) attributes and each newly-added attribute is held by O(1) objects) then the total size of all concepts in its concept lattice is linear, and this lattice may be generated in linear time.
(BibTeX -- Citations -- CiteSeer -- ACM DL)
Given a sequence of edge insertions and deletions in a graph, finds the corresponding sequence of minimum spanning tree changes, in logarithmic time per update. Similarly solves the planar geometric version of the problem (using a novel "mixed MST" formulation in which part of the input is a graph and part is a point set) in time O(log2 n) for the Euclidean metric and O(log n log log n) for the rectilinear metric.
(BibTeX -- Citations -- CiteSeer -- ACM DL (JA))
Uses a divide and conquer on the edge set of a graph, together with the idea of replacing subgraphs by sparser certificates, to make various dynamic algorithms as fast on dense graphs as they are on sparse graphs. Applications include random generation of spanning trees as well as finding the k minimum weight spanning trees for a given parameter k.
(BibTeX -- Citations -- MIT hypertext bibliography -- ACM DL)
Saves a log factor over dynamic graph algorithms in "Sparsification" and their applications, by dividing vertices instead of edges. Merged into the journal version of "Sparsification".
(BibTeX -- Citations -- CiteSeer)
Replaces portions of a hierarchical separator decomposition with smaller certificates to achieve fast update times for various dynamic planar graph problems. Applications include finding the k best spanning trees of a planar graph.
(BibTeX -- Citations -- MIT hypertext bibliography)
First half of journal version of Separator based sparsification for dynamic planar graph algorithms.
Second half of journal version of Separator based sparsification for dynamic planar graph algorithms.
For many geometric graph problems for points in the unit square, such as minimum spanning trees, matching, and traveling salesmen, the sum of edge lengths is O(sqrt n) and the sum of dth powers of edge lengths is O(log n). We provide a "gap theorem" showing that if these bounds do not hold for a class of graphs, both sums will instead be Omega(n). For traveling salesmen the O(log n) bound is tight but for some other graphs the sum of dth powers of edge lengths is O(1).
(BibTeX -- Citations -- Preprint of SCG version -- CiteSeer)
Speeds up the worst case time per pivot for various versions of the network simplex algorithm for minimum cost flow problems. Uses techniques from dynamic graph algorithms as well as some simple geometric data structures.
This paper presents an algorithm that finds multiple short paths connecting two terminals in a graph (allowing repeated vertices and edges in the paths) in constant time per path after a preprocessing stage dominated by a single-source shortest path computation. The paths it finds are the k shortest in the graph, where k is a parameter given as input to the algorithm.
The k shortest paths problem has many important applications for finding alternative solutions to geographic path planning problems, network routing, hypothesis generation in computational linguistics, and sequence alignment and metabolic pathway finding in bioinformatics. Although there have been many papers on the k shortest paths problem before and after this one, it has become frequently cited in those application areas. Additionally, it marks a boundary in the theoretical study of the problem: prior theoretical work largely concerned how quickly the problem could be solved, a line of research that was closed off by the optimal time bounds of this paper. Subsequent work has focused instead on devising efficient algorithms for more complex alternative formulations of the problem that avoid the repeated vertices and other shortcomings of the alternative paths produced by this formulation.
(BibTeX -- Full paper -- Citations -- Graehl implementation -- Jiménez-Marzal implementations -- Shibuya implementation -- Martins implementation -- CiteSeer: TR '94, SJC '98 -- ACM DL)
Uses an idea of Baker to cover a planar graph with subgraphs of low treewidth. As a consequence, any fixed pattern can be found as a subgraph in linear time; the same methods can be used to solve other planar graph problems including vertex connectivity, diameter, girth, induced subgraph isomorphism, and shortest paths. A companion paper, "Diameter and treewidth in minor-closed graph families", presents a result announced in the conference version of this paper, that exactly characterizes the minor-closed graph families for which the same techniques apply.
(BibTeX -- Citations -- Citations from MIT hypertext bibliography -- CiteSeer (SODA) -- CiteSeer (JGAA))
Considers graphs in which edge weights are linear functions of time. Shows nonlinear lower bounds on the number of different minimum spanning trees appearing over time by translation from geometric problem of lower envelopes of line segments. A matroid generalization has a better lower bound coming from many faces in line arrangements, and the uniform matroid problem is equivalent to the geometric k-set problem.
(BibTeX -- Citations -- CiteSeer -- MIT hypertext bibliography)
Speeds up 3-coloring by solving a harder problem: constraint satisfaction in which each variable can take on one of three values and each constraint forbids a pair of variable assignments. The detailed solution involves several long hairy case analyses. Similar methods apply also to 3-list-coloring, 3-edge-coloring, and 3-SAT. The 3-SAT algorithm is fixed-parameter tractible in that it is polynomial time when the number of 3-variable clauses is O(log n). Merged into 3-coloring in time O(1.3289^n) for the journal version.
(BibTeX -- Citations -- DIMACS abstract and slides -- CiteSeer)
Describes data structures for maintaining the solution of a dynamically changing subset sum problem, and uses them to find a cut in a graph minimizing the difference between the heaviest and lightest cut edge.
Shows how to find for any edge weighted graph G an equivalent graph EG such that the minimum spanning trees of G correspond one-for-one with the spanning trees of EG. The equivalent graph can be constructed in time O(m+n log n) given a single minimum spanning tree of G. As a consequence one can find fast algorithms for counting, listing, and randomly generating MSTs. Also discusses similar equivalent graph constructions for shortest paths, minimum cost flows, and bipartite matching.
This paper describes algorithms for finding pairs of vertex-disjoint paths in a DAG, either connecting two given nodes to a common ancestor, or connecting two given pairs of terminals. The main results were merged into the journal version of "Finding the k shortest paths".
(BibTeX)
Given a graph with edge weights that are linear functions of a parameter, finds the sequence of minimum spanning trees produced as the parameter varies, in total time O(mn log n), by combining ideas from "Sparsification" and "Geometric lower bounds". Also solves various problems of optimizing the parameter value, including one closely related to that in "Choosing subsets with maximum weighted average".
(BibTeX -- Citations -- MIT hypertext bibliography -- ACM DL (SWAT) -- ACM DL (NJC))
Any algorithm that maintains the connected components of a bitmap image must take Omega(log n / log log n) time per change to the image. The problem can be solved in O(log n) time per change using dynamic planar graph techniques. We discuss applications to computer Go and other games.
(BibTeX -- Citations -- MIT hypertext bibliography -- CiteSeer -- ACM DL)
Any bipartite Eulerian graph, any Eulerian graph with evenly many vertices, and any bipartite graph with evenly many vertices and edges, has an even number of spanning trees. More generally, a graph has evenly many spanning trees if and only if it has an Eulerian edge cut.
(BibTeX -- Citations -- CiteSeer)
(BibTeX -- Citations -- CiteSeer)
This paper shows how to use my dynamic closest pair data structure from "Dynamic Euclidean minimum spanning trees" for some non-geometric problems including hierarchical clustering, greedy matching, and TSP heuristics. Experiments show variants of my data structures to be faster than previously used heuristics.
(Source code and experimental data -- BibTeX -- SODA paper -- Citations -- CiteSeer -- ACM DL -- JEA home page)
We define a notion of geometric thickness, intermediate between the previously studied concepts of graph thickness and book thickness: a graph has geometric thickness T if its vertices can be embedded in the plane, and its edges partitioned into T subsets, so that each subset forms a planar straight line graph. We then give upper and lower bounds on the geometric thickness of complete graphs.
(Springer abstract -- BibTeX -- CiteSeer -- Citations -- ACM DL -- GDEA)
This paper introduces the diameter-treewidth property (later known as bounded local treewidth): a functional relationship between the diameter of its graph and its treewidth. Previously known results imply that planar graphs have bounded local treewidth; we characterize the other minor-closed families with this property. Specifically, minor-closed family F has bounded local treewidth if and only if there exists an apex graph G that is not in F; an apex graph is a graph that can be made planar by removing a single vertex. The minor-free families that exclude an apex graph (and therefore have bounded local treewidth) include the bounded-genus graphs (for which, as with planar graphs, we show a linear bound for the treewidth as a function of the diameter) and K3,a-free graphs. As a consequence, subgraph isomorphism for subgraphs of bounded size and approximations to several NP-hard optimization problems can be computed efficiently on these graphs, extending previous results for planar graphs.
Some of these results were announced in the conference version of "subgraph isomorphism for planar graphs and related problems" but not included in the journal version. Since its publication, there have been many more works on local treewidth. The class of problems that could be solved quickly on graphs of bounded local treewidth was extended and classified by Frick and Grohe, "Deciding first-order properties of locally tree-decomposable structures", J. ACM 48:1184-1206, 2001; the proof that bounded local treewidth is equivalent to having an excluded apex minor was simplified, and the dependence of the treewidth on diameter improved, by a subsequent paper of Demaine and Hajiaghayi, "Diameter and treewidth in minor-closed graph families, revisited", Algorithmica 40:211-215, 2004. The concept of local treewidth is the basis for the theory of bidimensionality, a general framework for fixed-parameter-tractable algorithms and approximation algorithms in minor-closed graph families; for a survey, see Demaine and Hajiaghayi, "The bidimensionality theory and its algorithmic applications", The Computer J. 51:292-302, 2008.
We describe algorithms for maintaining the minimum spanning tree in a graph in which the edge weights are piecewise linear functions of time that may change unpredictably. We solve the problem in time O(n2/3 polylog n) per combinatorial change to the tree for general graphs, and in time O(n1/4 polylog n) per combinatorial change to the tree for planar graphs.
(BibTeX -- FOCS '98 talk slides -- Citations -- CiteSeer -- ACM DL)
We consider several variations of the problem of coloring the squares of a quadtree so that no two adjacent squares are colored alike. We give simple linear time algorithms for 3-coloring balanced quadtrees with edge adjacency, 4-coloring unbalanced quadtrees with edge adjacency, and 6-coloring balanced or unbalanced quadtrees with corner adjacency. The number of colors used by the first two algorithms is optimal; for the third algorithm, 5 colors may sometimes be needed.
We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We use low-dimensional linear programming and geometric sampling techniques to solve such problems for minimum spanning trees, shortest paths, and other optimal subgraph problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.
(BibTeX -- Citations -- ACM DL (FOCS) -- ACM DL (SJC))
We compute the expected numbers of short cycles of each length in certain classes of random graphs used for turbocodes, estimate the probability that there are no such short cycles involving a given vertex, and experimentally verify our estimates. The scarcity of short cycles may help explain the empirically observed accuracy of belief-propagation based error-correction algorithms. Note, the TR, conference, and journal versions of this paper have slightly different titles.
(BibTeX -- Citations: TR/ISIT -- CiteSeer)
This talk surveys work on computational geometry algorithms that use dynamic graph data structures, and the different kinds of geometric graph arising in this work.
Journal paper combining 3-coloring algorithms from our FOCS '95 paper with improved bounds from our SODA '01 paper.
We use random sampling to quickly estimate, for each vertex in a graph, the average distance to all other vertices.
(BibTeX -- SODA paper -- Citations -- CiteSeer)
Summarizes recent improvements to "3-Coloring in time O(1.3446n): a no-MIS algorithm". Merged with that paper for the journal version.
(SODA talk slides -- BibTeX -- SODA paper -- CiteSeer)
We show that any graph can be colored in time O(2.415n), by a dynamic programming procedure in which we extend partial colorings on subsets of the vertices by adding one more color for a maximal independent set. The time bound follows from limiting our attention to maximal independent subsets that are small relative to the previously colored subset, and from bounding the number of small maximal independent subsets that can occur in any graph.
(BibTeX -- Citations -- CiteSeer -- WADS talk slides -- ACM DL)
We give linear-time quasiconvex programming algorithms for finding a Möbius transformation of a set of spheres in a unit ball or on the surface of a unit sphere that maximizes the minimum size of a transformed sphere. We can also use similar methods to maximize the minimum distance among a set of pairs of input points. We apply these results to vertex separation and symmetry display in spherical graph drawing, viewpoint selection in hyperbolic browsing, and element size control in conformal structured mesh generation.
(BibTeX -- Citations -- CiteSeer -- WADS talk slides -- ACM DL)
We show that geometric thickness and book thickness are not asymptotically equivalent: for every t, there exists a graph with geometric thickness two and book thickness > t.
We propose a random graph model that (empirically) appears to have a power law degree distribution. Unlike previous models, our model is based on a Markov process rather than incremental growth. We compare our model with others in its ability to predict web graph clustering behavior.
(BibTeX -- Citations -- CiteSeer)
We show that thickness and geometric thickness are not asymptotically equivalent: for every t, there exists a graph with thickness three and geometric thickness > t. The proof uses Ramsey-theoretic arguments similar to those in "Separating book thickness from thickness".
(BibTeX -- GD'02 talk slides -- Citations -- ACM DL)
Falmagne recently introduced the concept of a medium, a combinatorial object encompassing hyperplane arrangements, topological orderings, acyclic orientations, and many other familiar structures. We find efficient solutions for several algorithmic problems on media: finding short reset sequences, shortest paths, testing whether a medium has a closed orientation, and listing the states of a medium given a black-box description.
(BibTeX -- Citations -- OSDA talk slides)
We describe a decomposition of graphs embedded on 2-dimensional manifolds into three subgraphs: a spanning tree, a dual spanning tree, and a set of leftover edges with cardinality determined by the genus of the manifold. This tree-cotree decomposition allows us to find efficient data structures for dynamic graphs (allowing updates that change the surface), better constants in bounded-genus graph separators, and efficient algorithms for tree-decomposition of bounded-genus bounded-diameter graphs.
(BibTeX -- SODA talk slides -- Citations)
We describe a new method of drawing graphs, based on allowing the edges to be merged together and drawn as "tracks" (similar to train tracks). We present heuristics for finding such drawings based on my previous algorithms for finding maximal bipartite subgraphs, prove that several important families of graphs have confluent drawings, and provide examples of other graphs that can not be drawn in this way.
We find improved exponential-time algorithms for exact solution of the traveling salesman problem on graphs of maximum degree three and four. We also consider related problems including counting the number of Hamiltonian cycles in such graphs.
(BibTeX -- WADS talk slides -- Citations)
We consider problems of partitioning sets of geometric objects into two subsets, such that no two objects within the same subset intersect each other. Typically, such problems can be solved in quadratic time by constructing the intersection graph and then applying a graph bipartiteness testing algorithm; we achieve subquadratic times for general objects, and O(n log n) times for balls in R^d or simple polygons in the plane, by using geometric data structures, separator based divide and conquer, and plane sweep techniques, respectively. We also contrast the complexity of bipartiteness testing with that of connectivity testing, and provide evidence that for some classes of object, connectivity is strictly harder due to a computational equivalence with Euclidean minimum spanning trees.
(BibTeX -- Citations -- SODA talk slides)
We show that graphs with maximum degree four have geometric thickness at most two, by partitioning them into degree two subgraphs and applying simultaneous embedding techniques.
We describe a new algorithm, based on graph matching, for subdividing a triangle mesh (without boundary) so that it has a Hamiltonian cycle of triangles, and prove that this subdivision process increases the total number of triangles in the mesh by at most a factor of 3/2. We also prove lower bounds on the increase needed for meshes with and without boundary.
(Graphics lab pubs page -- Citations)
Describes a polynomial time algorithm for isometrically embedding graphs into an integer lattice of the smallest possible dimension. The technique involves maximum matching in an auxiliary graph derived from a partial cube representation of the input.
We describe two algorithms for finding planar layouts of partial cubes: one based on finding the minimum-dimension lattice embedding of the graph and then projecting the lattice onto the plane, and the other based on representing the graph as the planar dual to a weak pseudoline arrangement.
Due to editorial mishandling there will be no journal version of this paper: I submitted it to a journal in 2004, the reviews were supposedly sent back to me in 2005, but I didn't receive them and didn't respond to them, leading the editors to assume that I intended to withdraw the submission. Large portions of the paper have since been incorporated into my book Media Theory, making journal publication moot.
(GD04 talk slides -- BibTeX -- Citations -- GDEA)
Describes a graph drawing technique combining ideas of confluent drawing with Sugiyama-style layered drawing. Uses a reduction to graph coloring to find and visualize sets of bicliques in each layer.
We show how to apply reverse search to list all maximal independent sets in bounded-degree graphs in constant time per set, in graphs from minor closed families in linear time per set, and in sparse graphs in subquadratic time per set. The latter two results rely on new data structures for maintaining a dynamic vertex set in a graph and quickly testing whether the set dominates all other vertices.
(SODA05 talk slides -- BibTeX)
We give a linear time algorithm for pruning a node-weighted tree to maximize the average node weight of the pruned subtree; this problem was previously studied under the less obvious name "The Fractional Prize-Collecting Steiner Tree Problem on Trees".
(BibTeX)
We characterize the graphs that can be drawn confluently with a single confluent track that is tree-like except for three-way Delta junctions, as being exactly the distance hereditary graphs. Based on this characterization, we develop efficient algorithms for drawing these graphs.
(BibTeX -- GD'05 talk slides)
We describe algorithms and hardness results for finding paths in edge-labeled graphs such that no two consecutive edges have the same label, and use our algorithms to implement heuristics for a program that automatically solves and generates Sudoku puzzles.
We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface).
We show how to construct a cubic partial cube from any simplicial arrangement of lines or pseudolines in the projective plane. As a consequence, we find nine new infinite families of cubic partial cubes as well as many sporadic examples.
This follows on to our previous paper on using graph matching to cover a triangulated polyhedral model with a single triangle strip by extending the algorithms to models with boundaries. We provide two methods: one is based on using an algorithm for the Chinese Postman problem to find a small set of triangles to split in order to find a perfect matching in the dual mesh, while the other augments the model with virtual triangles to remove the boundaries and merges the strips formed by our previous algorithm on this augmented model. We implement the algorithms and report some preliminary experimental results.
We consider a problem of assigning delays to components in a circuit so that each component is part of a critical path, but the number of edges belonging to critical paths is minimized. We show the problem to be NP-complete via a reduction from finding independent dominating sets in bipartite graphs minimizing dominated edges, and give experimental results on heuristics.
We consider graph drawing algorithms for learning spaces, a type of st-oriented partial cube derived from antimatroids and used to model states of knowledge of students. We show how to draw any st-planar learning space so all internal faces are convex quadrilaterals with the bottom side horizontal and the left side vertical, with one minimal and one maximal vertex. Conversely, every such drawing represents an $st$-planar learning space. We also describe connections between these graphs and arrangements of translates of a quadrant.
We consider drawings of trees which, if the leaf edges were extended to infinite rays, would form partitions of the plane into unbounded convex polygons. For such a drawing the edges may be chosen independently without any possibility of edge crossing. We show how to choose the angles of such drawings to optimize the angular resolution of the drawing.
We show how to choose colors for the vertices of a graph drawing in such a way that all colors are easily distinguishable, but such that adjacent vertices have especially dissimilar colors, by considering the problem as one of embedding the graph into a three-dimensional color space.
We show that the triangulations of a finite point set form a flip graph that can be embedded isometrically into a hypercube, if and only if the point set has no empty convex pentagon. Point sets of this type include convex subsets of lattices, points on two lines, and several other infinite families. As a consequence, flip distance in such point sets can be computed efficiently.
We investigate a class of metrics for 2-manifolds in which, except for a discrete set of singular points, the metric is locally isometric to an L1 metric, and show that with certain additional conditions such metrics are injective. We use this construction to find the tight span of squaregraphs and related graphs, and we find an injective metric that approximates the distances in the hyperbolic plane analogously to the way the rectilinear metrics approximate the Euclidean distance.
We show how to solve several versions of the problem of casing graph drawings: that is, given a drawing, choosing to draw one edge as upper and one lower at each crossing in order to improve the drawing's readability.
We describe tests for whether the union-closure of a set family is well-graded, and algorithms for finding a minimal well-graded union-closed superfamily of a given set family.
We show how to test whether a graph is a partial cube, and if so embed it isometrically into a hypercube, in time O(n2), improving previous O(nm)-time solutions; here n is the number of vertices and m is the number of edges. The ideas are to use bit-parallelism to speed up previous approaches to the embedding step, and to verify that the resulting embedding is isometric using an all-pairs shortest path algorithm from "algorithms for media".
(slides)
I survey some of my recent results on geometry of partial cubes, including lattice dimension, graph drawing, cubic partial cubes, and partial cube flip graphs of triangulations.
Defines a class of orthogonal graph drawings formed by a point set in three dimensions for which axis-parallel line contains zero or two vertices, with edges connecting pairs of points on each nonempty axis-parallel line. Shows that the existence of such a drawing can be defined topologically, in terms of certain two-dimensional surface embeddings of the same graph. Based on this equivalence, describes algorithms, graph-theoretic properties, and hardness results for graphs of this type.
(Slides from talk at U. Arizona, February 2008 -- Slides from GD08) )
Many combinatorial structures such as the set of acyclic orientations of a graph, weak orderings of a set of elements, or chambers of a hyperplane arrangement have the structure of a partial cube, a graph in which vertices may be labeled by bitvectors in such a way that graph distance equals Hamming distance. This book analyzes these structures in terms of operations that change one vertex to another by flipping a single bit of the bitvector labelings. It incorporates material from several of my papers including "Algorithms for Media", "Algorithms for Drawing Media", "Upright-Quad Drawing of st-Planar Learning Spaces", and "The Lattice Dimension of a Graph".
(Publisher's web site -- Reinhard Suck's review in J. Math. Psych. -- Reinhard Suck's review in MathSciNet)
How to implement an antimatroid, with applications in computerized education.
We formalize problems of finding large approximately-matching regions of two related but not completely isomorphic quadrilateral meshes, show that these problems are NP-complete, and describe a natural greedy heuristic that is guaranteed to find good matches when the mismatching parts of the meshes are small.
(Preprint)
Greedy drawing is an idea for encoding network routing tables into the geometric coordinates of an embedding of the network, but most previous work in this area has ignored the space complexity of these encoded tables. We refine a method of R. Kleinberg for embedding arbitrary graphs into the hyperbolic plane, which uses linearly many bits to represent each vertex, and show that only logarithmic bits per point are needed.
We describe polynomial time algorithms for determining whether an undirected graph may be embedded in a distance-preserving way into the hexagonal tiling of the plane, the diamond structure in three dimensions, or analogous structures in higher dimensions. The graphs that may be embedded in this way form an interesting subclass of the partial cubes.
(Slides)
We examine US road network data and show that, contrary to the assumptions of much past GIS work, these networks are highly nonplanar. We introduce a class of "multiscale dispersed" networks that better fit the data; these networks are defined by a family of disks of varying sizes such that, if a small number of outliers is removed, the remaining disks cover each point of the plane a constant number of times. As we show, these networks have good graph separators, allowing for efficient algorithms for minimum spanning trees, graph Voronoi diagrams, and related problems.
If a connected graph corresponds to a set of points and line segments in the plane, in such a way that the number of crossing pairs of line segments is sublinear in the size of the graph by an iterated-log factor, then we can find the arrangement of the segments in linear time. It was previously known how to find the arrangement in linear time when the number of crossings is superlinear by an iterated-log factor, so the only remaining open case is when the number of crossings is close to the size of the graph.
Proves that it's NP-complete to compute the Hadwiger number of a graph.
A partition of a rectangle into smaller rectangles is "area-universal" if any vector of areas for the smaller rectangles can be realized by a combinatorially equivalent partition. These partitions may be applied, for instance, to cartograms, stylized maps in which the shapes of countries have been distorted so that their areas represent numeric data about the countries. We characterize area-universal layouts, describe algorithms for finding them, and discuss related problems. The algorithms for constructing area-universal layouts are based on the distributive lattice structure of the set of all layouts of a given dual graph.
Merged with "Orientation-constrained rectangular layouts" to form the journal version, "Area-universal and constrained rectangular layouts".
We investigate isometric embeddings of other graphs into Fibonacci cubes, graphs formed from the families of fixed-length bitstrings with no two consecutive ones.
We define the h-index of a graph to be the maximum h such that the graph has h vertices each of which has degree at least h. We show that the h-index, and a partition of the graph into high and low degree vertices, may be maintained in constant time per update. Based on this technique, we show how to maintain the number of triangles in a dynamic graph in time O(h) per update; this problem is motivated by Markov Chain Monte Caro simulation of the Exponential Random Graph Model used for simulation of social networks. We also prove bounds on the h-index for scale-free graphs and investigate the behavior of the h-index on a corpus of real social networks.
We show how to find a stylized map in which regions have been replaced by rectangles, preserving adjacencies between regions, with constraints on the orientations of adjacencies between regions. For an arbitrary dual graph representing a set of adjacencies, and an arbitrary set of orientation constraints, we can determine whether there exists a rectangular map satisfying those constraints in polynomial time. The algorithm is based on a representation of the set of all layouts for a given dual graph as a distributive lattice, and on Birkhoff's representation theorem for distributive lattices.
Merged with "Area-universal rectangular layouts" to form the journal version, "Area-universal and constrained rectangular layouts".
Characterizes squaregraphs as duals of triangle-free hyperbolic line arrangements, provides a forbidden subgraph characterization of them, describes an algorithm for finding minimum subsets of vertices that generate the whole graph by medians, and shows that they may be isometrically embedded into Cartesian products of five (but not, in general, fewer than five) trees.
We survey problems in computational geometry that may be solved by constructing an auxiliary graph from the problem and solving a graph-theoretic problem on the auxiliary graph. The problems considered include the art gallery problem, partitioning into rectangles, minimum diameter clustering, bend minimization in cartogram construction, mesh stripification, optimal angular resolution, and metric embedding.
We consider drawings of planar partial cubes in which all interior faces are centrally symmetric convex polygons, as in my previous paper Algorithms for Drawing Media. Among all drawings of this type, we show how to find the one with optimal angular resolution. The solution involves a transformation from the problem into the parametric negative cycle detection problem: given a graph in which the edge weights are linear functions of a parameter λ, find the minimum value of λ for which the graph contains no negative cycles.
Shows both theoretically and experimentally that the number of times a random line crosses a road network is asymptotically upper bounded by the square root of the number of road segments.
Considers situations in which two hard approximation problems are presented by means of a single input. In many cases it is possible to guarantee that one or the other problem can be approximated to within a better approximation ratio than is possible for approximating it as a single problem. For instance, it is possible to find either a (1+ε)-approximation to a 1-2 TSP defined from a graph or a nε-approximation to the maximum independent set of the same graph, despite lower bounds showing nonexistence of approximation schemes for 1-2 TSP and nonexistence of approximations better than n1 − ε for independent set. However, for some other pairs of problems, such as hitting set and set cover, we show that solving the paired problem approximately is no easier than solving either problem independently.
We provide a graph-theoretic characterization of three classes of nonconvex polyhedra with axis-parallel sides, analogous to Steinitz's theorem characterizing the graphs of convex polyhedra.
(Slides)
We characterize the graphs that can be isometrically embedded into the Cartesian product of two trees (partial double dendrons), and the metric spaces obtained as the median complexes of these graphs. These spaces include the space of geodesic distance in axis-parallel polygons in the L1 plane, hence the title. An algorithm based on lexicographic breadth-first search can be used to recognize partial double dendrons in linear time.
We survey regular labelings for straight-line embedding of planar graphs on grids, rectangular partitions, and orthogonal polyhedra, and the many similarities between these different types of labeling.
We show that the maximum flow problem can be solved in near-linear time for K5-minor-free and K3,3-minor-free graphs. The same result also holds for H-minor-free graphs when H can be embedded in the plane with one crossing and a structural decomposition of the input flow graph is given.
We describe an algorithm for finding all maximal cliques in a graph, in time O(dn3d/3) where n is the number of vertices and d is the degeneracy of the graph, a standard measure of its sparsity. This time bound matches the worst-case output size for these parameters. The algorithm modifies the Bron-Kerbosch algorithm for maximal cliques by ordering the vertices by degree in the outer recursive call of the algorithm.
Tutte's method of spring embeddings allows any triangulated planar graph to be drawn so that the outer face has any pre-specified convex shape, but it may place vertices exponentially close to each other. Alternative graph drawing methods provide polynomial-area straight line drawings but do not allow the outer face shape to be specified. We describe a drawing method that combines both properties: it has polynomial area, and can match any pre-specified shape of the outer face, even a shape in which some of the vertices have 180 degree angles. We apply our results to drawing polygonal schemas for graphs embedded on surfaces of positive genus.
In honor of artist Mark Lombardi, we define a Lombardi drawing to be a drawing of a graph in which the edges are drawn as circular arcs and at each vertex they are equally spaced around the vertex so as to achieve the best possible angular resolution. We describe algorithms for constructing Lombardi drawings of regular graphs, 2-degenerate graphs, graphs with rotational symmetry, and several types of planar graphs. A program for the rotationally symmetric case, the Lombardi Spirograph, is available online.
We consider balloon drawings of trees, in which each subtree of the root is drawn recursively within a disk, and these disks are arranged radially around the root, with the edges at each node spaced equally around the node so as to achieve the best possible angular resolution. If we are allowed to permute the children of each node, then we show that a drawing of this type can be made in which all edges are straight line segments and the area of the drawing is a polynomial multiple of the shortest edge length. However, if the child ordering is prescribed, exponential area might be necessary. We show that, if we relax the requirement of straight line edges and draw the edges as circular arcs (a style we call Lombardi drawing) then even with a prescribed child ordering we can achieve polynomial area.
We show how to draw any graph of maximum degree three in three dimensions with 120 degree angles at each vertex or bend, and any graph of maximum degree four in three dimensions with the angles of the diamond lattice at each vertex or bend. In each case there are no crossings and the number of bends per edge is a small constant.
An earlier paper with Spiro at WADS 2009 provided dynamic graph algorithms for counting how many copies of each possible type of subgraph there are in a larger undirected graph, when the subgraphs have at most three vertices. This paper extends the method to directed graphs and to larger numbers of vertices per subgraph.
For every minor-closed graph family (such as the family of planar graphs), there is a constant c such that the maximum number of edges in an n-vertex graph in the family is c(n + o(n); for instance, for planar graphs, c = 3. We call c the limiting density of the family, and we study the set of all limiting densities of all minor-closed graph families. We show that this set of limiting densities is closed and well-ordered, with order type at least ωω, and we find an exact description of the members of this set up to its first two cluster points 1 and 3/2.
We experiment with our degeneracy-based algorithm for listing maximal cliques in sparse graphs and show that it works well on large graphs drawn from several repositories of real-world social networks and bioinformatics networks.
We investigate greedy routing schemes for social networks, in which participants know categorical information about some other participants and use it to guide message delivery by forwarding messages to neighbors that have more categories in common with the eventual destination. We define the membership dimension of such a scheme to be the maximum number of categories that any individual belongs to, a natural measure of the cognitive load of greedy routing on its participants. And we show that membership dimension is closely related to the small world phenomenon: a social network can be given a category system with polylogarithmic membership dimension that supports greedy routing if, and only if, the network has polylogarithmic diameter.
We show that a partial order has a non-crossing upward planar drawing if and only if it has order dimension two, and we use the Dedekind-MacNeille completion to find a drawing with the minimum possible number of confluent junctions.
We show that, for several variants of the problem of compacting a grid drawing of a graph to use the minimum number of rows or minimum area, no good approximation algorithm is possible. We also develop fixed-parameter tractable algorithms and approximation algorithms showing that some of our inapproximability bounds are tight. See the journal version, "Inapproximability of orthogonal compaction", for some improvements and corrections.
We extend Lombardi drawing (in which each edge is a circular arc and the edges incident to a vertex must be equally spaced around it) to drawings in which edges are composed of multiple arcs, and we investigate the graphs that can be drawn in this more relaxed framework.
The Bellman–Ford algorithm for single-source shortest paths in graphs that may have negatively weighted edges but no negative cycles can be sped up by a technique of Yen in which the graph is partitioned into two directed acyclic subgraphs and edge relaxations alternate between these two subgraphs. We show that choosing this partition randomly gains an additional factor of 2/3 in running time.
This is the journal version of "Hardness of approximate compaction for nonplanar orthogonal graph drawings". It has stronger inapproximability bounds, and more variations of the compaction problem that are hard to approximate. In addition it includes a retraction of a buggy approximation algorithm from the conference version.
A combined journal version of "Area-universal rectangular layouts" and "Orientation-constrained rectangular layouts".
We find an algorithm for making all possible deductions based on the set of candidate locations for a single digit in a Sudoku puzzle; the problem is NP-hard, and our algorithm takes exponential time, but the mild form of the exponential allows it to be fast for practical problem sizes.
When a planar point set has the property that its Delaunay triangulation has no large angles, we show how to connect it by a plane graph (having linearly many additional Steiner vertices) in which the distances between the original points are approximations to their Euclidean distance, and in which the total graph weight is at most a constant times the minimum spanning tree weight. The time to construct this graph is near-linear, the same as for integer sorting. We use this result to approximate the traveling salesman problem, for these point sets, in the same time bound.
We show that every planar graph of maximum degree three has a planar Lombardi drawing and that some but not all 4-regular planar graphs have planar Lombardi drawings.
We extend force-directed methods of graph drawing by adding a force that pulls vertices towards the center of the drawing, with a strength proportional to the centrality of the vertex. Gradually scaling up this force helps avoid the tangling that would otherwise result from its use.
A graph is 1-planar if it can be drawn in the plane with at most one crossing per edge, and maximal 1-planar if it is 1-planar but adding any edge would force more than one crossing on some edge or edges. Although maximal 1-planar graphs on n vertices may have as many as 4n − 8 edges, we show that there exist maximal 1-planar graphs with as few as 45n/17 + O(1) edges.
We study relational event data in which a collection of actors in a social network have a sequence of pairwise interactions. Contiguous subsequences of these interactions form graphs, and we develop efficient data structures for querying the parameters of these graphs.
We characterize the graphs of two-dimensional soap bubble clusters as being exactly the bridgeless 3-regular planar graphs.
We generalize the 1/3-2/3 conjecture, according to which every partial order should have a pair of items that are nearly equally likely to appear in either order in a random linear extension, to antimatroids, and we prove it for several specific types of antimatroid.
We give tight bounds on the size of the largest remaining grid minor in a grid graph from which a given number of vertices have been deleted, and study several related problems.
We show that testing whether a graph is 1-planar (drawable with at most one crossing per edge) may be performed in polynomial and fixed-parameter tractable time for graphs of bounded circuit rank, vertex cover number, or tree-depth. However, it is NP-complete for graphs of bounded treewidth, pathwidth, or bandwidth.
This edited volume collects experiences with automated learning systems based on the theory of knowledge spaces, and mathematical explorations of the theory of knowledge spaces and their efficient implementation.
We show how to represent a learning space by a small family of learning sequences, orderings of the items in a learning sequence that are consistent with their prerequisite relations. This representation allows for the rapid generation of the family of all consistent knowledge states and the efficient assessment of the state of knowledge of a human learner.
In another chapter of the same book we used learning sequences to represent learning spaces and perform efficient knowledge assessment of a human learning. In this chapter we show how to use the same data structure to build learning spaces on a sample of the items of a larger learning space (an important subroutine in knowledge assessment) and to modify a learning space to more accurately model students.
For every positive integer n, there exists a set of n points on a parabola, with the property that every n-vertex planar graph can be drawn without crossings with its vertices at these points and with its edges drawn as circular arcs.
Graph Theory -- Publications -- David Eppstein -- Theory Group -- Inf. & Comp. Sci. -- UC Irvine
Semi-automatically filtered from a common source file.